Skip to main content
Log in

Influence of Sc concentration on transport properties of CaHf1-xScxO3-α

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a series of CaHf1-xScxO3-α (x = 0, 0.10, 0.15, 0.20, and 0.30) perovskite oxides have been prepared by a solid-state reaction. The crystal structure and lattice parameters of the orthogonally-distorted perovskite phases of CaHf1-xScxO3-α were obtained. The results revealed that Sc-doping could significantly improve the conductivity and proton transport properties of CaHfO3. However, at x > 0.2, the conductivity decreased with increase in Sc concentration. CaHf0.85Sc0.15O3-α exhibited the highest conductivity among all specimens in the temperature range of 400 to 900 °C. The conduction activation energy of CaHfO3 significantly decreased with Sc-doping in the range of 0.66 to 1.52 eV. Overall, the CaHf1-xScxO3-α demonstrated pure proton conduction in the temperature range of 300 to 600 °C under wet 1%H2-Ar, whereas the proton relative transport number decreased with increasing temperature to within the range of 600–900 °C. At an optimal Sc concentration of x = 0.1, CaHf1-xScxO3-α rendered the highest proton transport number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou Y, Guan X, Zhou H, Ramadoss K, Adam S, Liu H, Lee S, Shi J, Tsuchiya M, Fong DD, Ramanathan S (2016) Strongly correlated perovskite fuel cells. Nature 534:231–234

    Article  CAS  PubMed  Google Scholar 

  2. An H, Lee H-W, Kim B-K, Son J-W, Yoon KJ, Kim H, Shin D, Ji H-I, Lee J-H (2018) A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 Wcm-2 at 600 °C. Nat Energy 3:870–875

    Article  CAS  Google Scholar 

  3. Morejudo SH, Zanon R, Escolastico S, Yuste-Tirados I, Malerod-Fjeld H, Vestre PK, Coors WG, Martinez A, Norby T, Serra JM, Kjolseth C (2016) Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353:563–566

    Article  CAS  PubMed  Google Scholar 

  4. Dudek M, Lis B, Lach R, Daugėla S, Šalkus T, Kežionis A, Mosiałek M, Socha RP, Morgiel J, Gajek M, Sitarz M, Ziąbka M (2019) Ba0.95Ca0.05Ce0.9Y0.1O3 as an electrolyte for proton-conducting ceramic fuel cells. Electrochim Acta 304:70–79

    Article  CAS  Google Scholar 

  5. Zhang H, Wilhite BA (2016) Electrical conduction and hydrogen permeation investigation on iron-doped barium zirconate membrane. J Membr Sci 512:104–110

    Article  CAS  Google Scholar 

  6. Montaleone D, Mercadelli E, Escolastico S, Gondolini A, Serra JM, Sanson A (2018) All-ceramic asymmetric membranes with superior hydrogen permeation. J Mater Chem A 6:15718–15727

    Article  CAS  Google Scholar 

  7. Ishiyama T, Kishimoto H, Develos-Bagarinao K, Yamaji K, Yamaguchi T, Fujishiro Y (2017) Correlation between dissolved protons in nickel-doped BaZr0.1Ce0.7Y0.1Yb0.1O3-δ and its electrical conductive properties. Inorg Chem 56:11876–11882

    Article  CAS  PubMed  Google Scholar 

  8. Kalyakin AS, Lyagaeva JG, Chuikin AY, Volkov AN, Medvedev DA (2019) A high-temperature electrochemical sensor based on CaZr0.95Sc0.05O3-α for humidity analysis in oxidation atmospheres. J Solid State Electrochem 23:73–79

    Article  CAS  Google Scholar 

  9. Kim S, Jung B, Park CO, Rapp RA (2017) New solid-state electrochemical method of measuring dissolved hydrogen in Al melt. Sensors Actuators B Chem 239:374–382

    Article  CAS  Google Scholar 

  10. He J, Sunarso J, Zhu Y, Zhong Y, Miao J, Zhou W, Shao Z (2017) High-performance non-enzymatic perovskite sensor for hydrogen peroxide and glucose electrochemical detection. Sensors Actuators B Chem 244:482–491

    Article  CAS  Google Scholar 

  11. Fray D (1996) The use of solid electrolytes as sensors for applications in molten metals. Solid State Ionics 86-88:1045–1054

    Article  CAS  Google Scholar 

  12. Marnellos G (1998) Ammonia Synthesis at Atmospheric Pressure. Science 282:98–100

    Article  CAS  PubMed  Google Scholar 

  13. Iwahara H (2000) Electrochemical dehumidification using proton conducting ceramics. Solid State Ionics 136-137:133–138

    Article  CAS  Google Scholar 

  14. Karagiannakis G, Zisekas S, Stoukides M (2002) Hydrogenation of carbon dioxide in a proton conducting cell reactor. Ionics 8:123–127

    Article  CAS  Google Scholar 

  15. Zhu H, Ricote S, Duan C, O'Hayre RP, Tsvetkov DS, Kee RJ (2018) Defect incorporation and transport within dense BaZr0.8Y0.2O3-δ (BZY20) proton-conducting membranes. J Electrochem Soc 165:F581–F588

    Article  CAS  Google Scholar 

  16. Ricote S, Bonanos N, Marco de Lucas MC, Caboche G (2009) Structural and conductivity study of the proton conductor BaCe0.9−xZrxY0.1O3−δ at intermediate temperatures. J Power Sources 193:189–193

    Article  CAS  Google Scholar 

  17. Lim DK, Im HN, Jeon SY, Park JY, Song SJ (2013) Experimental evidence of hydrogen–oxygen decoupled diffusion into BaZr0.6Ce0.25Y0.15O3−δ. Acta Mater 61:1274–1283

    Article  CAS  Google Scholar 

  18. Baek S-S, Park K-Y, Lee T-H, Lee N, Seo Y, Song S-J, Park J-Y (2014) PdO-doped BaZr0.8Y0.2O3-δ electrolyte for intermediate-temperature protonic ceramic fuel cells. Acta Mater 66:273–283

    Article  CAS  Google Scholar 

  19. Ricote S, Krishna L, Coors WG, O'Brien JR (2018) Conductivity behavior of BaZr0.9Dy0.1O3-delta. Solid State Ionics 314:25–29

    Article  CAS  Google Scholar 

  20. Bao JX, Ohno H, Kurita N, Okuyama Y, Fukatsu N (2011) Proton conduction in Al-doped CaZrO3. Electrochim Acta 56:1062–1068

    Article  CAS  Google Scholar 

  21. Kurita N, Fukatsu N, Ito K, Ohashi T (1995) Protonic conduction domain of indium-doped calcium zirconate. J Electrochem Soc 142:1552–1559

    Article  CAS  Google Scholar 

  22. Lyagaeva J, Danilov N, Korona D, Farlenkov A, Medvedev D, Demin A, Animitsa I, Tsiakaras P (2017) Improved ceramic and electrical properties of CaZrO3-based proton-conducting materials prepared by a new convenient combustion synthesis method. Ceram Int 43:7184–7192

    Article  CAS  Google Scholar 

  23. Park C-J, Ryu H-W, Moon J-H, Lee J-S, Song S-J (2009) Transport properties of BaCe0.85Y0.15O3-δ at closed-cycle refrigerator temperature. Ceram Int 35:1769–1773

    Article  CAS  Google Scholar 

  24. Choi SM, Lee JH, Choi MB, Hong J, Yoon KJ, Kim BK, Lee HW, Lee JH (2015) Determination of electronic and ionic partial conductivities of BaCeO3 with Yb and in doping. J Electrochem Soc 162:F789–F795

    Article  CAS  Google Scholar 

  25. Song SJ, Wachsman ED, Dorris SE, Balachandran U (2003) Electrical properties of p-type electronic defects in the protonic conductor SrCe0.95Eu0.05O3−δ. J Electrochem Soc 150:A790

    Article  CAS  Google Scholar 

  26. Kim I-H, Lim D-K, Bae H, Bhardwaj A, Park J-Y, Song S-J (2019) Determination of partial conductivities and computational analysis of the theoretical power density of BaZr0.1Ce0.7Y0.1Yb0.1O3−δ(BZCYYb1711) electrolyte under various PCFC conditions. J Mater Chem A 7:21321–21328

    Article  CAS  Google Scholar 

  27. Kato K, Han DL, Uda T (2019) Transport properties of proton conductive Y-doped BaHfO3 and Ca or Sr-substituted Y-doped BaZrO3. J Am Ceram Soc 102:1201–1210

    Article  CAS  Google Scholar 

  28. Dunyushkina LA, Gorelov VP (2013) High temperature electrical behavior of CaTi1-xFexO3-delta (x=0-0.5). Oxygen-ion, electronic and proton conductivity. Solid State Ionics 253:169–174

    Article  CAS  Google Scholar 

  29. Huang W, Li Y, Li H, Ding Y, Ma B (2016) Preparation and ionic conduction of CaZr1−xScxO3−α ceramics. Ceram Int 42:13404–13410

    Article  CAS  Google Scholar 

  30. Yajima T, Kazeoka H, Yogo T, Iwahara H (1991) Proton conduction in sintered oxides based on CaZrO3. Solid State Ionics 47:271–275

    Article  CAS  Google Scholar 

  31. Okuyama Y, Nagamine S, Nakajima A, Sakai G, Matsunaga N, Takahashi F, Kimata K, Oshima T, Tsuneyoshi K (2016) Proton-conducting oxide with redox protonation and its application to a hydrogen sensor with a self-standard electrode. RSC Adv 6:34019–34026

    Article  CAS  Google Scholar 

  32. Huang W, Li Y, Ding Y, Li H (2019) Preparation and conductive properties of double perovskite Ba3Sr1+Ta2−O9− and application for hydrogen sensor. J Alloys Compd 792:759–769

    Article  CAS  Google Scholar 

  33. Yoon J-Y, In Yeon J, Yoo H-I (2012) Concentration-cell measurement of proton transference number of SrCe0.95Yb0.05O3-δ. Solid State Ionics 213:22–28

    Article  CAS  Google Scholar 

  34. Zhu HY, Ricote S, Duan CC, O'Hayre RP, Kee RJ (2018) Defect chemistry and transport within dense BaCe0.7Zr0.1Y0.1Yb0.1O3-delta (BCZYYb) proton-conducting membranes. J Electrochem Soc 165:F845–F853

    Article  CAS  Google Scholar 

  35. Sherafat Z, Paydar MH, Antunes I, Nasani N, Brandao AD, Fagg DP (2015) Modeling of electrical conductivity in the proton conductor Ba0.85 K0.15ZrO3-delta. Electrochim Acta 165:443–449

    Article  CAS  Google Scholar 

  36. Knight K (1995) A high-resolution neutron powder diffraction study of neodymium doping in barium cerate. Solid State Ionics 77:189–194

    Article  CAS  Google Scholar 

  37. Hung IM, Chiang Y-J, Jang JS-C, Lin J-C, Lee S-W, Chang J-K, Hsi C-S (2015) The proton conduction and hydrogen permeation characteristic of Sr(Ce0.6Zr0.4)0.85Y0.15O3−δ ceramic separation membrane. J Eur Ceram Soc 35:163–170

    Article  CAS  Google Scholar 

  38. Islam MS, Davies RA, Gale JD (2001) Hop, skip or jump? Proton transport in the CaZrO3 perovskite oxide. Chem Commun:661–662

  39. Zhou M, Ahmad A (2008) Sol–gel processing of In-doped CaZrO3 solid electrolyte and the impedimetric sensing characteristics of humidity and hydrogen. Sensors Actuators B Chem 129:285–291

    Article  CAS  Google Scholar 

  40. Dai L, Wang L, Shao G, Li Y (2012) A novel amperometric hydrogen sensor based on nano-structured ZnO sensing electrode and CaZr0.9In0.1O3−δ electrolyte. Sensors Actuators B Chem 173:85–92

    Article  CAS  Google Scholar 

  41. Ding Y, Li Y, Zhang C, Huang W (2020) Effect of grain interior and grain boundaries on transport properties of Sc-doped CaHfO3. J Alloys Compd 834

  42. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  43. Guan J, Dorris SE, Balachardran U, Liu M (1997) Transport properties of BaCe0.95Y0.05O3−α mixed conductors for hydrogen separation. Solid State Ionics 100:45–52

    Article  CAS  Google Scholar 

  44. Pérez-Coll D, Heras-Juaristi G, Fagg DP, Mather GC (2014) Transport-number determination of a protonic ceramic electrolyte membrane via electrode-polarisation correction with the Gorelov method. J Power Sources 245:445–455

    Article  CAS  Google Scholar 

  45. Fabbri E, Pergolesi D, Licoccia S, Traversa E (2010) Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? Solid State Ionics 181:1043–1051

    Article  CAS  Google Scholar 

  46. Loken A, Kjolseth C, Haugsrud R (2014) Electrical conductivity and TG-DSC study of hydration of Sc-doped CaSnO3 and CaZrO3. Solid State Ionics 267:61–67

    Article  CAS  Google Scholar 

  47. Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359

    Article  CAS  Google Scholar 

  48. Draber FM, Ader C, Arnold JP, Eisele S, Grieshammer S, Yamaguchi S, Martin M (2019) Nanoscale percolation in doped BaZrO3 for high proton mobility. Nat Mater

  49. Goodenough J (1997) Ceramic solid electrolytes. Solid State Ionics 94:17–25

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Project nos. 51704063, 51834004, and 51774076) and the Fundamental Research Funds for the Central Universities (Project no. N172513032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Li, Y., Gong, S. et al. Influence of Sc concentration on transport properties of CaHf1-xScxO3-α. Ionics 27, 2097–2106 (2021). https://doi.org/10.1007/s11581-021-03975-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03975-5

Keywords

Navigation