Skip to main content

Advertisement

Log in

The relationship between failure mechanism of nickel-rich layered oxide for lithium batteries and the research progress of coping strategies: a review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Ni-rich layered material LiNixCoyMzO2 (M=Mn or Al, x+y+z=1) plays a crucial role in LIBs and attracts much attention owing to its comprehensive advantages in terms of energy density, production cost, and environmental friendliness, leading to the development of LIBs and related energy-storage devices. However, Ni-rich layered materials are limited in certain aspects such as safety, life cycle, and application range, which fail to meet the requirements for application in the market entirely. Starting from the factors including cation mixing, phase transition, crackle, and so on, which cause the performance degradation of nickel-rich cathode materials, this paper analyzes the mechanism of their action, and summarizes the mutual transformation relationship between the factors. Cutting off this transition process may, like inhibiting these factors, help improve the performance of materials. At the same time, the research progress on the strategies and mechanisms to deal with these failure factors is summarized, and the role of simulation calculation in material design and mechanism demonstration is discussed. The purpose of this paper is to give an introduction to the related research results of nickel-rich layered cathodes in recent years and to help researchers understand the development status of this field in a timely and rapid manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Lee S, Kim JH, Yoon J (2018) Laser Scribed Graphene Cathode for Next Generation of High Performance Hybrid Supercapacitors. Sci Rep 8(1):8179–8179. https://doi.org/10.1038/s41598-018-26503-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim J, Lee S (2016) Use of carbon and AlPO4 dual coating on H2Ti12O25 anode for high stability hybrid supercapacitor. J Power Sources 331:1–9. https://doi.org/10.1016/j.jpowsour.2016.09.030

    Article  CAS  Google Scholar 

  3. Choi M, Lee S-H, Jung Y-I, Choi W-K, Moon J-K, Choi J, Seo B-K, Kim S-B (2018) The preparation of Fe 3 O 4 thin film and its electrochemical characterization for Li-ion battery. Trans Electr Electron Mater 19(6):417–422

    Article  Google Scholar 

  4. Zhong Z, Chen L, Zhu C, Ren W, Kong L, Wan Y (2020) Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance. J Power Sources 464:228235

    Article  CAS  Google Scholar 

  5. Gao S, Wang N, Li S, Li D, Cui Z, Yue G, Liu J, Zhao X, Jiang L, Zhao Y (2020) A Multi-Wall Sn/SnO2@ Carbon Hollow Nanofiber Anode Material for High-Rate and Long-Life Lithium-Ion Batteries. Angew Chem 132(6):2486–2493

    Article  Google Scholar 

  6. Lee Y, Kim H, Yim T, Lee KY, Choi W (2018) Compositional core-shell design by nickel leaching on the surface of Ni-rich cathode materials for advanced high-energy and safe rechargeable batteries. J Power Sources 400:87–95. https://doi.org/10.1016/j.jpowsour.2018.08.006

    Article  CAS  Google Scholar 

  7. Taiebat M, Brown A, Safford HR, Qu S, Xu M (2018) A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles. Environ Sci Technol 52(20):11449. https://doi.org/10.1021/acs.est.8b00127

    Article  CAS  PubMed  Google Scholar 

  8. Zhu GL, Zhao CZ, Huang JQ, He C, Zhang J, Chen S, Xu L, Yuan H, Zhang Q (2019) Fast charging lithium batteries: recent progress and future prospects. Small 15(15):1805389

    Article  Google Scholar 

  9. Jia Y, Yin S, Liu B, Zhao H, Yu H, Li J, Xu J (2019) Unlocking the coupling mechanical-electrochemical behavior of lithium-ion battery upon dynamic mechanical loading. Energy 166:951–960

    Article  CAS  Google Scholar 

  10. Chae B, Park JH, Song HJ, Jang SH, Jung K, Park YD, Yim T (2018) Thiophene-initiated polymeric artificial cathode-electrolyte interface for Ni-rich cathode material. Electrochim Acta 290:465–473. https://doi.org/10.1016/j.electacta.2018.09.103

    Article  CAS  Google Scholar 

  11. Nelson PA, Gallagher KG, Bloom ID, Dees DW (2012) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Argonne National Lab.(ANL), Argonne, IL (United States)

  12. Xu J, Sun M, Qiao R, Renfrew SE, Ma L, Wu T, Hwang S, Nordlund D, Su D, Amine K (2018) Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat Commun 9(1):947. https://doi.org/10.1038/s41467-018-03403-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xia Q, Ni M, Chen M, Xia H (2019) Low-temperature synthesized self-supported single-crystalline LiCoO2 nanoflake arrays as advanced 3D cathodes for flexible lithium-ion batteries. J Mater Chem 7(11):6187–6196. https://doi.org/10.1039/C9TA00351G

    Article  CAS  Google Scholar 

  14. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. https://doi.org/10.1038/35104644

    Article  CAS  PubMed  Google Scholar 

  15. Murali N, Babu KV, Babu KE, Veeraiah V (2014) Preparation and structural stability of LiNiO2 in separate synthesis methods at different temperatures. Chem Sci 3(4):1318–1325

    Google Scholar 

  16. Cao X (2016) Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2 as Cathode Materials for Li-Ion Batteries via an Efficacious Sol- Gel Method. Int J Electrochem Sci 5267–5278. https://doi.org/10.20964/2016.06.93

  17. Cabrera CR, Miranda F (2014) Advanced nanomaterials for aerospace applications. CRC Press

  18. Ohzuku T, Makimura Y (2001) Layered Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3O2 for Lithium-Ion Batteries. Chem Lett 30(7):642–643. https://doi.org/10.1246/cl.2001.642

    Article  Google Scholar 

  19. Gong J, Wang Q, Sun J (2017) Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries. Thermochim Acta 655:176–180. https://doi.org/10.1016/j.tca.2017.06.022

    Article  CAS  Google Scholar 

  20. Hou A, Liu Y, Ma L, Zhang L, Li J, Zhang P, Chai F, Ren B (2019) Novel concentration gradient LiNi0.815Co0.15Al0.035O2 microspheres as cathode material for lithium ion batteries. Ceram Int 45(15):19420–19428. https://doi.org/10.1016/j.ceramint.2019.06.196

    Article  CAS  Google Scholar 

  21. Liang H, Yuan S, Shi L, Zhao Y, Wang Z, Zhu J (2020) Highly-ordered microstructure and well performance of LiNi0. 6Mn0. 2Co0. 2O2 cathode material via the continuous microfluidic synthesis. Chem Eng J 124846

  22. Croy JR, Long BR, Balasubramanian M (2019) A path toward cobalt-free lithium-ion cathodes. J Power Sources 440:227113. https://doi.org/10.1016/j.jpowsour.2019.227113

    Article  CAS  Google Scholar 

  23. Zheng J, Kan WH, Manthiram A (2015) Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi0. 8–x Co0. 1Mn0. 1+ x O2 (0.0≤ x≤ 0.08) Cathodes for Lithium-Ion Batteries. ACS Appl Mater Interfaces 7(12):6926–6934

    Article  CAS  PubMed  Google Scholar 

  24. Liang C, Kong F, Longo RC, Kc S, Kim J-S, Jeon S, Choi S, Cho K (2016) Unraveling the Origin of Instability in Ni-Rich LiNi1–2 x Co x Mn x O2 (NCM) Cathode Materials. J Phys Chem C 120(12):6383–6393

    Article  CAS  Google Scholar 

  25. Fan X, Liu Y, Ou X, Zhang J, Zhang B, Wang D, Hu G (2020) Unravelling the influence of quasi single-crystalline architecture on high-voltage and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode for lithium-ion batteries. Chem Eng J 124709. https://doi.org/10.1016/j.cej.2020.124709

  26. Saubanère M, McCalla E, Tarascon JM, Doublet ML (2016) The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci 9(3):984–991

  27. Koyama Y, Tanaka I, Adachi H, Makimura Y, Ohzuku T (2003) Crystal and electronic structures of superstructural Li1− x [Co1/3Ni1/3Mn1/3] O2 (0≤ x≤ 1). J Power Sources 119:644–648

    Article  Google Scholar 

  28. Liang S, Yan W, Wu X, Zhang Y, Zhu Y, Wang H, Wu Y (2018) Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance. Solid State Ionics 318:2–18

    Article  CAS  Google Scholar 

  29. Noh H-J, Youn S, Yoon CS, Sun Y-K (2013) Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    Article  CAS  Google Scholar 

  30. Wood M, Li J, Ruther RE, Du Z, Self EC, Meyer HM, Daniel C, Belharouak I, Wood DL (2020) Chemical stability and long-term cell performance of low-cobalt, Ni-Rich cathodes prepared by aqueous processing for high-energy Li-Ion batteries. Energy Storage Mater 24:188–197. https://doi.org/10.1016/j.ensm.2019.08.020

    Article  Google Scholar 

  31. Liu W, Oh P, Liu X, Lee M, Cho W, Chae S, Kim Y, Cho J (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem 54(15):4440–4457. https://doi.org/10.1002/anie.201409262

    Article  CAS  Google Scholar 

  32. Xia Y, Zheng J, Wang C, Gu M (2018) Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 49:434–452. https://doi.org/10.1016/j.nanoen.2018.04.062

    Article  CAS  Google Scholar 

  33. Manthiram A, Knight JC, Myung ST, Oh SM, Sun YK (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Energy Mater 6(1):1501010

    Article  Google Scholar 

  34. Kallitsis E, Korre A, Kelsall G, Kupfersberger M, Nie Z (2020) Environmental life cycle assessment of the production in China of lithium-ion batteries with nickel-cobalt-manganese cathodes utilising novel electrode chemistries. J Clean Prod 254:120067

    Article  CAS  Google Scholar 

  35. Yao X, Xu Z, Yao Z, Cheng W, Gao H, Zhao Q, Li J, Zhou A (2019) Oxalate co-precipitation synthesis of LiNi0.6Co0.2Mn0.2O2 for low-cost and high-energy lithium-ion batteries. Mater Today Commun 19:262–270. https://doi.org/10.1016/j.mtcomm.2019.02.001

    Article  CAS  Google Scholar 

  36. Zhang SS (2020) Problems and their origins of Ni-rich layered oxide cathode materials. Energy Storage Mater 24:247–254

    Article  Google Scholar 

  37. Li HH, Yabuuchi N, Meng YS, Kumar S, Breger J, Grey CP, Shao-Horn Y (2007) Changes in the Cation Ordering of Layered O3 Li x Ni0. 5Mn0. 5O2 during Electrochemical Cycling to High Voltages: An Electron Diffraction Study. Chem Mater 19(10):2551–2565

    Article  Google Scholar 

  38. Zheng J, Yan P, Estevez L, Wang C, Zhang J-G (2018) Effect of calcination temperature on the electrochemical properties of nickel-rich LiNi0. 76Mn0. 14Co0. 10O2 cathodes for lithium-ion batteries. Nano Energy 49:538–548

    Article  CAS  Google Scholar 

  39. Iqbal A, Li D (2019) Systematic study of the effect of calcination temperature and Li/M molar ratio on high performance Ni-rich layered LiNi0.9Co0.1O2 cathode materials. Chem Phys Lett 720:97–106. https://doi.org/10.1016/j.cplett.2019.01.044

    Article  CAS  Google Scholar 

  40. Goodenough JB, Wickham DG, Croft WJ (1958) Some magnetic and crystallographic properties of the system Li+ xNi++ 1− 2xNi+++ xO. J Phys Chem Solids 5(1-2):107–116

    Article  CAS  Google Scholar 

  41. Wang R, Qian G, Liu T, Li M, Liu J, Zhang B, Zhu W, Li S, Zhao W, Yang W (2019) Tuning Li-enrichment in high-Ni layered oxide cathodes to optimize electrochemical performance for Li-ion battery. Nano Energy 62:709–717

    Article  CAS  Google Scholar 

  42. Kim H, Kim MG, Jeong HY, Nam H, Cho J (2015) A new coating method for alleviating surface degradation of LiNi0. 6Co0. 2Mn0. 2O2 cathode material: nanoscale surface treatment of primary particles. Nano Lett 15(3):2111–2119

    Article  CAS  PubMed  Google Scholar 

  43. Wu F, Tian J, Su Y, Wang J, Zhang C, Bao L, He T, Li J, Chen S (2015) Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials. ACS Appl Mater Interfaces 7(14):7702–7708

    Article  CAS  PubMed  Google Scholar 

  44. Lei Y, Ai J, Yang S, Jiang H, Lai C, Xu Q (2019) Effect of flower-like Ni (OH) 2 precursors on Li+/Ni2+ cation mixing and electrochemical performance of nickel-rich layered cathode. J Alloys Compd 797:421–431

    Article  CAS  Google Scholar 

  45. Liang C, Longo RC, Kong F, Zhang C, Nie Y, Zheng Y, Kim J-S, Jeon S, Choi S, Cho K (2017) Obstacles toward unity efficiency of LiNi1-2xCoxMnxO2 (x= 0∼ 1/3)(NCM) cathode materials: Insights from ab initio calculations. J Power Sources 340:217–228

    Article  CAS  Google Scholar 

  46. Wang L, Maxisch T, Ceder G (2007) A first-principles approach to studying the thermal stability of oxide cathode materials. Chem Mater 19(3):543–552

    Article  CAS  Google Scholar 

  47. Huang D, Shi Y, Tornheim AP, Bareño J, Chen Z, Zhang Z, Burrell A, Luo H (2019) Nanoscale LiNi0. 5Co0. 2Mn0. 3O2 cathode materials for lithium ion batteries via a polymer-assisted chemical solution method. Appl Mater Today 16:342–350

    Article  Google Scholar 

  48. Yu H, Qian Y, Otani M, Tang D, Guo S, Zhu Y, Zhou H (2014) Study of the lithium/nickel ions exchange in the layered LiNi 0.42 Mn 0.42 Co 0.16 O 2 cathode material for lithium ion batteries: experimental and first-principles calculations. Energy Environ Sci 7(3):1068–1078

    Article  CAS  Google Scholar 

  49. He P, Yu H, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22(9):3680–3695

    Article  CAS  Google Scholar 

  50. Fu C, Li G, Luo D, Li Q, Fan J, Li L (2014) Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. ACS Appl Mater Interfaces 6(18):15822–15831

    Article  CAS  PubMed  Google Scholar 

  51. Li Y-C, Xiang W, Xiao Y, Wu Z-G, Xu C-L, Xu W, Xu Y-D, Wu C, Yang Z-G, Guo X-D (2019) Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance. J Power Sources 423:144–151

    Article  CAS  Google Scholar 

  52. He T, Chen L, Su Y, Lu Y, Bao L, Chen G, Zhang Q, Chen S, Wu F (2019) The effects of alkali metal ions with different ionic radii substituting in Li sites on the electrochemical properties of Ni-Rich cathode materials. J Power Sources 441:227195

    Article  CAS  Google Scholar 

  53. Huang B, Wang M, Zhang X, Zhao Z, Chen L, Gu Y (2020) Synergistic coupling effect of single crystal morphology and precursor treatment of Ni-Rich cathode materials. J Alloys Compd 154619

  54. Kim U-H, Kim J-H, Hwang J-Y, Ryu H-H, Yoon CS, Sun Y-K (2019) Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Mater Today 23:26–36

    Article  CAS  Google Scholar 

  55. Liu T, Yu L, Liu J, Lu J, Bi X, Dai A, Li M, Li M, Hu Z, Ma L (2021) Understanding Co roles towards developing Co-free Ni-rich cathodes for rechargeable batteries. Nat Energy:1–10

  56. Wu F, Liu N, Chen L, Su Y, Tan G, Bao L, Zhang Q, Lu Y, Wang J, Chen S (2019) Improving the reversibility of the H2-H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59:50–57

    Article  CAS  Google Scholar 

  57. Zhao J, Wang Z, Wang J, Guo H, Li X, Gui W, Chen N, Yan G (2018) Anchoring K+ in Li+ sites of LiNi0. 8Co0. 15Al0. 05O2 cathode material to suppress its structural degradation during high-voltage cycling. Energy Technol 6(12):2358–2366

    Article  CAS  Google Scholar 

  58. Zhang J, Zhang J, Ou X, Wang C, Peng C, Zhang B (2019) Enhancing high-voltage performance of Ni-rich cathode by surface modification of self-assembled NASICON fast ionic conductor LiZr2 (PO4) 3. ACS Appl Mater Interfaces 11(17):15507–15516

    Article  CAS  PubMed  Google Scholar 

  59. Zhang SS (2020) Understanding of performance degradation of LiNi0. 80Co0. 10Mn0. 10O2 cathode material operating at high potentials. J Energy Chem 41:135–141

    Article  Google Scholar 

  60. Kong F, Liang C, Wang L, Zheng Y, Perananthan S, Longo RC, Ferraris JP, Kim M, Cho K (2019) Kinetic Stability of Bulk LiNiO2 and Surface Degradation by Oxygen Evolution in LiNiO2-Based Cathode Materials. Adv Energy Mater 9(2):1802586

    Article  Google Scholar 

  61. Jia H, Zhu W, Xu Z, Nie X, Liu T, Gao L, Zhao J (2018) Precursor effects on structural ordering and electrochemical performances of Ni-rich layered LiNi0. 8Co0. 2O2 cathode materials for high-rate lithium ion batteries. Electrochim Acta 266:7–16

    Article  CAS  Google Scholar 

  62. Lin F, Markus IM, Nordlund D, Weng T-C, Asta MD, Xin HL, Doeff MM (2014) Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat Commun 5(1):1–9

    Article  Google Scholar 

  63. Yu H, So Y-G, Kuwabara A, Tochigi E, Shibata N, Kudo T, Zhou H, Ikuhara Y (2016) Crystalline grain interior configuration affects lithium migration kinetics in Li-rich layered oxide. Nano Lett 16(5):2907–2915

    Article  CAS  PubMed  Google Scholar 

  64. Yang X, Tang Y, Zheng J, Shang G, Wu J, Lai Y, Li J, Zhang Z (2019) Tailoring structure of Ni-rich layered cathode enable robust calendar life and ultrahigh rate capability for lithium-ion batteries. Electrochim Acta 320:134587

    Article  CAS  Google Scholar 

  65. Hu J, Wu B, Cao X, Bi Y, Chae S, Niu C, Xiao B, Tao J, Zhang J, Xiao J (2020) Evolution of the rate-limiting step: From thin film to thick Ni-rich cathodes. J Power Sources 227966

  66. Li Y, Yang J, Chen Y, Deng S, Chang S, Cao G, Zhang D, Wang S, Li W (2020) A simple strategy to prepare the La2Li0. 5Al0. 5O4 modified high-performance ni-rich cathode material. Mater Chem Phys 123135

  67. Sun H-H, Manthiram A (2017) Impact of microcrack generation and surface degradation on a nickel-rich layered Li [Ni0. 9Co0. 05Mn0. 05] O2 cathode for lithium-ion batteries. Chem Mater 29(19):8486–8493

    Article  CAS  Google Scholar 

  68. Yoon CS, Ryu H-H, Park G-T, Kim J-H, Kim K-H, Sun Y-K (2018) Extracting maximum capacity from Ni-rich Li [Ni 0.95 Co 0.025 Mn 0.025] O 2 cathodes for high-energy-density lithium-ion batteries. J Mater Chem A 6(9):4126–4132

    Article  CAS  Google Scholar 

  69. Ko D-S, Park J-H, Park S, Ham YN, Ahn SJ, Park J-H, Han HN, Lee E, Jeon WS, Jung C (2019) Microstructural visualization of compositional changes induced by transition metal dissolution in Ni-rich layered cathode materials by high-resolution particle analysis. Nano Energy 56:434–442

    Article  CAS  Google Scholar 

  70. Qian G, Zhang Y, Li L, Zhang R, Xu J, Cheng Z, Xie S, Wang H, Rao Q, He Y (2020) Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture. Energy Storage Mater 27:140–149

    Article  Google Scholar 

  71. Liu H, Wolf M, Karki K, Yu Y-S, Stach EA, Cabana J, Chapman KW, Chupas PJ (2017) Intergranular cracking as a major cause of long-term capacity fading of layered cathodes. Nano Lett 17(6):3452–3457

    Article  CAS  PubMed  Google Scholar 

  72. de Biasi L, Schiele A, Roca-Ayats M, Garcia G, Brezesinski T, Hartmann P, Janek J (2019) Phase Transformation Behavior and Stability of LiNiO2 Cathode Material for Li-Ion Batteries Obtained from In Situ Gas Analysis and Operando X-Ray Diffraction. ChemSusChem 12(10):2240–2250

    Article  PubMed  Google Scholar 

  73. Fan X, Hu G, Zhang B, Ou X, Zhang J, Zhao W, Jia H, Zou L, Li P, Yang Y (2020) Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy 70:104450

    Article  CAS  Google Scholar 

  74. Xiao Z, Chi Z, Song L, Cao Z, Li A (2020) LiTa2PO8 coated nickel-rich cathode material for improved electrochemical performance at high voltage. Ceram Int 46(6):8328–8333

    Article  CAS  Google Scholar 

  75. Ran Q, Zhao H, Hu Y, Shen Q, Liu W, Liu J, Shu X, Zhang M, Liu S, Tan M (2018) Enhanced electrochemical performance of dual-conductive layers coated Ni-rich LiNi0. 6Co0. 2Mn0. 2O2 cathode for Li-ion batteries at high cut-off voltage. Electrochim Acta 289:82–93

    Article  CAS  Google Scholar 

  76. Yan X, Chen C, Zhu X, Pan L, Zhao X, Zhang L (2020) Aminoalkyldisiloxane as effective electrolyte additive for improving high temperature cycle life of nickel-rich LiNi0. 6Co0. 2Mn0. 2O2/graphite batteries. J Power Sources 461:228099

    Article  CAS  Google Scholar 

  77. Du M, Yang P, He W, Bie S, Zhao H, Yin J, Zou Z, Liu J (2019) Enhanced high-voltage cycling stability of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode coated with Li2O–2B2O3. J Alloys Compd 805:991–998

    Article  CAS  Google Scholar 

  78. Wandt J, Freiberg A, Thomas R, Gorlin Y, Siebel A, Jung R, Gasteiger HA, Tromp M (2016) Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. J Mater Chem A 4(47):18300–18305

    Article  CAS  Google Scholar 

  79. Ding Y, Deng B, Wang H, Li X, Chen T, Yan X, Wan Q, Qu M, Peng G (2019) Improved electrochemical performances of LiNi0. 6Co0. 2Mn0. 2O2 cathode material by reducing lithium residues with the coating of Prussian blue. J Alloys Compd 774:451–460

    Article  CAS  Google Scholar 

  80. Wu N, Wu H, Kim JK, Liu X, Zhang Y (2018) Restoration of Degraded Nickel-Rich Cathode Materials for Long-Life Lithium-Ion Batteries. ChemElectroChem 5(1):78–83

    Article  CAS  Google Scholar 

  81. Li P, Zhao S, Zhuang Y, Adkins J, Zhou Q, Zheng J (2018) Improved electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 modified with 4-vinylbenzeneboronic acid. Appl Surf Sci 453:93–100

    Article  CAS  Google Scholar 

  82. Chen T, Li X, Wang H, Yan X, Wang L, Deng B, Ge W, Qu M (2018) The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0. 8Co0. 15Al0. 05O2 cathode material. J Power Sources 374:1–11

    Article  CAS  Google Scholar 

  83. You Y, Celio H, Li J, Dolocan A, Manthiram A (2018) Stable surface chemistry against ambient air of modified high-nickel cathodes for lithium-ion batteries. Angew Chem Int Ed 57:6480–6485

    Article  CAS  Google Scholar 

  84. Ho V-C, Jeong S, Yim T, Mun J (2020) Crucial role of thioacetamide for ZrO2 coating on the fragile surface of Ni-rich layered cathode in lithium ion batteries. J Power Sources 450:227625

    Article  CAS  Google Scholar 

  85. Yao L, Liang F, Jin J, Chowdari BVR, Yang J, Wen Z (2020) Improved electrochemical property of Ni-rich LiNi0. 6Co0. 2Mn0. 2O2 cathode via in-situ ZrO2 coating for high energy density lithium ion batteries. Chemical Engineering Journal 389:124403

  86. Gao S, Cheng Y-T, Shirpour M (2018) Effects of cobalt deficiency on nickel-rich layered LiNi0. 8Co0. 1Mn0. 1O2 positive electrode materials for lithium-ion batteries. ACS Appl Mater Interfaces 11(1):982–989

    Article  PubMed  Google Scholar 

  87. Han X, Lu L, Zheng Y, Feng X, Li Z, Li J, Ouyang M (2019) A review on the key issues of the lithium ion battery degradation among the whole life cycle. ETransportation 1:100005

    Article  Google Scholar 

  88. Zhao J, Wang Z, Wang J, Guo H, Li X, Yan G, Gui W, Chen N (2018) The role of a MnO2 functional layer on the surface of Ni-rich cathode materials: towards enhanced chemical stability on exposure to air. Ceram Int 44(11):13341–13348

    Article  CAS  Google Scholar 

  89. Hu W, Wang H, Luo W, Xu B, Ouyang C (2020) Formation and thermodynamic stability of oxygen vacancies in typical cathode materials for Li-ion batteries: Density functional theory study. Solid State Ionics 347:115257

    Article  CAS  Google Scholar 

  90. Huang Z, Xiong T, Lin X, Tian M, Zeng W, He J, Shi M, Li J, Zhang G, Mai L (2019) Carbon dioxide directly induced oxygen vacancy in the surface of lithium-rich layered oxides for high-energy lithium storage. J Power Sources 432:8–15

    Article  CAS  Google Scholar 

  91. Xu G-L, Liu Q, Lau KKS, Liu Y, Liu X, Gao H, Zhou X, Zhuang M, Ren Y, Li J (2019) Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat Energy 4(6):484–494

    Article  CAS  Google Scholar 

  92. Zhang H, May BM, Omenya F, Whittingham MS, Cabana J, Zhou G (2019) Layered oxide cathodes for Li-ion batteries: oxygen loss and vacancy evolution. Chem Mater 31(18):7790–7798

    Article  CAS  Google Scholar 

  93. Dong T, Peng P, Jiang F (2018) Numerical modeling and analysis of the thermal behavior of NCM lithium-ion batteries subjected to very high C-rate discharge/charge operations. Int J Heat Mass Transf 117:261–272

    Article  CAS  Google Scholar 

  94. Wang H, Du Z, Rui X, Wang S, Jin C, He L, Zhang F, Wang Q, Feng X (2020) A comparative analysis on thermal runaway behavior of Li (NixCoyMnz) O2 battery with different nickel contents at cell and module level. J Hazard Mater 393:122361

    Article  CAS  PubMed  Google Scholar 

  95. Zhang SS (2006) The effect of the charging protocol on the cycle life of a Li-ion battery. J Power Sources 161(2):1385–1391

    Article  CAS  Google Scholar 

  96. Hasan MF, Chen C-F, Shaffer CE, Mukherjee PP (2015) Analysis of the implications of rapid charging on lithium-ion battery performance. J Electrochem Soc 162(7):A1382

    Article  CAS  Google Scholar 

  97. Yang X-G, Zhang G, Ge S, Wang C-Y (2018) Fast charging of lithium-ion batteries at all temperatures. Proc Natl Acad Sci 115(28):7266–7271

    Article  CAS  PubMed  Google Scholar 

  98. Keyser M, Pesaran A, Li Q, Santhanagopalan S, Smith K, Wood E, Ahmed S, Bloom I, Dufek E, Shirk M (2017) Enabling fast charging–Battery thermal considerations. J Power Sources 367:228–236

    Article  CAS  Google Scholar 

  99. Yang X-G, Liu T, Gao Y, Ge S, Leng Y, Wang D, Wang C-Y (2019) Asymmetric temperature modulation for extreme fast charging of lithium-ion batteries. Joule 3(12):3002–3019

    Article  CAS  Google Scholar 

  100. Liu B, Liu J, Yang J, Wang D, Ye C, Wang D, Avdeev M, Shi S, Yang J, Zhang W (2020) Ab initio thermodynamic optimization of Ni-rich Ni–Co–Mn oxide cathode coatings. J Power Sources 450:227693

    Article  CAS  Google Scholar 

  101. Tang Z, Wang S, Liao J, Wang S, He X, Pan B, He H (2019) Chen C (2019) Facilitating Lithium-Ion Diffusion in Layered Cathode Materials by Introducing Li+/Ni2+ Antisite Defects for High-Rate Li-Ion Batteries. Research

  102. Zhao X, Liu B, Yang J, Hou J, Wang Y, Zhu Y (2020) Synthesizing LiNi0. 5Co0. 2Mn0. 3O2 with microsized peanut-like structure for enhanced electrochemical properties of lithium ion batteries. J Alloys Compd 154464

  103. Hu D, Su Y, Chen L, Li N, Bao L, Lu Y, Zhang Q, Wang J, Chen S, Wu F (2021) The mechanism of side reaction induced capacity fading of Ni-rich cathode materials for lithium ion batteries. J Energy Chem 58:1–8

    Article  Google Scholar 

  104. Zhang M, Shen J, Li J, Zhang D, Yan Y, Huang Y, Li Z (2020) Effect of micron sized particle on the electrochemical properties of nickel-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode materials. Ceram Int 46(4):4643–4651

    Article  CAS  Google Scholar 

  105. Li J, Liu M, An J, Tian P, Tang C, Jia T, Butt FK, Yu D, Bai W, Cao C (2020) The synergism of nanoplates with habit-tuned crystal and substitution of cobalt with titanium in Ni-rich LiNi0. 80Co0. 15Al0. 05O2 cathode for lithium-ion batteries. J Alloys Compd 154555

  106. Ding Y, Mu D, Wu B, Zhao Z, Wang R (2020) Controllable synthesis of spherical precursor Ni0. 8Co0. 1Mn0. 1 (OH) 2 for nickel-rich cathode material in Li-ion batteries. Ceram Int 46(7):9436–9445

    Article  CAS  Google Scholar 

  107. Zhao Z, Huang B, Wang M, Yang X, Gu Y (2019) Facile synthesis of fluorine doped single crystal Ni-rich cathode material for lithium-ion batteries. Solid State Ionics 342:115065

    Article  CAS  Google Scholar 

  108. Zhou H, Yang Z, Yin C, Yang S, Li J (2018) Fabrication of nanoplate Li-rich cathode material via surfactant-assisted hydrothermal method for lithium-ion batteries. Ceram Int 44(16):20514–20523

    Article  CAS  Google Scholar 

  109. Zhang C, Qi J, Zhao H, Hou H, Deng B, Tao S, Su X, Wang Z, Qian B, Chu W (2017) Facile synthesis silkworm-like Ni-rich layered LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Mater Lett 201(201):1–4. https://doi.org/10.1016/j.matlet.2017.04.121

    Article  CAS  Google Scholar 

  110. Peng L, Zhu Y, Khakoo U, Chen D, Yu G (2015) Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability. Nano Energy 17:36–42

    Article  CAS  Google Scholar 

  111. Chen Z, Chao D, Liu J, Copley M, Lin J, Shen Z, Kim G-T, Passerini S (2017) 1D nanobar-like LiNi 0.4 Co 0.2 Mn 0.4 O 2 as a stable cathode material for lithium-ion batteries with superior long-term capacity retention and high rate capability. J Mater Chem A 5(30):15669–15675

    Article  CAS  Google Scholar 

  112. Chen L, Su Y, Chen S, Li N, Bao L, Li W, Wang Z, Wang M, Wu F (2014) Hierarchical Li1. 2Ni0. 2Mn0. 6O2 Nanoplates with Exposed {010} Planes as High-Performance Cathode Material for Lithium-Ion Batteries. Adv Mater 26(39):6756–6760

    Article  CAS  PubMed  Google Scholar 

  113. Su Y, Chen G, Chen L, Li W, Zhang Q, Yang Z, Lu Y, Bao L, Tan J, Chen R (2018) Exposing the {010} planes by oriented self-assembly with nanosheets to improve the electrochemical performances of Ni-rich Li [Ni0. 8Co0. 1Mn0. 1] O2 microspheres. ACS Appl Mater Interfaces 10(7):6407–6414

    Article  CAS  PubMed  Google Scholar 

  114. Hua W, Wu Z, Chen M, Knapp M, Guo X, Indris S, Binder JR, Bramnik NN, Zhong B, Guo H (2017) Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. J Mater Chem A 5(48):25391–25400

    Article  CAS  Google Scholar 

  115. Xiang W, Liu W-Y, Zhang J, Wang S, Zhang T-T, Yin K, Peng X, Jiang Y-C, Liu K-H, Guo X-D (2019) Controlled synthesis of nickel-rich layered oxide cathodes with preferentially exposed {010} active facets for high rate and long cycling stable lithium-ion batteries. J Alloys Compd 775:72–80

    Article  CAS  Google Scholar 

  116. Zhang Y, Song Q, Wang T, Zhao Q, Zhang R, Zhao J (2019) Crystal preferred orientation of Li2MnO3· LiMO2 (M= Mn, Co, Ni) nano-particals: Relevance to electrochemical behavior for lithium battery cathode materials. J Power Sources 413:425–431

    Article  CAS  Google Scholar 

  117. Lee S-H, Lee S, Jin B-S, Kim H-S (2019) Preparation and electrochemical performances of Ni-rich LiNi0. 91Co0. 06Mn0. 03O2 cathode for high-energy LIBs. Int J Hydrog Energy 44(26):13684–13689

    Article  CAS  Google Scholar 

  118. Su Y, Chen G, Chen L, Lu Y, Zhang Q, Lv Z, Li C, Li L, Liu N, Tan G (2019) High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 11(40):36697–36704

    Article  CAS  PubMed  Google Scholar 

  119. Ma F, Wu Y, Wei G, Qiu S, Qu J, Qi T (2019) Comparative study of simple and concentration gradient shell coatings with Li1. 2Ni0. 13Mn0. 54Co0. 13O2 on LiNi0. 8Mn0. 1Co0. 1O2 cathodes for lithium-ion batteries. Solid State Ionics 341:115034

    Article  CAS  Google Scholar 

  120. Qiu Z, Zhang Y, Huang X, Duan J, Wang D, Nayaka GP, Li X, Dong P (2018) Beneficial effect of incorporating Ni-rich oxide and layered over-lithiated oxide into high-energy-density cathode materials for lithium-ion batteries. J Power Sources 400:341–349

    Article  CAS  Google Scholar 

  121. Schmidt D, Kamlah M, Knoblauch V (2018) Highly densified NCM-cathodes for high energy Li-ion batteries: Microstructural evolution during densification and its influence on the performance of the electrodes. J Energy Storage 17:213–223

    Article  Google Scholar 

  122. Wang Y-Y, Sun Y-Y, Liu S, Li G-R, Gao X-P (2018) Na-doped LiNi0. 8Co0. 15Al0. 05O2 with excellent stability of both capacity and potential as cathode materials for Li-ion batteries. ACS Appl Energy Mater 1(8):3881–3889

    Article  CAS  Google Scholar 

  123. Liu S, Dang Z, Liu D, Zhang C, Huang T, Yu A (2018) Comparative studies of zirconium doping and coating on LiNi0. 6Co0. 2Mn0. 2O2 cathode material at elevated temperatures. J Power Sources 396:288–296

    Article  CAS  Google Scholar 

  124. Li X, Zhang K, Wang M, Liu Y, Qu M, Zhao W, Zheng J (2018) Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi 0.8 Co 0.1 Mn 0.1 O 2. Sustain Energy Fuels 2(2):413–421

    Article  CAS  Google Scholar 

  125. He T, Lu Y, Su Y, Bao L, Tan J, Chen L, Zhang Q, Li W, Chen S, Wu F (2018) Sufficient utilization of Zr4+ on improving the structure and surface property of the Ni-rich cathode materials for lithium ion batteries. ChemSusChem 11:1639–1648

    Article  CAS  PubMed  Google Scholar 

  126. Lai Y, Wu J, Tang Y, Shang G, Yang X, Fan H, Peng C, Zhang Z (2019) Alleviating the air sensitivity of nickel-rich LiNi0. 815Co0. 15Al0. 035O2 cathode by Zr4+-modification for Li-ion batteries. Ceram Int 45(11):14270–14277

    Article  CAS  Google Scholar 

  127. Jiang Y, Bi Y, Liu M, Peng Z, Huai L, Dong P, Duan J, Chen Z, Li X, Wang D (2018) Improved stability of Ni-rich cathode by the substitutive cations with stronger bonds. Electrochim Acta 268:41–48

    Article  CAS  Google Scholar 

  128. Zhang D, Liu Y, Wu L, Feng L, Jin S, Zhang R, Jin M (2019) Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material. Electrochim Acta 328:135086

    Article  CAS  Google Scholar 

  129. Ran Q, Zhao H, Hu Y, Hao S, Liu J, Li H, Liu X (2020) Enhancing surface stability of LiNi0. 8Co0. 1Mn0. 1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage. J Alloys Compd 155099

  130. Sun H, Cao Z, Wang T, Lin R, Li Y, Liu X, Zhang L, Lin F, Huang Y, Luo W (2019) Enabling high rate performance of Ni-rich layered oxide cathode by uniform titanium doping. Mater Today Energy 13:145–151

    Article  Google Scholar 

  131. Na S-H, Kim H-S, Moon S-I (2005) The effect of Si doping on the electrochemical characteristics of LiNixMnyCo (1− x− y) O2. Solid State Ionics 176(3-4):313–317

    Article  CAS  Google Scholar 

  132. Do SJ, Santhoshkumar P, Kang SH, Prasanna K, Jo YN, Lee CW (2019) Al-Doped Li [Ni0. 78Co0. 1Mn0. 1Al0. 02] O2 for high performance of lithium ion batteries. Ceram Int 45(6):6972–6977

    Article  CAS  Google Scholar 

  133. Li Y-C, Xiang W, Wu Z-G, Xu C-L, Xu Y-D, Xiao Y, Yang Z-G, Wu C-J, Lv G-P, Guo X-D (2018) Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochim Acta 291:84–94

    Article  CAS  Google Scholar 

  134. Zou L, Li J, Liu Z, Wang G, Manthiram A, Wang C (2019) Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability. Nat Commun 10(1):1–11

    Article  Google Scholar 

  135. Park S, Jo C, Kim HJ, Kim S, Myung S-T, Kang H-K, Kim H, Song J, Yu J, Kwon K (2020) Understanding the role of trace amount of Fe incorporated in Ni-rich Li [Ni1-x-yCoxMny] O2 cathode material. J Alloys Compd 155342

  136. Xie Q, Li W, Manthiram A (2019) A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density li-ion batteries. Chem Mater 31(3):938–946

    Article  CAS  Google Scholar 

  137. Lv Y, Cheng X, Qiang W, Huang B (2020) Improved electrochemical performances of Ni-rich LiNi0. 83Co0. 12Mn0. 05O2 by Mg-doping. J Power Sources 450:227718

    Article  CAS  Google Scholar 

  138. Wu L, Tang X, Chen X, Rong Z, Dang W, Wang Y, Li X, Huang L, Zhang Y (2020) Improvement of electrochemical reversibility of the Ni-Rich cathode material by gallium doping. J Power Sources 445:227337

    Article  CAS  Google Scholar 

  139. Zhu H, Xie T, Chen Z, Li L, Xu M, Wang W, Lai Y, Li J (2014) The impact of vanadium substitution on the structure and electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2. Electrochim Acta 135:77–85

    Article  CAS  Google Scholar 

  140. Lee M-J, Noh M, Park M-H, Jo M, Kim H, Nam H, Cho J (2015) The role of nanoscale-range vanadium treatment in LiNi 0.8 Co 0.15 Al 0.05 O 2 cathode materials for Li-ion batteries at elevated temperatures. J Mater Chem A 3(25):13453–13460

    Article  CAS  Google Scholar 

  141. Xu C-L, Xiang W, Wu Z-G, Xu Y-D, Li Y-C, Chen M-Z, XiaoDong G, Lv G-P, Zhang J, Zhong B-H (2018) Constructing a protective pillaring layer by incorporating gradient Mn4+ to stabilize the surface/interfacial structure of LiNi0. 815Co0. 15Al0. 035O2 cathode. ACS Appl Mater Interfaces 10(33):27821–27830

    Article  CAS  PubMed  Google Scholar 

  142. Shang G, Tang Y, Lai Y, Wu J, Yang X, Li H, Peng C, Zheng J, Zhang Z (2019) Enhancing structural stability unto 4.5 V of Ni-rich cathodes by tungsten-doping for lithium storage. J Power Sources 423:246–254

    Article  CAS  Google Scholar 

  143. Park G-T, Ryu H-H, Park N-Y, Yoon CS, Sun Y-K (2019) Tungsten doping for stabilization of Li [Ni0. 90Co0. 05Mn0. 05] O2 cathode for Li-ion battery at high voltage. J Power Sources 442:227242

    Article  CAS  Google Scholar 

  144. Ryu HH, Park KJ, Yoon DR, Aishova A, Yoon CS, Sun YK (2019) Li [Ni0. 9Co0. 09W0. 01] O2: a new type of layered oxide cathode with high cycling stability. Adv Energy Mater 9(44):1902698

    Article  CAS  Google Scholar 

  145. Su Y, Yang Y, Chen L, Lu Y, Bao L, Chen G, Yang Z, Zhang Q, Wang J, Chen R (2018) Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase. Electrochim Acta 292:217–226

    Article  CAS  Google Scholar 

  146. Zhang Y, Ren T, Zhang J, Duan J, Li X, Zhou Z, Dong P, Wang D (2019) The role of boracic polyanion substitution on structure and high voltage electrochemical performance of Ni-Rich cathode materials for lithium ion batteries. J Alloys Compd 805:1288–1296

    Article  CAS  Google Scholar 

  147. Zhang C, Xu S, Han B, Lin G, Huang Q, Ivey DG, Yang C, Wang P, Wei W (2019) Towards rational design of high performance Ni-rich layered oxide cathodes: The interplay of borate-doping and excess lithium. J Power Sources 431:40–47

    Article  CAS  Google Scholar 

  148. Zhao Y, Liu J, Wang S, Ji R, Xia Q, Ding Z, Wei W, Liu Y, Wang P, Ivey DG (2016) Surface Structural Transition Induced by Gradient Polyanion-Doping in Li-Rich Layered Oxides: Implications for Enhanced Electrochemical Performance. Adv Funct Mater 26(26):4760–4767

    Article  CAS  Google Scholar 

  149. Zhang H-Z, Li F, Pan G-L, Li G-R, Gao X-P (2015) The effect of polyanion-doping on the structure and electrochemical performance of Li-rich layered oxides as cathode for lithium-ion batteries. J Electrochem Soc 162(9):A1899

    Article  CAS  Google Scholar 

  150. Sun Z, Xu L, Dong C, Zhang H, Zhang M, Ma Y, Liu Y, Li Z, Zhou Y, Han Y (2019) A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy 63:103887

    Article  CAS  Google Scholar 

  151. Xiang W, Zhu C-Q, Zhang J, Shi H, Liang Y-T, Yu M-H, Zhu X-M, He F-R, Lv G-P, Guo X-D (2019) Synergistic coupling effect of sodium and fluorine co-substitution on enhancing rate capability and cycling performance of Ni-rich cathode for lithium ion battery. J Alloys Compd 786:56–64

    Article  CAS  Google Scholar 

  152. Qiu L, Xiang W, Tian W, Xu C-L, Li Y-C, Wu Z-G, Chen T-R, Jia K, Wang D, He F-R (2019) Polyanion and cation co-doping stabilized Ni-rich Ni–Co–Al material as cathode with enhanced electrochemical performance for Li-ion battery. Nano Energy 63:103818

    Article  CAS  Google Scholar 

  153. Comstock DJ, Elam JW (2013) Mechanistic study of lithium aluminum oxide atomic layer deposition. J Phys Chem C 117(4):1677–1683

    Article  CAS  Google Scholar 

  154. Dong M, Wang Z, Li H, Guo H, Li X, Shih K, Wang J (2017) Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0. 8Co0. 1Mn0. 1O2 cathode material. ACS Sustain Chem Eng 5(11):10199–10205

    Article  CAS  Google Scholar 

  155. Zhang Y, Xia G, Zhang J, Wang D, Dong P, Duan J (2020) Boosting high-voltage cyclic stability of nickel-rich layered cathodes in full-cell by metallurgy-inspired coating strategy. Appl Surf Sci 509:145380

    Article  CAS  Google Scholar 

  156. Wang H, Yang G, Lai F, Chu Y, Zhang X, Ma Z, Li Q (2020) Ultrathin Al 2 O 3 layer modified LiNi 0.6 Co 0.2 Mn 0.2 O 2 with Al-doping for high performance lithium ion batteries. Ionics 26(5):2147–2156

    Article  CAS  Google Scholar 

  157. Zhao S, Zhu Y, Qian Y, Wang N, Zhao M, Yao J, Xu Y (2020) Annealing effects of TiO2 coating on cycling performance of Ni-rich cathode material LiNi0. 8Co0. 1Mn0. 1O2 for lithium-ion battery. Mater Lett 265:127418

    Article  CAS  Google Scholar 

  158. Li Y, Liu X, Ren D, Hsu H, Xu G-L, Hou J, Wang L, Feng X, Lu L, Xu W (2020) Toward a high-voltage fast-charging pouch cell with TiO2 cathode coating and enhanced battery safety. Nano Energy 104643

  159. Huang W, Zhuang W, Li N, Gao M, Li W, Xing X, Lu S (2019) Nanoscale Y-doped ZrO2 modified LiNi0. 88Co0. 09Al0. 03O2 cathode material with enhanced electrochemical properties for lithium-ion batteries. Solid State Ionics 343:115087

    Article  CAS  Google Scholar 

  160. Liu Y, Wang X, Cai J, Han X, Geng D, Li J, Meng X (2020) Atomic-scale tuned interface of nickel-rich cathode for enhanced electrochemical performance in lithium-ion batteries. J Mater Sci Technol

  161. Kong J-Z, Wang S-S, Tai G-A, Zhu L, Wang L-G, Zhai H-F, Wu D, Li A-D, Li H (2016) Enhanced electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material by ultrathin ZrO2 coating. J Alloys Compd 657:593–600

    Article  CAS  Google Scholar 

  162. Dai S, Yuan M, Wang L, Luo L, Chen Q, Xie T, Li Y, Yang Y (2019) Ultrathin-Y2O3-coated LiNi0. 8Co0. 1Mn0. 1O2 as cathode materials for Li-ion batteries: synthesis, performance and reversibility. Ceram Int 45(1):674–680

    Article  CAS  Google Scholar 

  163. Chen Q, Luo L, Wang L, Xie T, Dai S, Yang Y, Li Y, Yuan M (2018) Enhanced electrochemical properties of Y2O3-coated-(lithium-manganese)-rich layered oxides as cathode materials for use in lithium-ion batteries. J Alloys Compd 735:1778–1786

    Article  CAS  Google Scholar 

  164. Gan Z, Hu G, Peng Z, Cao Y, Tong H, Du K (2019) Surface modification of LiNi0. 8Co0. 1Mn0. 1O2 by WO3 as a cathode material for LIB. Appl Surf Sci 481:1228–1238

    Article  CAS  Google Scholar 

  165. Dong S, Zhou Y, Hai C, Zeng J, Sun Y, Shen Y, Li X, Ren X, Qi G, Zhang X (2019) Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0. 7Co0. 2Mn0. 1O2 cathode materials. Ceram Int 45(1):144–152

    Article  CAS  Google Scholar 

  166. Zhang R, Wang J, Yan G, Peng W, Guo H, Wang Z, Li X, Gui W, Chen N (2019) Enhancing the electrochemical and storage performance of Ni-based cathode materials by introducing spinel pillaring layer for lithium ion batteries. Solid State Ionics 332:41–46

    Article  CAS  Google Scholar 

  167. He Y, Li Y, Liu Y, Li W, Liu W (2020) Al-doped ZnO (AZO) modified LiNi0. 8Co0. 1Mn0. 1O2 and their performance as cathode material for lithium ion batteries. Mater Chem Phys 123085

  168. Ma S, Zhang X, Li S, Cui Y, Cui Y, Zhao Y, Cui Y (2019) In situ formed LiNi 0.8 Co 0.1 Mn 0.1 O 2@ LiF composite cathode material with high rate capability and long cycling stability for lithium-ion batteries. Ionics 1–12

  169. Yang K, Fan L-Z, Guo J, Qu X (2012) Significant improvement of electrochemical properties of AlF3-coated LiNi0. 5Co0. 2Mn0. 3O2 cathode materials. Electrochim Acta 63:363–368

    Article  CAS  Google Scholar 

  170. Wu Q, Zhang X, Sun S, Wan N, Pan D, Bai Y, Zhu H, Hu Y-S, Dai S (2015) Improved electrochemical performance of spinel LiMn 1.5 Ni 0.5 O 4 through MgF 2 nano-coating. Nanoscale 7(38):15609–15617

    Article  CAS  PubMed  Google Scholar 

  171. Dai S, Yan G, Wang L, Luo L, Li Y, Yang Y, Liu H, Liu Y, Yuan M (2019) Enhanced electrochemical performance and thermal properties of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material via CaF2 coating. J Electroanal Chem 847:113197. https://doi.org/10.1016/j.jelechem.2019.113197

    Article  CAS  Google Scholar 

  172. Yun SH, Park K-S, Park YJ (2010) The electrochemical property of ZrFx-coated Li [Ni1/3Co1/3Mn1/3] O2 cathode material. J Power Sources 195(18):6108–6115

    Article  CAS  Google Scholar 

  173. Qi X, Xue Z, Du K, Xie Y, Cao Y, Li W, Peng Z, Hu G (2018) Graphene-analogous structural MoS2 modification to improve electrochemical properties of Ni-rich layered oxide cathode material for lithium-ion batteries. J Power Sources 397:288–295

    Article  CAS  Google Scholar 

  174. Shi JY, Yi C-W, Kim K (2010) Improved electrochemical performance of AlPO4-coated LiMn1. 5Ni0. 5O4 electrode for lithium-ion batteries. J Power Sources 195(19):6860–6866

    Article  CAS  Google Scholar 

  175. Lee D-J, Scrosati B, Sun Y-K (2011) Ni3 (PO4) 2-coated Li [Ni0. 8Co0. 15Al0. 05] O2 lithium battery electrode with improved cycling performance at 55° C. J Power Sources 196(18):7742–7746

    Article  CAS  Google Scholar 

  176. Feng X, Zhang J, Yin L (2016) Enhanced cycling stability of Co3 (PO4) 2-coated LiMn2O4 cathode materials for lithium ion batteries. Powder Technol 287:77–81

    Article  CAS  Google Scholar 

  177. Chen Z, Kim GT, Bresser D, Diemant T, Asenbauer J, Jeong S, Copley M, Behm RJ, Lin J, Shen Z (2018) MnPO4-Coated Li (Ni0. 4Co0. 2Mn0. 4) O2 for Lithium (-Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics. Adv Energy Mater 8(27):1801573

    Article  Google Scholar 

  178. Park J-H, Park K, Han D, Yeon D-H, Jung H, Choi B, Park SY, Ahn S-J, Park J-H, Han HN (2019) Structure-and porosity-tunable, thermally reactive metal organic frameworks for high-performance Ni-rich layered oxide cathode materials with multi-scale pores. J Mater Chem A 7(25):15190–15197

    Article  CAS  Google Scholar 

  179. Bi Y, Liu M, Xiao B, Jiang Y, Lin H, Zhang Z, Chen G, Sun Q, He H, Huang F (2020) Highly stable Ni-rich layered oxide cathode enabled by a thick protective layer with bio-tissue structure. Energy Storage Mater 24:291–296

    Article  Google Scholar 

  180. Cheng Z, Lv F, Xu N, Liu Y, Xie H, Wu M, Ma Y, Zhang Y, Chen L (2020) Enhanced rate performance and cycle stability of LiNi0. 6Co0. 2Mn0. 2O2 at high cut-off voltage by Li6. 1La3Al0. 3Zr2O12 surface modification. Appl Surf Sci 146556

  181. Tian X, Zhu Y, Tang Z, Xie P, Natarajan A, Zhou Y (2019) Ni-rich LiNi0. 6Co0. 2Mn0. 2O2 nanoparticles enwrapped by a 3D graphene aerogel network as a high-performance cathode material for Li-ion batteries. Ceram Int 45(17):22233–22240

    Article  CAS  Google Scholar 

  182. Xu Y-D, Xiang W, Wu Z-G, Xu C-L, Li Y-C, Guo X-D, Lv G-P, Peng X, Zhong B-H (2018) Improving cycling performance and rate capability of Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode materials by Li4Ti5O12 coating. Electrochim Acta 268:358–365

    Article  CAS  Google Scholar 

  183. Wu Q, Xue K, Zhang X, Xie X, Wang H, Zhang J, Li Q (2019) Enhanced cyclic stability at elevated temperature of spinel LiNi0. 5Mn1. 5O4 by Li4Ti5O12 coating as cathode material for high voltage lithium ion batteries. Ceram Int 45(4):5072–5079

    Article  CAS  Google Scholar 

  184. Meng K, Wang Z, Guo H, Li X, Wang D (2016) Improving the cycling performance of LiNi0. 8Co0. 1Mn0. 1O2 by surface coating with Li2TiO3. Electrochim Acta 211:822–831

    Article  CAS  Google Scholar 

  185. Zhu J, Li Y, Xue L, Chen Y, Lei T, Deng S, Cao G (2019) Enhanced electrochemical performance of Li3PO4 modified Li [Ni0. 8Co0. 1Mn0. 1] O2 cathode material via lithium-reactive coating. J Alloys Compd 773:112–120

    Article  CAS  Google Scholar 

  186. Lee S-W, Kim M-S, Jeong JH, Kim D-H, Chung KY, Roh KC, Kim K-B (2017) Li3PO4 surface coating on Ni-rich LiNi0. 6Co0. 2Mn0. 2O2 by a citric acid assisted sol-gel method: Improved thermal stability and high-voltage performance. J Power Sources 360:206–214

    Article  CAS  Google Scholar 

  187. Zou P, Lin Z, Fan M, Wang F, Liu Y, Xiong X (2020) Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl Surf Sci 504:144506

    Article  CAS  Google Scholar 

  188. Zhang W, Liang L, Zhao F, Liu Y, Hou L, Yuan C (2020) Ni-rich LiNi0· 8Co0· 1Mn0· 1O2 coated with Li-ion conductive Li3PO4 as competitive cathodes for high-energy-density lithium ion batteries. Electrochim Acta 340:135871

    Article  CAS  Google Scholar 

  189. Zhang B, Dong P, Tong H, Yao Y, Zheng J, Yu W, Zhang J, Chu D (2017) Enhanced electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 with lithium-reactive Li3VO4 coating. J Alloys Compd 706:198–204

    Article  CAS  Google Scholar 

  190. Liang H, Wang Z, Guo H, Wang J, Leng J (2017) Improvement in the electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode material by Li2ZrO3 coating. Appl Surf Sci 423:1045–1053

    Article  CAS  Google Scholar 

  191. Yang X, Tang Y, Qu Y, Shang G, Wu J, Zheng J, Lai Y, Li J, Zhang Z (2019) Bifunctional nano-ZrO2 modification of LiNi0· 92Co0· 08O2 cathode enabling high-energy density lithium ion batteries. J Power Sources 438:226978

    Article  CAS  Google Scholar 

  192. Huang B, Li G, Pan Z, Su X, An L (2019) Enhancing high-voltage performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material via surface modification with lithium-conductive Li3Fe2 (PO4) 3. J Alloys Compd 773:519–526

    Article  CAS  Google Scholar 

  193. Liu W, Li X, Xiong D, Hao Y, Li J, Kou H, Yan B, Li D, Lu S, Koo A (2018) Significantly improving cycling performance of cathodes in lithium ion batteries: the effect of Al2O3 and LiAlO2 coatings on LiNi0. 6Co0. 2Mn0. 2O2. Nano Energy 44:111–120

    Article  CAS  Google Scholar 

  194. Xiao Z, Hu C, Song L, Li L, Cao Z, Zhu H, Liu J, Li X, Tang F (2018) Modification research of LiAlO 2-coated LiNi 0.8 Co 0.1 Mn 0.1 O 2 as a cathode material for lithium-ion battery. Ionics 24(1):91–98

    Article  CAS  Google Scholar 

  195. Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y (2017) Effects of Li2SiO3 coating on the performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material for lithium ion batteries. J Alloys Compd 690:589–597

    Article  CAS  Google Scholar 

  196. Xie J, Sendek AD, Cubuk ED, Zhang X, Lu Z, Gong Y, Wu T, Shi F, Liu W, Reed EJ (2017) Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling. ACS Nano 11(7):7019–7027

    Article  CAS  PubMed  Google Scholar 

  197. Ivanishcheva IA, Ivanishchev AV, Dixit A (2019) Positive effect of surface modification with titanium carbosilicide on performance of lithium-transition metal phosphate cathode materials. Monatshefte für Chemie-Chemical Monthly 150(3):489–498

    Article  CAS  Google Scholar 

  198. Li X, Jin L, Song D, Zhang H, Shi X, Wang Z, Zhang L, Zhu L (2020) LiNbO3-coated LiNi0. 8Co0. 1Mn0. 1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery. J Energy Chem 40:39–45

    Article  Google Scholar 

  199. Liu Y, Xu N, Cheng Z, Xie H, Ma Y, Wu M, Zhang Y, Chen L (2020) Enhanced high-voltage cycling stability of LiNi0. 5Co0. 2Mn0. 3O2 based on stable Li+-conductive ceramic Li6. 5La3Zr1. 5Ta0. 5O12 nano cladding layer. Electrochim Acta 136251

  200. Li Z, Li A, Zhang H, Lin R, Jin T, Cheng Q, Xiao X, Lee W-K, Ge M, Zhang H (2020) Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy 104655

  201. Liu Y, L-b T, H-x W, X-h Z, He Z-j, Y-j L, Zheng J-c (2019) Enhancement on structural stability of Ni-rich cathode materials by in-situ fabricating dual-modified layer for lithium-ion batteries. Nano Energy 65:104043

    Article  CAS  Google Scholar 

  202. Li J, Liu Y, Yao W, Rao X, Zhong S, Qian L (2020) Li2TiO3 and Li2ZrO3 co-modification LiNi0. 8Co0. 1Mn0. 1O2 cathode material with improved high-voltage cycling performance for lithium-ion batteries. Solid State Ionics 349:115292

    Article  CAS  Google Scholar 

  203. Chen S, He T, Su Y, Lu Y, Bao L, Chen L, Zhang Q, Wang J, Chen R, Wu F (2017) Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 9(35):29732–29743

    Article  CAS  PubMed  Google Scholar 

  204. Li L, Zhang Z, Fu S, Liu Z, Liu Y (2018) Co-modification by LiAlO2-coating and Al-doping for LiNi0. 5Co0. 2Mn0. 3O2 as a high-performance cathode material for lithium-ion batteries with a high cutoff voltage. J Alloys Compd 768:582–590

    Article  CAS  Google Scholar 

  205. Wu F, Li Q, Chen L, Zhang Q, Wang Z, Lu Y, Bao L, Chen S, Su Y (2019) Improving the structure stability of LiNi0. 8Co0. 1Mn0. 1O2 by surface perovskite-like La2Ni0. 5Li0. 5O4 self-assembling and subsurface La3+ doping. ACS Appl Mater Interfaces 11(40):36751–36762

    Article  CAS  PubMed  Google Scholar 

  206. Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J-G (2018) Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy 3(7):600–605

    Article  CAS  Google Scholar 

  207. Cheng X, Zheng J, Lu J, Li Y, Yan P, Zhang Y (2019) Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy 62:30–37

    Article  CAS  Google Scholar 

  208. Xue R, Liu N, Bao L, Chen L, Su Y, Lu Y, Dong J, Chen S, Wu F (2020) UiO-66 type metal-organic framework as a multifunctional additive to enhance the interfacial stability of Ni-rich layered cathode material. J Energy Chem

  209. Chae B-J, Yim T (2018) Effect of surface modification using a sulfate-based surfactant on the electrochemical performance of Ni-rich cathode materials. Mater Chem Phys 214:66–72

    Article  CAS  Google Scholar 

  210. Habibi A, Jalaly M, Rahmanifard R, Ghorbanzadeh M (2020) Microwave-reduced graphene oxide wrapped NCM layered oxide as a cathode material for Li-ion batteries. J Alloys Compd 155014

  211. Sun Y-Y, Liu S, Hou Y-K, Li G-R, Gao X-P (2019) In-situ surface modification to stabilize Ni-rich layered oxide cathode with functional electrolyte. J Power Sources 410:115–123

    Article  Google Scholar 

  212. Ren D, Yang Y, Shen L, Zeng R, Abruña HD (2020) Ni-rich LiNi0. 88Mn0. 06Co0. 06O2 cathode interwoven by carbon fiber with improved rate capability and stability. J Power Sources 447:227344

    Article  CAS  Google Scholar 

  213. Su Y, Zhang Q, Chen L, Bao L, Lu Y, Shi Q, Wang J, Chen S, Wu F (2020) Riveting Dislocation Motion: The Inspiring Role of Oxygen Vacancies in the Structural Stability of Ni-Rich Cathode Materials. ACS Appl Mater Interfaces 12(33):37208–37217

    Article  CAS  PubMed  Google Scholar 

  214. Zhang Q, Su Y, Chen L, Lu Y, Bao L, He T, Wang J, Chen R, Tan J, Wu F (2018) Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni2+ cation ordering towards cyclability improvements. J Power Sources 396:734–741

    Article  CAS  Google Scholar 

  215. Sholl D, Steckel JA (2011) Density functional theory: a practical introduction. John Wiley & Sons

  216. Kim Y (2020) Minimum Co content limit in layer-structured cathode materials for Li-ion batteries. J Power Sources 467:228351

    Article  CAS  Google Scholar 

  217. Fang L, Wang M, Zhou Q, Xu H, Hu W, Li H (2020) Suppressing cation mixing and improving stability by F doping in cathode material LiNiO2 for Li-ion batteries: First-principles study Colloids Surf A Physicochem Eng Asp 124940

Download references

Acknowledgements

This work was supported by the Key Research Program of the Chinese Academy of Sciences (Grant NO. ZDRW-CN-2020-1)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangye Wei or Jingkui Qu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Yu, Z., Meng, L. et al. The relationship between failure mechanism of nickel-rich layered oxide for lithium batteries and the research progress of coping strategies: a review. Ionics 27, 2749–2784 (2021). https://doi.org/10.1007/s11581-021-04019-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04019-8

Keywords

Navigation