Skip to main content
Log in

An effective Ni(OH)2 optimization strategy via Cu2+ and Ni3+ co-doping for high capacity and long life-span lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Although novel anode materials made of transition metal hydroxide can initially exhibit high capacity, their cycling performances would rapidly decline due to the poor structural stability and low electrical conductivity. Herein, we demonstrated a novel design strategy to prepare a Cu2+ and Ni3+ co-doped nickel-based layered double hydroxide (LDH) by a simple one-step co-precipitation method. The well-doped Cu2+ shortens the band gap and enhances the interlamellar spacing of the co-doped LDH, thus promoting the migration of electrons and lithium ions, and increasing the stability of layered structure. Moreover, in situ generated Ni3+ not only shorten the overall band gap but also improve the pseudocapacitance of the Ni-based LDH material. As a result, the co-doped nickel-based LDH exhibit an ultra-high capacity of 942.5 mAh g−1 after 1000 cycles under the rate of 2 A g−1, which behaves outstanding cycling performance in comparison with all the reported nickel-based hydroxide anode materials to our knowledge. In addition, the reversible discharge capacity at 1 A g−1 of the co-doped nickel-based layered double hydroxide anode at a low voltage window (0.01~1.5 V) is more than four times of that of the common Ni(OH)2 anode after 800 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Y, Yuan H, Zhu Y, Wang Z, Hu Z, Xie J, Liao C, Cheng H, Zhang F, Lu Z (2020) An all-in-one supercapacitor working at sub-zero temperatures. Sci China Mater 63:660–666. https://doi.org/10.1007/s40843-019-1244-1

    Article  Google Scholar 

  2. Ma YJ, Ma Y, Ulissi U, Ji YC, Streb C, Bresser D, Passerini S (2018) Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes. Electrochim Acta 277:100–109. https://doi.org/10.1016/j.electacta.2018.04.209

    Article  CAS  Google Scholar 

  3. Bai X, Li T, Bai Y-J (2020) Dual-modified Li4Ti5O12 anode by copper decoration and carbon coating to boost lithium storage. ACS Sustain Chem Eng 8:17177–17184. https://doi.org/10.1021/acssuschemeng.0c05835

    Article  CAS  Google Scholar 

  4. Mou H, Xiao W, Miao C, Li R, Yu L (2020) Tin and tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front Chem 8:141. https://doi.org/10.3389/fchem.2020.00141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fang R, Xiao W, Miao C, Mei P, Yan X, Zhang Y, Jiang Y (2020) Improved lithium storage performance of pomegranate-like Si@NC/rGO composite anodes by facile in-situ nitrogen doped carbon coating and freeze drying processes. J Alloys Compd 834:155230. https://doi.org/10.1016/j.jallcom.2020.155230

    Article  CAS  Google Scholar 

  6. Li R, Miao C, Yu L, Zhang M, Xiao W (2020) Novel self-assembled SnO2@SnS2 hybrid microspheres as potential anode materials for lithium-ion batteries. Mater Lett 272:127851. https://doi.org/10.1016/j.matlet.2020.127851

    Article  CAS  Google Scholar 

  7. Y-f H, Qin N, Liao C-z, H-f F, Y-y G, Cheng H (2019) Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes. J Cent South Univ 26:1416–1425. https://doi.org/10.1007/s11771-019-4097-4

    Article  CAS  Google Scholar 

  8. Hou GL, Du Y, Cheng BL, Yang YJ, Fang DL, Kong XP, Li BQ, He JP, Yang JW, Wang X, Yuan FL (2018) Enhanced capacity of NiO nanocubes with high dispersion and exposed facets reinforced by thermal plasma. ACS Appl Nano Mater 1:5981–5988. https://doi.org/10.1021/acsanm.8b01398

    Article  CAS  Google Scholar 

  9. Zou F, Chen YM, Liu KW, Yu ZT, Liang WF, Bhaway SM, Gao M, Zhu Y (2016) Metal organic frameworks derived hierarchical hollow NiO/Ni/graphene composites for lithium and sodium storage. ACS Nano 10:377–386. https://doi.org/10.1021/acsnano.5b05041

    Article  CAS  PubMed  Google Scholar 

  10. Yin XJ, Zhi CW, Sun WW, Lv LP, Wang Y (2019) Multilayer NiO@Co3O4@graphene quantum dots hollow spheres for high-performance lithium-ion batteries and supercapacitors. J Mater Chem A 7:7800–7814. https://doi.org/10.1039/c8ta11982a

    Article  CAS  Google Scholar 

  11. Xiao J, Liu H, Huang J, Lu Y, Zhang L (2020) Decahedron Cu1.8Se/C nano-composites derived from metal–organic framework Cu–BTC as anode materials for high performance lithium-ion batteries. Appl Surf Sci 526:146746. https://doi.org/10.1016/j.apsusc.2020.146746

    Article  CAS  Google Scholar 

  12. Dong X, Deng Z-P, Huo L-H, Zhang X-F, Gao S (2019) Large-scale synthesis of NiS@N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery. J Alloys Compd 788:984–992. https://doi.org/10.1016/j.jallcom.2019.02.326

    Article  CAS  Google Scholar 

  13. Dong C, Guo L, He Y, Chen C, Qian Y, Chen Y, Xu L (2018) Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Storage Mater 15:234–241. https://doi.org/10.1016/j.ensm.2018.04.011

    Article  Google Scholar 

  14. Li YW, Pan GL, Xu WQ, Yao JH, Zhang LZ (2016) Effect of Al substitution on the microstructure and lithium storage performance of nickel hydroxide. J Power Sources 307:114–121. https://doi.org/10.1016/j.jpowsour.2015.12.129

    Article  CAS  Google Scholar 

  15. Hall DS, Lockwood DJ, Bock C, MacDougall BR (2015) Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proc Math Phys Eng Sci 471:20140792. https://doi.org/10.1098/rspa.2014.0792

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hu YY, Liu ZG, Nam KW, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu XQ, Wiaderek KM, Du LS, Chapman KW, Chupas PJ, Yang XQ, Grey CP (2013) Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat Mater 12:1130–1136. https://doi.org/10.1038/Nmat3784

    Article  CAS  PubMed  Google Scholar 

  17. Kim H, Choi WI, Jang Y, Balasubramanian M, Lee W, Park GO, Park SB, Yoo J, Hong JS, Choi YS, Lee HS, Bae IT, Kim JM, Yoon WS (2018) Exceptional lithium storage in a Co(OH)2 anode: hydride formation. ACS Nano 12:2909–2921. https://doi.org/10.1021/acsnano.8b00435

    Article  CAS  PubMed  Google Scholar 

  18. Zhai ZT, Liu Q, Zhu Y, Cao JN, Shi SJ (2019) Synthesis of Ni(OH)2/graphene composite with enhanced electrochemical property by stirring solvothermal method. J Alloys Compd 775:1316–1323. https://doi.org/10.1016/j.jallcom.2018.10.262

    Article  CAS  Google Scholar 

  19. Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 3:174–189. https://doi.org/10.1039/b916098a

    Article  CAS  Google Scholar 

  20. Khan AI, O’Hare D (2002) Intercalation chemistry of layered double hydroxides: recent developments and applications. J Mater Chem 12:3191–3198. https://doi.org/10.1039/b204076j

    Article  CAS  Google Scholar 

  21. Kraytsberg A, Ein-Eli Y (2017) A critical review-promises and barriers of conversion electrodes for Li-ion batteries. J Solid State Electrochem 21:1907–1923. https://doi.org/10.1007/s10008-017-3580-9

    Article  CAS  Google Scholar 

  22. Liu L, Hou YD, Gao YF, Yang NJ, Liu JR, Wang XY (2019) Co doped alpha-Ni(OH)2 multiple-dimensional structure electrode material. Electrochim Acta 295:340–346. https://doi.org/10.1016/j.electacta.2018.10.137

    Article  CAS  Google Scholar 

  23. Zhang M, Wei Z, Wang T, Muhammad S, Zhou J, Liu J, Zhu J, Hu J (2019) Nickel-iron layered double hydroxides and reduced graphene oxide composite with robust lithium ion adsorption ability for high-capacity energy storage systems. Electrochim Acta 296:190–197. https://doi.org/10.1016/j.electacta.2018.11.058

    Article  CAS  Google Scholar 

  24. Shi JH, Du NX, Zheng WJ, Li XC, Dai Y, He GH (2017) Ultrathin Ni-Co double hydroxide nanosheets with conformal graphene coating for highly active oxygen evolution reaction and lithium ion battery anode materials. Chem Eng J 327:9–17. https://doi.org/10.1016/j.cej.2017.06.080

    Article  CAS  Google Scholar 

  25. Xiang P, Chen X, Liu J, Xiao B, Yang L (2018) Borophene as conductive additive to boost the performance of MoS2-based anode materials. J Phys Chem C 122:9302–9311. https://doi.org/10.1021/acs.jpcc.8b00768

    Article  CAS  Google Scholar 

  26. Lu H, Yang C, Li C, Wang L, Wang H (2019) Two-dimensional Cr-doped MoO2.5(OH)0.5 nanosheets: a promising anode material for lithium-ion batteries. ACS Appl Mater Interfaces 11:13405–13415. https://doi.org/10.1021/acsami.9b00824

    Article  CAS  PubMed  Google Scholar 

  27. Hong JH, Park GD, Yang SH, Choi JH, Kang YC (2020) Efficient strategy for hollow carbon nanospheres embedded with nickel hydroxide nanocrystals and their excellent lithium-ion storage performances. Scr Mater 188:112–117. https://doi.org/10.1016/j.scriptamat.2020.07.032

    Article  CAS  Google Scholar 

  28. Li C, Xue Z, Qin J, Sawangphruk M, Yu P, Zhang X, Liu R (2020) Synthesis of nickel hydroxide/delaminated-Ti3C2 MXene nanosheets as promising anode material for high performance lithium ion battery. J Alloys Compd 842:155812. https://doi.org/10.1016/j.jallcom.2020.155812

    Article  CAS  Google Scholar 

  29. Yan H, Luo Y, Xu X, He L, Tan J, Li Z, Hong X, He P, Mai L (2017) Facile and scalable synthesis of Zn3V2O7(OH)2.2H2O microflowers as a high-performance anode for lithium-ion batteries. ACS Appl Mater Interfaces 9:27707–27714. https://doi.org/10.1021/acsami.7b06996

    Article  CAS  PubMed  Google Scholar 

  30. Niu K-Y, Lin F, Fang L, Nordlund D, Tao R, Weng T-C, Doeff MM, Zheng H (2015) Structural and chemical evolution of amorphous nickel iron complex hydroxide upon lithiation/delithiation. Chem Mater 27:1583–1589. https://doi.org/10.1021/cm5041375

    Article  CAS  Google Scholar 

  31. Min S, Zhao C, Ju P, Zhou T, Gao H, Zheng Y, Wang H, Chen G, Qian X, Guo Z (2016) Facile synthesis of nickel-foam-based nano-architectural composites as binder-free anodes for high capacity Li-ion batteries. J Power Sources 304:311–318. https://doi.org/10.1016/j.jpowsour.2015.11.053

    Article  CAS  Google Scholar 

  32. Nie Y, Xiao W, Miao C, Wang J, Tan Y, Xu M, Wang C (2020) Improving the structural stability of Ni-rich LiNi0.81Co0.15Al0.04O2 cathode materials with optimal content of trivalent Al ions doping for lithium ions batteries. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.12.111

  33. Bao J, Zhu Y, Zhang Z, Xu Q, Zhao W, Chen J, Zhang W, Han Q (2013) Structure and electrochemical properties of nanometer Cu substituted α-nickel hydroxide. Mater Res Bull 48:422–428. https://doi.org/10.1016/j.materresbull.2012.10.059

    Article  CAS  Google Scholar 

  34. Lei L, Hu M, Gao X, Sun Y (2008) The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochim Acta 54:671–676. https://doi.org/10.1016/j.electacta.2008.07.004

    Article  CAS  Google Scholar 

  35. He Q, Yao K, Wang X, Xia X, Leng S, Li F (2017) Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl Mater Interfaces 9:41887–41897. https://doi.org/10.1021/acsami.7b13621

    Article  CAS  PubMed  Google Scholar 

  36. Li N, Ai L, Jiang J, Liu S (2020) Spinel-type oxygen-incorporated Ni3+ self-doped Ni3S4 ultrathin nanosheets for highly efficient and stable oxygen evolution electrocatalysis. J Colloid Interface Sci 564:418–427. https://doi.org/10.1016/j.jcis.2019.12.036

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Yang M, Du J, Yang L, Fan L, Liu X, Yang J, Wang F (2019) Modulation of Ni3+ and crystallization of dopant-free NiOx hole transporting layer for efficient p-i-n perovskite solar cells. Electrochim Acta 319:41–48. https://doi.org/10.1016/j.electacta.2019.06.168

    Article  CAS  Google Scholar 

  38. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr A 32:751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  39. Ding CH, Gao WC, Zhao YJ, Zhao YZ, Zhou HP, Li JB, Jin HB (2016) Effects of Co2+ doping on physicochemical behaviors of hierarchical NiO nanostructure. Appl Surf Sci 390:890–896. https://doi.org/10.1016/j.apsusc.2016.08.163

    Article  CAS  Google Scholar 

  40. Li YW, Xu WQ, Zheng YY, Yao JH, Xiao JR (2017) Hierarchical flower-like nickel hydroxide with superior lithium storage performance. J Mater Sci Mater Electron 28:17156–17160. https://doi.org/10.1007/s10854-017-7643-6

    Article  CAS  Google Scholar 

  41. Feng XS, Huang Y, Li C, Chen XF, Zhou SH, Gao XG, Chen C (2019) Controllable synthesis of porous NiCo2O4/NiO/Co3O4 nanoflowers for asymmetric all-solid-state supercapacitors. Chem Eng J 368:51–60. https://doi.org/10.1016/j.cej.2019.02.191

    Article  CAS  Google Scholar 

  42. Xiong XL, You C, Liu Z, Asiri AM, Sun XP (2018) Co-doped CuO nanoarray: an efficient oxygen evolution reaction electrocatalyst with enhanced activity. ACS Sustain Chem Eng 6:2883–2887. https://doi.org/10.1021/acssuschemeng.7b03752

    Article  CAS  Google Scholar 

  43. Li T, Nie XY (2018) One-step fast-synthesized foamlike amorphous Co(OH)2 flexible film on Ti foil by plasma-assisted electrolytic deposition as a binder-free anode of a high-capacity lithium-ion battery. ACS Appl Mater Interfaces 10:16943–16946. https://doi.org/10.1021/acsami.8b05482

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Zhao Y, An W, Xing L, Gao Y, Liu J (2017) Heteroelement Y-doped α-Ni(OH)2 nanosheets with excellent pseudocapacitive performance. J Mater Chem A 5:10039–10047. https://doi.org/10.1039/c7ta00963a

    Article  CAS  Google Scholar 

  45. Zhao Y, Wang Q, Bian T, Yu H, Fan H, Zhou C, Wu L-Z, Tung C-H, O’Hare D, Zhang T (2015) Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. Nanoscale 7:7168–7173. https://doi.org/10.1039/c5nr01320h

    Article  CAS  PubMed  Google Scholar 

  46. Gao C, Jiang Z, Wang P, Jensen LR, Zhang Y, Yue Y (2020) Optimized assembling of MOF/SnO2/graphene leads to superior anode for lithium ion batteries. Nano Energy 74:104868. https://doi.org/10.1016/j.nanoen.2020.104868

    Article  CAS  Google Scholar 

  47. Wang J, Qin J, Jiang Y, Mao B, Wang X, Cao M (2020) Unraveling the beneficial microstructure evolution in pyrite for boosted lithium storage performance. Chemistry 26:11841–11850. https://doi.org/10.1002/chem.202001695

    Article  CAS  PubMed  Google Scholar 

  48. Zhang R, Huang XX, Wang D, Hoang TKA, Yang Y, Duan XM, Chen P, Qin LC, Wen GW (2018) Single-phase mixed transition metal carbonate encapsulated by graphene: facile synthesis and improved lithium storage properties. Adv Funct Mater 28:1705817. https://doi.org/10.1002/adfm.201705817

    Article  CAS  Google Scholar 

  49. Wang J, Bai F, Chen X, Lu YL, Yang WS (2017) Intercalated Co(OH)2-derived flower-like hybrids composed of cobalt sulfide nanoparticles partially embedded in nitrogen-doped carbon nanosheets with superior lithium storage. J Mater Chem A 5:3628–3637. https://doi.org/10.1039/c6ta10151h

    Article  CAS  Google Scholar 

  50. Ni S, Li T, Lv X, Yang X, Zhang L (2013) Designed constitution of NiO/Ni nanostructured electrode for high performance lithium ion battery. Electrochim Acta 91:267–274. https://doi.org/10.1016/j.electacta.2012.12.113

    Article  CAS  Google Scholar 

  51. Ni S, Zheng B, Liu J, Chao D, Yang X, Shen Z, Zhao J (2018) Self-adaptive electrochemical reconstruction boosted exceptional Li+ ion storage in a Cu3P@C anode. J Mater Chem A 6:18821–18826. https://doi.org/10.1039/c8ta04959a

    Article  CAS  Google Scholar 

  52. Hu R, Ouyang Y, Liang T, Wang H, Liu J, Chen J, Yang C, Yang L, Zhu M (2017) Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv Mater 29:1605006. https://doi.org/10.1002/adma.201605006

    Article  CAS  Google Scholar 

  53. Ni S, Liu J, Chao D, Mai L (2019) Vanadate-based materials for Li-ion batteries: the search for anodes for practical applications. Adv Energy Mater 9:1803324. https://doi.org/10.1002/aenm.201803324

    Article  CAS  Google Scholar 

  54. Ni S, Lv X, Li T, Yang X, Zhang L (2013) The investigation of Ni(OH)2/Ni as anodes for high performance Li-ion batteries. J Mater Chem A 1:1544–1547. https://doi.org/10.1039/c2ta01191c

    Article  CAS  Google Scholar 

  55. Yang S, Zhang D, Xu Z, Xu J, Lu J, Cao J, Ni S (2020) A scalable synthesis of 2D laminate Li3VO4/C for robust pseudocapacitive Li-ion storage. J Mater Chem A 8:21122–21130. https://doi.org/10.1039/d0ta07484e

    Article  CAS  Google Scholar 

  56. Wang LP, Leconte Y, Feng Z, Wei C, Zhao Y, Ma Q, Xu W, Bourrioux S, Azais P, Srinivasan M, Xu ZJ (2017) Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv Mater 29:1603286. https://doi.org/10.1002/adma.201603286

    Article  CAS  Google Scholar 

  57. Yu K, Pan X, Zhang G, Liao X, Zhou X, Yan M, Xu L, Mai L (2018) Nanowires in energy storage devices: structures, synthesis, and applications. Adv Energy Mater 8:1802369. https://doi.org/10.1002/aenm.201802369

    Article  CAS  Google Scholar 

  58. Wu J, Liu J, Cui J, Yao S, Ihsan-Ul-Haq M, Mubarak N, Quattrocchi E, Ciucci F, Kim J-K (2020) Dual-phase MoS2 as a high-performance sodium-ion battery anode. J Mater Chem A 8:2114–2122. https://doi.org/10.1039/c9ta11913b

    Article  CAS  Google Scholar 

  59. Ardhi REA, Liu G, Tran MX, Hudaya C, Kim JY, Yu H, Lee JK (2018) Self-relaxant superelastic matrix derived from C-60 incorporated Sn nanoparticles for ultra-high-performance Li-ion batteries. ACS Nano 12:5588–5604. https://doi.org/10.1021/acsnano.8b01345

    Article  CAS  PubMed  Google Scholar 

  60. Park YR, Kim KJ (2003) Sol–gel preparation and optical characterization of NiO and Ni1−xZnxO thin films. J Cryst Growth 258:380–384. https://doi.org/10.1016/s0022-0248(03)01560-4

    Article  CAS  Google Scholar 

  61. Shi L, Chen Y, He R, Chen X, Song H (2018) Graphene-wrapped CoNi-layered double hydroxide microspheres as a new anode material for lithium-ion batteries. Phys Chem Chem Phys 20:16437–16443. https://doi.org/10.1039/c8cp01681j

    Article  CAS  PubMed  Google Scholar 

  62. Zhao S, Wang Z, He Y, Jiang H, Harn YW, Liu X, Su C, Jin H, Li Y, Wang S, Shen Q, Lin Z (2019) A robust route to Co2(OH)2CO3 ultrathin nanosheets with superior lithium storage capability templated by aspartic acid-functionalized graphene oxide. Adv Energy Mater:1901093. https://doi.org/10.1002/aenm.201901093

  63. Zhou X, Zhong Y, Yang M, Zhang Q, Wei J, Zhou Z (2015) Co2(OH)2CO3 Nanosheets and CoO nanonets with tailored pore sizes as anodes for lithium ion batteries. ACS Appl Mater Interfaces 7:12022–12029. https://doi.org/10.1021/acsami.5b02152

    Article  CAS  PubMed  Google Scholar 

  64. Zhu Y, Cao C (2015) Remarkable electrochemical lithium storage behaviour of two-dimensional ultrathin α-Ni(OH)2 nanosheets. RSC Adv 5:83757–83763. https://doi.org/10.1039/c5ra15514b

    Article  CAS  Google Scholar 

Download references

Funding

S.L. acknowledge the financial support from Fundamental and Applied Fundamental Funds of Guangdong – Regional Joint Fund for Youth Project (2020A1515110980). B.Y. would acknowledge the financial support from Training Program of Major Basic Research Project of Provincial Natural Science Foundation of Guangdong (2017B030308001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Li, S., Hu, R. et al. An effective Ni(OH)2 optimization strategy via Cu2+ and Ni3+ co-doping for high capacity and long life-span lithium ion batteries. Ionics 27, 2053–2066 (2021). https://doi.org/10.1007/s11581-021-03951-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03951-z

Keywords

Navigation