Skip to main content

Advertisement

Log in

Co-modification of conductive graphite and Zr doping to enhance the Li-storage properties of Ni-rich binary cathode material

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ni-rich binary cathode materials have attracted much attention due to their high specific capacity, good performance-cost ratio, and environmental friendliness. However, their commercial application is limited by the problems of rapid capacity attenuation and poor cycling performance at high voltage. In this work, Zr and conductive ks-6 co-modified LiNi0.85Mn0.15O2 cathode materials are successfully synthesized through optimizing the proportion of modified components. The results show that the discharge capacity of LiNi0.85Mn0.15O2 co-modified with Zr and 2 wt% ks-6 (NMZ-2) increases from 182.71 mAh g−1 to 203.32 mAh g−1, and the capacity retention rate rises from 67.59 to 81.09% after 100 cycles at 1 C between 2.75 V and 4.35 V. The excellent Li-storage performance may be attributed to the synergistic effect of conductive ks-6 and Zr doping, which not only increases the electronic conductivity and reduces the electrode polarization, but also significantly reduces the cation mixing and inhibits the irreversible phase transition during cycling. The co-modified LiNi0.85Mn0.15O2 cathode material shows higher Ni3+ content and layer structure integrity, which enhance the reversibility and cycling stability of the electrode during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ding Y, Mu DB, Wu BR et al (2017) Recent progresses on nickel-rich layered oxide positive electrode materials used in lithium-ion batteries for electric vehicles. Appl Energy 195:586–599

    Article  CAS  Google Scholar 

  2. Xu J, Ma J, Fan Q et al (2017) Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-x (x = O2, S, Se, Te, I2, Br 2) batteries. Adv Mater 29:1606454

    Article  Google Scholar 

  3. Wu Z, Wang Y, Liu X et al (2019) Carbon-nanomaterial-based flexible batteries for wearable elecctronics. Adv Mater 31:1800716

    Article  Google Scholar 

  4. Han Y, Wang W, Zou J et al (2020) Self-powered energy conversion and energy storage system based on triboelectric nanogenerator. Nano Energy 76:105008

    Article  CAS  Google Scholar 

  5. Li F, He J, Liu J et al (2021) Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew Chem Int Ed 60:6600–6608

    Article  CAS  Google Scholar 

  6. Qi S, Wang H, He J et al (2021) Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries. Sci Bull 66:685–693

    Article  CAS  Google Scholar 

  7. Wood M, Li JL, Ruther RE et al (2020) Chemical stability and long-term cell performance of low-cobalt, Ni-rich cathodes prepared by aqueous processing for high-energy Li-ion batteries. Energy Storage Mater 24:188–197

    Article  Google Scholar 

  8. Liu W, Cheng X, Wang C et al (2021) Enhancing high cycle stability of Ni-rich LiNi0.94Co0.04Al0.02O2 layered cathode material. Ionics 27:1–10

    Article  CAS  Google Scholar 

  9. Li TX, Li DL, Zhang QB et al (2021) Preparation and electrochemical performance of macroporous Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material. Acta Chim Sinica 79:678–684

    Article  Google Scholar 

  10. Du ML, Yang P, He WX et al (2019) Enhanced high-voltage cycling stability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode coated with Li2O-2B2O3. J Alloys Compd 805:991–998

    Article  CAS  Google Scholar 

  11. Feng Z, Rajagopalan R, Sun D et al (2020) In-situ formation of hybrid Li3PO4-AlPO4-Al(PO3)3 coating layer on LiNi0.8Co0.1Mn0.1O2 cathode with enhanced electrochemical properties for lithium-ion battery. Chem Eng J 382:122959

    Article  CAS  Google Scholar 

  12. Li XL, Jin LB, Song DW et al (2020) LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J Energy Chem 40:39–45

    Article  Google Scholar 

  13. Song Z, Cao X, Cui C et al (2021) Improved preparation efficiency and electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material by oxalic acid and freeze-drying. Ionics 27:1–10

    Article  Google Scholar 

  14. Xie ZC, Zhang YY, Yuan AB et al (2019) Effects of lithium excess and SnO2 surface coating on the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode material for Li-ion batteries. J Alloys Compd 787:429–439

    Article  CAS  Google Scholar 

  15. Liang M, Sun YM, Song DW et al (2019) Superior electrochemical performance of quasi-concentration-gradient LiNi0.8Co0.15Al0.05O2 cathode material synthesized with multi-shell precursor and new aluminum source. Electrochim Acta 300:426–436

    Article  CAS  Google Scholar 

  16. Leng J, Wang J, Peng W et al (2021) Highly-dispersed submicrometer single-crystal nickel-rich layered cathode: spray synthesis and accelerated lithium-ion transport. Small 17:2006869

    Article  CAS  Google Scholar 

  17. Wang R, Wang J, Chen S et al (2020) Effectively stabilizing electrode/electrolyte interface of high-energy LiNi0.9Co0.1O2//Si–C system by simple cathode surface-coating. Nano Energy 76:105065

    Article  CAS  Google Scholar 

  18. Chen X, Tang Y, Fan CL et al (2020) A highly stabilized single crystalline nickel-rich LiNi0.8Co0.1Mn0.1O2 cathode through a novel surface spinel-phase modification. Electrochim Acta 341:136075

    Article  CAS  Google Scholar 

  19. Mo WB, Wang ZX, Wang JX et al (2020) Tuning the surface of LiNi0.8Co0.1Mn0.1O2 primary particle with lithium boron oxide toward stable cycling. Chem Eng J 400:125820

    Article  CAS  Google Scholar 

  20. Zhao SS, Shao L, Li X et al (2020) Acid-corrosion-formed amorphous phosphate surfaces improve electrochemical stability of LiNi0.8Co0.15Al0.05O2 cathodes. Corros Sci 168:108553

    Article  CAS  Google Scholar 

  21. Wu LP, Tang XC, Rong ZH et al (2019) Studies on electrochemical reversibility of lithium tungstate coated Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material under high cut-off voltage cycling. Appl Surf Sci 484:21–32

    Article  CAS  Google Scholar 

  22. Hu GR, Qi XY, Hu KH et al (2018) A facile cathode design with a LiNi0.6Co0.2Mn0.2O2 core and an AlF3-activated Li1.2Ni0.2Mn0.6O2 shell for Li-ion batteries. Electrochim Acta 265:391–399

    Article  CAS  Google Scholar 

  23. Baster D, Paziak P, Ziąbka M et al (2018) LiNi0.6Co0.4-zTizO2-new cathode materials for Li-ion batteries. Solid State Ionics 320:118–125

    Article  CAS  Google Scholar 

  24. Liu Y, Yao WL, Lei C et al (2020) Li2TiO3 and Li2ZrO3 co-modification LiNi0.8Co0.1Mn0.1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries. Solid State Ionics 349:115292

    Article  Google Scholar 

  25. Zhao B, Si J, Cao CH et al (2019) Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode by reducing lithium residue with low-temperature fluorination treatment. Solid State Ionics 339:114998

    Article  CAS  Google Scholar 

  26. Huang J, Liu J, He J et al (2021) Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew Chem Int Ed 60:20717–20722

    Article  CAS  Google Scholar 

  27. Liu S, Dang Z, Liu D et al (2018) Comparative studies of zirconium doping and coating on LiNi0.6Co0.2Mn0.2O2 cathode material at elevated temperatures. J Power Sources 396:288–296

    Article  CAS  Google Scholar 

  28. Song L, Li X, Xiao Z et al (2019) Effect of Zr doping and Li2O-2B2O3 layer on the structural electrochemical properties of LiNi0.5Co0.2Mn0.3O2 cathode material: experiments and first-principle calculations. Ionics 25:2017–2026

    Article  CAS  Google Scholar 

  29. Song X, Liu G, Yue H et al (2021) A novel low-cobalt long-life LiNi0.88Co0.06Mn0.03Al0.03O2 cathode material for lithium ion batteries. Chem Eng J 407:126301

    Article  CAS  Google Scholar 

  30. Yao L, Li Y, Gao X et al (2021) Microstructure boosting the cycling stability of LiNi0.6Co0.2Mn0.2O2 cathode through Zr-based dual modification. Energy Storage Mater 36:179–185

    Article  Google Scholar 

  31. Jung CH, Li Q, Kim DH et al (2021) Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries. J Mater Chem A 9:17415–17424

    Article  CAS  Google Scholar 

  32. Kong XB, Peng SY, Li JY et al (2020) Pre-blended conductive agent to effectively improve the storage properties of LiNi0.6Co0.2Mn0.2O2 cathode materials. J Power Sources 448:227445

    Article  CAS  Google Scholar 

  33. Tian F, Nie W, Zhong SW et al (2020) Highly ordered carbon nanotubes to improve the conductivity of LiNi0.8Co0.15Al0.05O2 for Li-ion batteries. J Mater Sci 55:12082–12090

    Article  CAS  Google Scholar 

  34. Fan QL, Yang SD, Liu J et al (2019) Mixed-conducting interlayer boosting the electrochemical performance of Ni-rich layered oxide cathode materials for lithium ion batteries. J Power Sources 421:91–99

    Article  CAS  Google Scholar 

  35. Ren D, Yang Y, Shen LX et al (2020) Ni-rich LiNi0.88Mn0.06Co0.06O2 cathode interwoven by carbon fiber with improved rate capability and stability. J Power Sources 447:227344

    Article  CAS  Google Scholar 

  36. Wang R, Wang J, Qiu T et al (2012) Effects of different carbon sources on the electrochemical properties of Li4Ti5O12/C composites. Electrochim Acta 70:84–90

    Article  CAS  Google Scholar 

  37. Lin HB, Huang WZ, Rong HB et al (2015) Surface natures of conductive carbon materials and their contributions to charge/discharge performance of cathodes for lithium ion batteries. J Power Sources 287:276–282

    Article  CAS  Google Scholar 

  38. Yao WL, Dai QN, Liu Y et al (2017) Microwave-assisted synthesis of Co3O4 sheets for reversible Li storage: regulation of structure and performance. ChemElectroChem 4:1236–1242

    Article  CAS  Google Scholar 

  39. Li JW, Yao WL, Zhang FC et al (2021) Porous SnO2 microsphere and its carbon nanotube hybrids: controllable preparation, structures and electrochemical performances as anode materials. Electrochim Acta 388:138582

    Article  CAS  Google Scholar 

  40. Fu YK, Zeng M, Rao XF et al (2021) Microwave-assisted synthesis and Co, Al Co-modification of Ni-rich LiNi0.8Mn0.2O2 materials for Li-ion battery electrode. J Inorg Mater 07:718–727

    Article  Google Scholar 

  41. Yao WL, Liu Y, Li D et al (2020) Synergistically enhanced electrochemical performance of Ni-rich cathode materials for lithium-ion batteries by K and Ti co-modification. J Phys Chem C 124:2346–2356

    Article  CAS  Google Scholar 

  42. Gao S, Zhan XW, Cheng YT (2019) Structural electrochemicaland Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries. J Power Sources 410:45–52

    Article  Google Scholar 

  43. He T, Lu Y, Su Y et al (2018) Sufficient utilization of zirconium ions to improve the structure and surface properties of Nickel-rich cathode materials for lithium-ion batteries. Chemsuschem 11:1639–1648

    Article  CAS  PubMed  Google Scholar 

  44. Yao W, Zhang H, Zhong S et al (2019) Facile synthesis of Li2ZrO3-modified LiNi0.5Mn0.5O2 cathode material from a mechanical milling route for lithium-ion batteries. J Electroceram 43:84–91

    Article  CAS  Google Scholar 

  45. Sun YK, Lee DJ, Lee YJ et al (2013) Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. ACS Appl Mater Inter 5:11434–11440

    Article  CAS  Google Scholar 

  46. Yang J, Xia YY (2016) Suppressing the phase transition of the layered Ni-rich oxide cathode during high-voltage cycling by introducing low-content Li2MnO3. ACS Appl Mater Inter 8:1297–1308

    Article  CAS  Google Scholar 

  47. Zhang W, Liang L, Zhao F et al (2020) Ni-rich LiNi0.8Co0.1Mn0.1O2 coated with Li-ion conductive Li3PO4 as competitive cathodes for high-energy-density lithium ion batteries. Electrochim Acta 340:135871

    Article  CAS  Google Scholar 

  48. Liu Y, Yao WL, Lei C et al (2019) Ni-rich oxide LiNi0.85Co0.05Mn0.1O2 for lithium ion battery: effect of microwave radiation on its morphology and electrochemical property. J Electrochem Soc 166:A1300–A1309

    Article  CAS  Google Scholar 

  49. Liang L, Zhang W, Zhao F et al (2020) Surface/interface structure degradation of Ni-rich layered oxide cathodes toward lithium-ion batteries: fundamental mechanisms and remedying strategies. Adv Mater Interfaces 7:1901749

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial support of this work by Foundation of Jiangxi Educational Committee (No. GJJ190423, GJJ190427, and GJJ200850), Natural Science Foundation of Jiangxi Province (No. GJJ160601), Finance and Education Plan of Ganzhou City (Nos. 60[2019–2021]), and National Natural Science Foundation of China (No. 51874151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Yao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Rao, X., Yao, W. et al. Co-modification of conductive graphite and Zr doping to enhance the Li-storage properties of Ni-rich binary cathode material. Ionics 28, 1055–1064 (2022). https://doi.org/10.1007/s11581-021-04369-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04369-3

Keywords

Navigation