Skip to main content
Log in

Sphere-like TiO2/Si anode material with superior performance for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The practical application of a titanium dioxide (TiO2) anode is restricted by the poor intrinsic ionic diffusion property and low theoretical capacity. Herein, sphere-like TiO2/Si nanoparticles were synthesized via a facile sol-gel method. Owing to the nano-spherical structure and the introduction of Si, the as-prepared TiO2/Si composite exhibits enhanced reversible capacity. Nanostructure of both TiO2 and Si materials provides short Li+ transmission pathways and high diffusion dynamics. The optimum ratio effectively alleviates the volume change of Si nanoparticles. The optimal mass ratio of TiO2/Si is 1:0.15, in which the composite electrode delivers excellent cycling life and rate performance, specifically, reversible capacity of 720.9 mAh g−1 at a current density of 100 mA g−1 and excellent long-term cycling stability with a capacity retention of 86.5% over 400 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu F, Maier J, Yu Y (2020) Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 49(5):1569–1614

    Article  CAS  Google Scholar 

  2. Qu X, Yu Z, Ruan D, Dou A, Su M, Zhou Y, Liu Y, Chu D (2020) Enhanced electrochemical performance of Ni-rich cathode materials with Li1.3Al0.3Ti1.7(PO4)3 coating. ACS Sustain Chem Eng 8(15):5819–5830

    Article  CAS  Google Scholar 

  3. Zheng J, Yang Z, Dai A, Tang L, Wei H, Li Y, He Z, Lu J (2019) Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design. Small 15(50):1904854

    Article  CAS  Google Scholar 

  4. Zhong W, Tu W, Wang Z, Lin Z, Xu A, Ye X, Chen D, Xiao B (2020) Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution. Journal of Energy Chemistry 51:280–284

    Article  Google Scholar 

  5. Zheng S, Dou A, Su M, Liu Y (2020) Influence of Nb doping on electrochemical performance of nanostructured cation disordered Li1+x/100Ni1/2-x/100Ti1/2-x/100Nbx/100O2 composites cathode for Li-ion batteries. J Nanosci Nanotechnol 20(1):452–459

    Article  CAS  Google Scholar 

  6. Wu L, Zheng J, Wang L, Xiong X, Shao Y, Wang G, Wang JH, Zhong S, Wu M (2019) PPy-encapsulated SnS2 nanosheets stabilized by defects on a TiO2 support as a durable anode material for lithium-ion batteries. Angew Chem Int Ed Engl 58(3):811–815

    Article  CAS  Google Scholar 

  7. Wang R, Cui W, Chu F, Wu F (2020) Lithium metal anodes: present and future. Journal of Energy Chemistry 48:145–159

    Article  Google Scholar 

  8. Zhong W, Huang J, Liang S, Liu J, Li Y, Cai G, Jiang Y, Liu J (2019) New prelithiated V2O5 superstructure for lithium-ion batteries with long cycle life and high power. ACS Energy Letters 5(1):31–38

    Article  Google Scholar 

  9. Fang R, Xiao W, Miao C, Mei P, Zhang Y, Yan X, Jiang Y (2019) Enhanced lithium storage performance of core-shell structural Si@TiO2/NC composite anode via facile sol-gel and in situ N-doped carbon coating processes. Electrochim Acta 317:575–582

    Article  CAS  Google Scholar 

  10. Zhang G, Wu HB, Song T, Paik U, Lou XW (2014) TiO2 hollow spheres composed of highly crystalline nanocrystals exhibit superior lithium storage properties. Angew Chem Int Ed Engl 53(46):12590–12593

    CAS  PubMed  Google Scholar 

  11. Liu H, Li W, Shen D, Zhao D, Wang G (2015) Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc 137(40):13161–13166

    Article  CAS  Google Scholar 

  12. Wang G, Chen C, Chen Y, Kang X, Yang C, Wang F, Liu Y, Xiong X (2020) Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium-metal anode. Angew Chem Int Ed 59(5):2055–2060

    Article  CAS  Google Scholar 

  13. Liu T, Hu Q, Li X, Tan L, Yan G, Wang Z, Guo H, Liu Y, Wu Y, Wang J (2019) Lithiophilic Ag/Li composite anodes via a spontaneous reaction for Li nucleation with a reduced barrier. J Mater Chem A 7(36):20911–20918

    Article  CAS  Google Scholar 

  14. Li Y, Zhu S, Inoue A, Liang Y, Chang C, Luo S, Cui Z (2020) Preparation of nanoporous Sn-doped TiO2 anode material for lithium-ion batteries by a simple dealloying method. Ionics. https://doi.org/10.1007/s11581-020-03588-4

  15. Yuan YF, Chen F, Yin SM, Wang LN, Zhu M, Yang JL, Wu YC, Guo SY (2019) Foam-like, 3-dimension mesoporous N-doped carbon-assembling TiO2 nanoparticles (P25) as high-performance anode material for lithium-ion batteries. J Power Sources 420:38–45

    Article  CAS  Google Scholar 

  16. Ren M, Xu H, Li F, Liu W, Gao C, Su L, Li G, Hei J (2017) Sugarapple-like N-doped TiO2@carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. J Power Sources 353:237–244

    Article  CAS  Google Scholar 

  17. Cai Y, Wang H-E, Jin J, Huang S-Z, Yu Y, Li Y, Feng S-P, Su B-L (2015) Hierarchically structured porous TiO2 spheres constructed by interconnected nanorods as high performance anodes for lithium ion batteries. Chem Eng J 281:844–851

    Article  CAS  Google Scholar 

  18. Yan WW, Yuan YF, Xiang JY, Wu Y, Zhang TY, Yin SM, Guo SY (2019) Construction of triple-layered sandwich nanotubes of carbon@mesoporous TiO2 nanocrystalline@carbon as high-performance anode materials for lithium-ion batteries. Electrochim Acta 312:119–127

    Article  CAS  Google Scholar 

  19. Voskanyan AA, Abramchuk M, Navrotsky A (2020) Entropy stabilization of TiO2-Nb2O5 Wadsley-Roth shear phases and their prospects for lithium ion battery anode materials. Chem Mater 32:5301–5308. https://doi.org/10.1021/acs.chemmater.0c01553

    Article  CAS  Google Scholar 

  20. Jeong J-H, D-w J, Shin EW, Oh E-S (2014) Boron-doped TiO2 anode materials for high-rate lithium ion batteries. J Alloys Compd 604:226–232

    Article  CAS  Google Scholar 

  21. Chen B, Liu E, Cao T, He F, Shi C, He C, Ma L, Li Q, Li J, Zhao N (2017) Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33:247–256

    Article  CAS  Google Scholar 

  22. Li R, Xiao W, Miao C, Fang R, Wang Z, Zhang M (2019) Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries. Ceram Int 45(10):13530–13535

    Article  CAS  Google Scholar 

  23. Fang R, Miao C, Mou H, Xiao W (2020) Facile synthesis of Si@TiO2@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries. J Alloys Compd 818:152884

    Article  CAS  Google Scholar 

  24. Yang J, Wang Y, Li W, Wang L, Fan Y, Jiang W, Luo W, Wang Y, Kong B, Selomulya C, Liu HK, Dou SX, Zhao D (2017) Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Adv Mater 29(48):1700523

    Article  Google Scholar 

  25. Hwang J-Y, Du H-L, Yun B-N, Jeong M-G, Kim J-S, Kim H, Jung H-G, Sun Y-K (2019) Carbon-free TiO2 microspheres as anode materials for sodium ion batteries. ACS Energy Letters 4(2):494–501

    Article  CAS  Google Scholar 

  26. Xiao Z, Lei C, Yu C, Chen X, Zhu Z, Jiang H, Wei F (2020) Si@Si3N4@C composite with egg-like structure as high-performance anode material for lithium ion batteries. Energy Storage Materials 24:565–573

    Article  Google Scholar 

  27. Fu Y-X, Dai Y, Pei X-Y, Lyu S-S, Heng Y, Mo D-C (2019) TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries. Appl Surf Sci 497:143553

    Article  CAS  Google Scholar 

  28. Ma Y, Li Y, Li D, Liu Y, Zhang J (2019) Uniformly distributed TiO2 nanorods on reduced graphene oxide composites as anode material for high rate lithium ion batteries. J Alloys Compd 771:885–891

    Article  CAS  Google Scholar 

  29. Xu A, Tu W, Shen S, Lin Z, Gao N, Zhong W (2020) BiVO4@MoS2 core-shell heterojunction with improved photocatalytic activity for discoloration of Rhodamine B. Appl Surf Sci 528:146949

    Article  CAS  Google Scholar 

  30. Ren W-F, Li J-T, Zhang S-J, Lin A-L, Chen Y-H, Gao Z-G, Zhou Y, Deng L, Huang L, Sun S-G (2020) Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries. Journal of Energy Chemistry 48:160–168

    Article  Google Scholar 

  31. Mei J, Zhang Y, Liao T, Peng X, Ayoko GA, Sun Z (2019) Black phosphorus nanosheets promoted 2D-TiO2-2D heterostructured anode for high-performance lithium storage. Energy Storage Materials 19:424–431

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the project funded by the China Postdoctoral Science Foundation (2020M671361), Jiangsu Postdoctoral Science Foundation (2020Z090), National Natural Science Foundation of China (51774150 and 51974137), Scientific Research Foundation for Senior Talent of Jiangsu University (14JDG130), and Young Talents Training Program of Jiangsu University (2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingru Su.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Liu, S., Liu, F. et al. Sphere-like TiO2/Si anode material with superior performance for lithium ion batteries. Ionics 26, 5349–5355 (2020). https://doi.org/10.1007/s11581-020-03730-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03730-2

Keywords

Navigation