Skip to main content
Log in

Influence of structure of poly(o-phenylenediamine) on the doping ability and conducting property

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Poly(o-phenylenediamine) with ladder-type structure was formed in aqueous hydrochloric acid medium below pH 1, while open ring-type amine derivative, i.e., −NH2 functional group substitution of polyaniline structure, was obtained in 1:1 aqueous sulfuric acid medium from the chemical synthesis of the monomer o-phenylenediamine. However, poly(o-phenylenediamine) having structure like polyaniline derivative with free =NH functional groups was obtained by chemical synthesis in dimethyl sulfoxide medium. The ladder-type polymer was almost insoluble but the other two types of synthesized polymers having polar functional group substitutions were well soluble in polar organic solvent like dimethyl sulfoxide, N,N-dimethyl formamide, and tetrahydrofuran. The freestanding films were cast from dimethyl sulfoxide solution of both the soluble functional polymers. The polymers having different structures were doped with inorganic acid by solution doping technique and the doped polymers were characterized by various standard characterizations. In order to explore the electronic uses of the polymers like sensor and actuators, the influences of their structure on the doping ability as well as ionic properties of the sulfuric acid-doped polymers were compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gowariker VR, Viswanathan NV, Sreedhar J (2005), 1st Ed.; Polymer Science, New Age Publication (P) Ltd.: New Delhi, p. 230–245

  2. Potember RS, Hoffman RC, Hu HS, Cocchiaro JE, Viands CA, Murphy RA, Poehler TO (1987) Polymers 28:574–580

    Article  CAS  Google Scholar 

  3. Thostenson E, Li C, Chou T (2005) Comps Sci Technol 65:491–516

    Article  CAS  Google Scholar 

  4. Hatchett DW, Josowicz M (2008) Chem Rev 108:746–769

    Article  CAS  Google Scholar 

  5. Bidan G (1992) Sens. Actuators B Chem 6:45–56

    Article  CAS  Google Scholar 

  6. Maiti S (1994) Ind J Chem 33A:524–539

    Google Scholar 

  7. MacDiarmind AG, Mammone RG, Krawezyk GR, Porter SJ (1984) Mol Cryst Liq Cryst 105:89–107

    Article  Google Scholar 

  8. MacDiarmid AG (2001) Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  9. Ram MK, Mascetti G, Paddeu S, Maccioni E, Nicolini C (1997) Synth Met 89:63–69

    Article  CAS  Google Scholar 

  10. Negi YS, Adhyapak PV (2002) Polym Rev 42:35–53

    Google Scholar 

  11. Kulkarni MV, Viswanath AK (2004) Eur Polym J 40:379–384

    Article  CAS  Google Scholar 

  12. Ho KS (2002) Synth Met 126:151–158

    Article  CAS  Google Scholar 

  13. Athawale AA, Kulkarni MV, Chabukswar VV (2002) Mater Chem Phys 73:106–110

    Article  CAS  Google Scholar 

  14. Long Y, Chen Z, Wang N, Zang Z, Wan M (2003) Physica B 325:208–213

    Article  CAS  Google Scholar 

  15. Dao LH, Leclerc M, Guay J, Chevalier JW (1989) Synth Met 29:377–382

    Article  Google Scholar 

  16. Debarnot DN, Epaillard FP (2003) Anal Chim Acta 475:1–15

    Article  Google Scholar 

  17. Stejskal J (2011) Prog Polym Sci 36:1415–1442

    Article  Google Scholar 

  18. Li XG, Huang MR, Duan W, Yang YL (2002) Chem Rev 102:2925–3030

    Article  CAS  Google Scholar 

  19. Li XG, Ma XL, Sun J, Huang MR (2009) Langmuir 25:1675–1684

    Article  CAS  Google Scholar 

  20. Corish J, Hanratty VCA, Morton-Blake DA, Beniere F (1991) Synth Met 39:311–317

    Article  CAS  Google Scholar 

  21. Wang JJ, Jiang J, Hu B, Yu SH (2008) Adv Funct Mater 18:1105–1111

    Article  Google Scholar 

  22. Shi Y, Ma C, Peng L, Yu G (2015) Adv Funct Mater 25:1219–1225

    Article  CAS  Google Scholar 

  23. Mallik K, Witcomb MJ, Dinsmore A, Scurrell MS (2006) J Mater Sci 41:1733–1737

    Article  Google Scholar 

  24. Premasiri AH, Euler WB (1995) Macromol Chem Phys 196:3655–3666

    Article  CAS  Google Scholar 

  25. Rivas BL, Sanchez CO, Bernede JC, Mollinie P (2002) Poly Bull 49:257–264

    Article  CAS  Google Scholar 

  26. Levin O, Kondratiev V, Malev V (2005) Electrochim Acta 50:1573–1585

    Article  CAS  Google Scholar 

  27. Salavagione HJ, Arias J, Garces P, Morallon E, Barbero C, Vazquez JL (2004) J Electroanal Chem 565:375–383

    Article  CAS  Google Scholar 

  28. Salavagione HJ, Pardilla JA, Perez JM, Vazquez JL, Morallon E, Miras MC, Barbero C (2005) J Electroanal Chem 576:139–145

    Article  CAS  Google Scholar 

  29. Mallik K, Witcomb MJ, Scurrell MS (2006) J Macro Sci A Pure Appl Chem 43:1469–1476

    Article  Google Scholar 

  30. Samanta S, Roy P, Kar P (2015) Mater Today Proc 2:1301–1308

    Article  Google Scholar 

  31. Kar P (2014) Adv Mater Res 3:117–128

    Article  Google Scholar 

  32. Samanta S, Roy P, Kar P (2016) Macromol Res 24:342–349

    Article  CAS  Google Scholar 

  33. Kar P, Pradhan NC, Adhikari B (2008) Mater Chem Phys 111:59–64

    Article  CAS  Google Scholar 

  34. Gaussian 09 (revision C. 01) Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian, Inc.: Wallingford, CT.

  35. Becke AD (1988) Phys. Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  36. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  37. Mandal TK, Samanta S, Chakraborty S, Datta A (2013) ChemPhysChem 14:1149–1154

    Article  CAS  Google Scholar 

  38. Schroder DK (1990) Semiconductor material and device characterization. John Wiley & Sons, New York, pp. 2–34

    Google Scholar 

  39. Jois HSS, Bhat DK (2013) J Appl Polym Sci. doi:10.1002/APP.39535

    Google Scholar 

  40. Kar P, Pradhan NC, Adhikari B (2008) J Polym Mater 25:387–396

    Google Scholar 

  41. Kar P, Pradhan NC, Adhikari B (2010) J Macromol Sci Part B: Phys 49:669–679

    Article  CAS  Google Scholar 

  42. Olgun U, Gulfen M (2014) React Funct Polym 77:23–29

    Article  CAS  Google Scholar 

  43. Pouget JP, Jdzefowiczt ME, Epstein AJ, Tang X, MacDiarmid AG (1991) Macromolecules 24:779–789

    Article  CAS  Google Scholar 

  44. Koziel K, Lapkowski M, Lefrant S (1995) Synth Met 69:217–218

    Article  CAS  Google Scholar 

  45. Li XG, Huang MR, Yang YL (2001) Polymer 42:4099–4107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the SERB, Department of Science and Technology (DST), Government of India, for this work in form of research project (Ref. No. SB/FT/CS-082/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Kar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Roy, P. & Kar, P. Influence of structure of poly(o-phenylenediamine) on the doping ability and conducting property. Ionics 23, 937–947 (2017). https://doi.org/10.1007/s11581-016-1904-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1904-x

Keywords

Navigation