Skip to main content
Log in

A liquid-like poly(6-chloroindole) with monodisperse core–shell structure and efficient luminescence

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A liquid-like poly(6-chloroindole) (L-P6CIn) was prepared via a chemical oxidative polymerization in ethanol/water miscible solvents. (NH4)2S2O8 was used as an oxidant and nonylphenol polyoxyethylene ether sulfate (NPES, CH3(CH2)8C6H4(OCH2-CH2)10SO3H) acted as the dopant agent. In contrast to the agglomeration behavior of the eigenstate poly(6-chloroindole) (E-P6CIn), such liquid-like poly(6-chloroindole) doped by NPES appeared as well-dispersed core–shell nanoparticles. Moreover, L-P6CIn was flowable at or near room temperature and was dissoluble in many solvents and exhibited a high electric conductivity of 2 S m−1 at room temperature and 10 S m−1 at 50 ℃. Also, L-P6CIn was a good blue-light emitter. The combination of the liquid behavior, excellent solubility, good electric conductivity, and blue photoluminescence property makes L-P6CIn a promising precursor for applications such as lightweight battery, super capacitor, and anti-corrosion of metals and organic laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gangopadhyay R, De A (2000) Conducting polymer nanocomposites: a brief overview. Chem Mater 12(3):608–622

    Article  CAS  Google Scholar 

  2. Murad RA, Iraqi A, Aziz SB, Abdullah NS, Brza MA (2020) Conducting polymers for optoelectronic devices and organic solar cells: a review. Polymers 12(11)

  3. Guimard NK, Gomez N, Schmidt CE (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32(8–9):876–921

    Article  CAS  Google Scholar 

  4. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  5. Abthagir PS, Saraswathi R (2004) Charge transport and thermal properties of polyindole, polycarbazole and their derivatives. Thermochim Acta 424(1–2):25–35

    Article  CAS  Google Scholar 

  6. Nie G, Zhang Y, Xu J, Zhang S (2008) Low-potential facile electrosyntheses of free-standing poly(5-methoxyindole) film with good fluorescence properties. J Electroanal Chem 622(1):121–127

    Article  CAS  Google Scholar 

  7. Cai Z, Zhang R, Shi X (2012) Preparation and characterization of polyindole nanofibers by electrospinning method. Synth Met 162(23):2069–2074

    Article  CAS  Google Scholar 

  8. Nie G, Zhou L, Yang H (2011) Electrosynthesis of a new polyindole derivative obtained from 5-formylindole and its electrochromic properties. J Mater Chem 21(36):13873–13880

    Article  CAS  Google Scholar 

  9. Nie G, Zhou L, Guo Q, Zhang S (2010) A new electrochromic material from an indole derivative and its application in high-quality electrochromic devices. Electrochem Commun 12(1):160–163

    Article  CAS  Google Scholar 

  10. Guo Q, Zhao X, Li Z, Wang D, Nie G (2020) A novel solid-state electrochromic supercapacitor with high energy storage capacity and cycle stability based on poly(5-formylindole)/WO3 honeycombed porous nanocomposites. Chem Eng J 384

  11. Choudhary RB, Ansari S, Purty B (2020) Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: a review. J Energy Storage 29

  12. Majumder M, Choudhary RB, Thakur AK (2019) Hemispherical nitrogen-doped carbon spheres integrated with polyindole as high performance electrode material for supercapacitor applications. Carbon 142:650–661

    Article  CAS  Google Scholar 

  13. Cai Z, Yang G (2010) Synthesis of polyindole and its evaluation for Li-ion battery applications. Synth Met 160(17–18):1902–1905

    Article  CAS  Google Scholar 

  14. Tuken T, Dudukcu M, Yazici B, Erbil M (2004) The use of polyindole for mild steel protection. Prog Org Coat 50(4):273–282

    Article  CAS  Google Scholar 

  15. Zhou W, Du Y, Ren F, Wang C, Xu J, Yang P (2010) High efficient electrocatalytic oxidation of methanol on Pt/polyindoles composite catalysts. Int J Hydrogen Energy 35(8):3270–3279

    Article  CAS  Google Scholar 

  16. Faraz M, Abbasi A, Naqvi FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/cadmium sulphide nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sens Actuators B Chem 269:195–202

    Article  CAS  Google Scholar 

  17. Phasuksom K, Prissanaroon-Ouajai W, Sirivat A (2018) Electrical conductivity response of methanol sensor based on conductive polyindole. Sens Actuators B Chem 262:1013–1023

    Article  CAS  Google Scholar 

  18. Koiry SP, Saxena V, Sutar D, Bhattacharya S, Aswal DK, Gupta SK, Yakhmi JV (2007) Interfacial synthesis of long polyindole fibers. J Appl Polym Sci 103(1):595–599

    Article  CAS  Google Scholar 

  19. An S, Abdiryim T, Ding Y, Nurulla I (2008) A comparative study of the microemulsion and interfacial polymerization for polyindole. Mater Lett 62(6–7):935–938

    Article  CAS  Google Scholar 

  20. Tebyetekerwa M, Wang X, Marriam I, Dan P, Yang S, Zhu M (2017) Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications. Mater Lett 209:400–403

    Article  CAS  Google Scholar 

  21. Dhanalakshmi K, Saraswathi R (2001) Electrochemical preparation and characterization of conducting copolymers: poly(pyrrole-co-indole). J Mater Sci 36(17):4107–4115

    Article  CAS  Google Scholar 

  22. Deletioglu D, Hasdemir E, Solak AO, Ustundag Z, Guzel R (2010) Preparation and characterization of poly(indole-3-carboxaldehyde) film at the glassy carbon surface. Thin Solid Films 519(2):784–789

    Article  CAS  Google Scholar 

  23. Zhou X, Chen Q, Wang A, Xu J, Wu S, Shen J (2016) Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 8(6):3776–3783

    Article  CAS  Google Scholar 

  24. Xu JK, Nie GM, Zhang SS, Han XJ, Hou J, Pu SZ (2005) Electrosyntheses of freestanding polyindole films in boron trifluoride diethyl etherate. J Polym Sci A Polym Chem 43(7):1444–1453

    Article  CAS  Google Scholar 

  25. Huang J, Li Q, Wang Y, Wang Y, Dong L, Xie H, Xiong C (2011) Self-suspended polyaniline doped with a protonic acid containing a polyethylene glycol segment. Chem Asian J 6(11):2920–2924

    Article  CAS  Google Scholar 

  26. Wang M, Huang J, Yang Q, Liu Z, Dong L, Wang S, Xiong C (2018) Synthesis and characterization of a fluid-like novel aniline pentamer. Macromol Res 26(3):233–237

    Article  CAS  Google Scholar 

  27. He J, Xie H, Hong J, Gao Z, Liu Z, Xiong C (2018) Self-suspended polypyrrole with liquid crystal property. J Polym Res 25(2)

  28. Lu Y, Wang S, Xiong C, Hu G-H (2020) Synthesis and characterization of a liquid-like polythiophene and its potential applications. Synth Metals 270

  29. Bourlinos AB, Stassinopoulos A, Anglos D, Herrera R, Anastasiadis SH, Petridis D, Giannelis EP (2006) Functionalized ZnO nanoparticles with liquidlike behavior and their photoluminescence properties. Small 2(4):513–516

    Article  CAS  Google Scholar 

  30. Liu DP, Li GD, Su Y, Chen JS (2006) Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components. Angew Chem Int Edition 45(44):7370–7373

    Article  CAS  Google Scholar 

  31. Feng Q, Dong L, Huang J, Li Q, Fan Y, Xiong J, Xiong C (2010) Fluxible monodisperse quantum dots with efficient luminescence. Angew Chem Int Edition 49(51):9943–9946

    Article  CAS  Google Scholar 

  32. Li Q, Dong L, Deng W, Zhu Q, Liu Y, Xiong C (2009) Solvent-free fluids based on rhombohedral nanoparticles of calcium carbonate. J Am Chem Soc 131(26):9148

    Article  CAS  Google Scholar 

  33. Lei Y, Xiong C, Dong L, Guo H, Su X, Yao J, You Y, Tian D, Shang X (2007) Ionic liquid of ultralong carbon nanotubes. Small 3(11):1889–1893

    Article  CAS  Google Scholar 

  34. Bourlinos AB, Georgakilas V, Tzitzios V, Boukos N, Herrera R, Giannelis ER (2006) Functionalized carbon nanotubes: synthesis of meltable and amphiphilic derivatives. Small 2(10):1188–1191

    Article  CAS  Google Scholar 

  35. Zhou W, Xu J (2017) Progress in conjugated polyindoles: synthesis, polymerization mechanisms, properties, and applications. Polym Rev 57(2):248–275

    Article  CAS  Google Scholar 

  36. Tiwari M, Kumar A, Umre HS, Prakash R (2015) Microwave-assisted chemical synthesis of conducting polyindole: study of electrical property using Schottky junction. J Appl Polym Sci 132(27)

Download references

Funding

The study was supported by the National Natural Science Foundation of China (No. 51673154, 51703177).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaodongfang Gao, Quanling Yang or Chuanxi Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, C., Song, Y., Lu, Y. et al. A liquid-like poly(6-chloroindole) with monodisperse core–shell structure and efficient luminescence. Ionics 27, 4097–4104 (2021). https://doi.org/10.1007/s11581-021-04146-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04146-2

Keywords

Navigation