Skip to main content

Advertisement

Log in

Facile fabrication of manganese phosphate nanosheets for supercapacitor applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Manganese phosphate (Mn3(PO4)2·3H2O) nanosheets are successfully fabricated via a facile chemical precipitation method. The Mn3(PO4)2·3H2O nanosheets synthesized at 70 °C show excellent supercapacitive performance in 2 M KOH alkaline electrolyte. Typical pseudocapacitance feature of Mn3(PO4)2·3H2O nanosheets treated at various annealing temperatures is then evaluated in 2 M KOH alkaline electrolyte. M3 annealed at 750 °C exhibits the optimal integrated electrochemical properties. Furthermore, an asymmetric supercapacitor composed of M3 as positive electrode and activated carbon (AC) as negative electrode can reach the high-voltage region of 0–1.7 V. The asymmetric supercapacitor displays high energy density of 32.32 Wh kg−1 and power density of 4250 W kg−1. The impressive results presented here may pave the way for promising applications in high energy density storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bao L, Zang J, Li X (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11:1215–1220

    Article  CAS  Google Scholar 

  2. Zhang YX, Li F, Huang M (2013) One-step hydrothermal synthesis of hierarchical MnO2-coated CuO flower-like nanostructures with enhanced electrochemical properties for supercapacitor. Mater Lett 112:203–206

    Article  CAS  Google Scholar 

  3. Fan LZ, Hu YS, Maier J (2007) High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Adv Funct Mater 17:3083–3087

    Article  CAS  Google Scholar 

  4. Yan K, Kong LB, Dai YH, Shi M, Shen KW, Hu B, Luo YC, Kang L (2015) Design and preparation of highly structure-controllable mesoporous carbons at the molecular level and their application as electrode materials for supercapacitors. J Mater Chem A 3:22781–22793

  5. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  6. Huang J, Sumpter BG, Meunier V (2008) Theoretical model for nanoporous carbon supercapacitors. Angew Chem Int Ed 47:520–524

    Article  CAS  Google Scholar 

  7. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  8. Inagaki M, Konno H, Tanaike O (2010) Carbon meterials for electrochemical capacitors. J Power Sources 195:7880–7903

    Article  CAS  Google Scholar 

  9. Chen H, Zhou SX, Chen M, Wu LM (2012) Reduced graphene oxide-MnO2 hollow sphere hybrid nanostructure as high-performance electrochemical capacitors. J Mater Chem 22:25207–25216

    Article  CAS  Google Scholar 

  10. Brousse T, Toupin M, Dugas R, Athouël L, Crosnier O, Bélanger D (2006) Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J Electrochem Soc 153:A2171–A2180

    Article  CAS  Google Scholar 

  11. Chen S, Zhu J, Wu X, Han Q, Wang X (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  12. Li WY, Li G, Sun JQ, Zou RJ, Xu KB, Sun YG, Chen ZG, Yang JM, Hu JQ (2013) Hierarchical heterosturctures of MnO2 nanosheets or nanorodes grown on Au-coated Co3O4 porous nanowalls for high-performance pseudocapacitance. Nanoscale 5:2901–2908

    Article  CAS  Google Scholar 

  13. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  14. Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM (2011) CeO2 nanoparticles/grapheme nanocomposite-based high performance supercapacitor. Dalton T 40:6388–6391

    Article  CAS  Google Scholar 

  15. Yang PH, Xiao X, Li YZ, Ding Y, Qiang PF, Tan XH, Mai WJ, Lin ZY, Wu WZ, Li TQ, Jin HY, Liu P, Zhou J, Wong CP, Wang ZL (2013) Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. ACS Nano 7:2617–2626

    Article  CAS  Google Scholar 

  16. Du X, Wang CY, Chen MM, Jiao Y, Wang J (2009) Electrochemical performance of nanopartice Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C 113:2643–2646

    Article  CAS  Google Scholar 

  17. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1:1130–1139

    Article  CAS  Google Scholar 

  18. Song HF, Li XL, Zhang YL, Li HY, Huang JM (2014) A nanocomposite of needle-like MnO2 nanowires arrays sandwiched between graphene nanosheets for supercapacitors. Ceram Int 40:1251–1255

    Article  CAS  Google Scholar 

  19. Xu YW, Xu SH, Li M, Zhu YP, Wang LW, Chu PK (2014) Electrodeposition of nanostructured MnO2 electrode on three-dimensional nickel/silicon microchannel plates for miniature supercapacitors. Mater Lett 126:116–118

    Article  CAS  Google Scholar 

  20. Kong LB, Lu C, Liu MC, Luo YC, Kang L, Li XH, Walsh FC (2014) The specific capacitance of sol-gel synthesized spinel MnCo2O4 in an alkaline electrolyte. Electrochim Acta 115:22–27

    Article  CAS  Google Scholar 

  21. Chen C, Chen W, Lu J, Chu D, Huo Z, Peng Q, Li Y (2009) Transition-metal phosphate colloidal spheres. Angew Chem Int Ed 48:4816–4819

    Article  CAS  Google Scholar 

  22. Jiang H, Zhao T, Li C, Ma J (2011) Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 21:3818–3823

    Article  CAS  Google Scholar 

  23. Massaa W, Yakubovich OV, Dimitrova OV (2005) A novel modification of manganese orthophosphate Mn3(PO4)2. Solid State Sci 7:950–956

    Article  Google Scholar 

  24. Springsteen LL, Matijević E (1989) Preparation and properties of uniform colloidal metal phosphates IV. Cadmium-, nickel-, and manganese (II)-phosphates*. Colloid Polym Sci 267:1007–1015

    Article  CAS  Google Scholar 

  25. Yang C, Dong L, Chen ZX, Lu HB (2014) High-performance all-solid-state supercapacitor based on the assembly of graphene and manganese (II) phosphate nanosheets. J Phys Chem C 118:18884–11889

    Article  CAS  Google Scholar 

  26. Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for a symmetric supercapacitor. ACS Nano 7:6237–6243

    Article  CAS  Google Scholar 

  27. Su P, Huang J, Wu W, Wu X, Liao S, Fan Y (2009) Synthesis via solid-state reaction at room temperature and characterization of layered nanocrystalline Mn3(PO4) 2∙3H2O. Appl Chem Industry 38:1734–1737

    CAS  Google Scholar 

  28. Wu C, Lu X, Peng L, Xu K, Peng X, Huang J, Yu G, Xie Y (2013) Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat Commun 4:2431–2437

    Google Scholar 

  29. Pang H, Wang S, Shao W, Zhao S, Yan B, Li X, Li S, Chen J, Du W (2013) Few-layered CoHPO4·3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale 5:5752–5757

    Article  CAS  Google Scholar 

  30. Pang H, Yan Z, Ma Y, Li G, Chen J, Zhang J, Du W, Li S (2013) Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. J Solid State Electro 17:1383–1391

    Article  CAS  Google Scholar 

  31. Liu MC, Kong LB, Lu C, Li XM, Luo YC, Kang L (2013) Facile fabrication of CoMoO4 nanorods as electrode material for electrochemical capacitors. Mater Lett 94:197–200

    Article  CAS  Google Scholar 

  32. Brock SL, Duan N, Tian ZR, Giraldo O, Zhou H, Suib SL (1998) A review of porous manganese oxide materials. Chem Mater 10:2619–2628

    Article  CAS  Google Scholar 

  33. Luo JM, Gao B, Zhang XG (2008) High capacitive performance of nanostructured Mn-Ni-Co oxide composites for supercapacitor. Mater Res Bull 43:1119–1125

    Article  CAS  Google Scholar 

  34. Yuan CZ, Zhang XG, Su LH, Gao B, Shen LF (2009) Facile synthesis and self-assembly of hierarchical porous NiO Nano/micro spherical superstructures for high performance supercapacitors. J Mater Chem 19:5772–5777

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 51362018, 21163010) and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (no. IOSKL2014KF01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, YH., Kong, LB., Yan, K. et al. Facile fabrication of manganese phosphate nanosheets for supercapacitor applications. Ionics 22, 1461–1469 (2016). https://doi.org/10.1007/s11581-016-1652-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1652-y

Keywords

Navigation