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Abstract
We consider a stochastic differential game, where each player continuously controls the dif-
fusion intensity of her own state process. The players must all choose from the same diffusion
rate interval [σ1, σ2], and have individual random time horizons that are independently drawn
from the same distribution. The players whose states at their respective time horizons are
among the best p ∈ (0, 1) of all terminal states receive a fixed prize. We show that in the
mean field version of the game there exists an equilibrium, where the representative player
chooses the maximal diffusion rate when the state is below a given threshold, and the mini-
mal rate else. The symmetric n-fold tuple of this threshold strategy is an approximate Nash
equilibrium of the n-player game. Finally, we show that the more time a player has at her
disposal, the higher her chances of winning.
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1 Introduction

Weconsider the following stochastic differential game: each player can control the fluctuation
intensity of her own state process, up to an individual random time horizon. The controls of a
player are individually defined as a set of progressively measurable processes, with respect to
a filtration modeling the player’s information flow, with values in a bounded interval [σ1, σ2],
where 0 < σ1 < σ2 are the same for all. The players whose terminal states are among the
highest p ∈ (0, 1) receive a fixed prize, set to be equal to one. The other players do not
receive anything.

The game models in stylized form competitions where only the best performing agents
receive a fixed reward and where every agent can choose between risky and safe actions.
The game thus allows to analyze the impact of rank-based rewards on the risk appetite of the
competitors. The game has multiple interpretations. We refer to Sect. 6 for more details.

Asusual,we fall backon the concept ofNash equilibria for predicting theplayers’ behavior.
Given the discontinuous rewards, it turns out to be difficult to compute explicit equilibria.
Moreover, it seems already difficult to prove existence by abstract means. A way out for
games with many players is to fall back on the game’s mean field version and to derive an
approximate equilibrium. The equilibrium of the mean field game here consists of a control
and the respective state distribution at the terminal time. Under regularity conditions on the
rewards and on the state equation coefficients, existence of equilibria in mean field games
with diffusion control and common noise is proved in [2] using a relaxed formulation of
the problem and the theory of second order BSDEs. Other contributions consider mean field
games with diffusion control, such as [8] in a Principal-Agent setting, with applications to
optimal energy demand management or [6, 7] in the case of extended mean field games with
control interactions.

In this paper, we avoid second order BSDEs and show, using a direct argument, that
there exists an equilibrium with a threshold control that consists in choosing the maximal
diffusion rate σ2 when the state is below a given threshold, and the minimal rate σ1 else. The
corresponding equilibrium distribution is the distribution of an oscillating Brownian motion
at the terminal time.

The game bears similarities with the diffusion control game studied in [1]. In contrast
to [1], however, we allow here the agents to be heterogeneously informed. Each player is
assumed to observe her own state process, but the assumption on how much the agents know
beyond this remains general. Some of the playersmay know, e.g., the time horizons, and some
not. Whether a player knows her own time horizon or the time horizons of the opponents
turns out to have no effect on the equilibrium. Indeed, in the many player game the empirical
distribution of the time horizons is close to T . Thus knowing T is sufficient for implementing
an approximate equilibrium control. Similarly, it has no effect on the equilibrium whether
the agents can observe the state processes of the opponents or not. For implementing the
threshold control of the equilibrium each agent needs only to oberve her own process.

By defining the state dynamics in terms of solutions to controlledmartingale problems and
choosing controls of open loop type,weobtain amodel framework that allows to cover general
information structures, in particular situations where a player has only partial knowledge
about the other players’ states and about the individual random time horizons. In the game
of [1] the state dynamics are described in terms of stochastic differential equations and the
players’ controls are modeled as closed loop controls.

In the appropriate mean field version of the game the representative player knows the
distribution T of the time horizon, but the actual time horizon arrives unpredicted. The
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threshold describing the equilibrium control strongly depends on the distribution T . For the
cases where T is an exponential distribution or a uniform distribution, we characterize the
threshold of the equilibrium control as the unique root of a simple equation.

The article is organized as follows: in Sect. 2, we introduce the gamemodel in more detail.
For deriving a candidate for an approximate Nash equilibrium, we study the corresponding
mean field game in Sect. 3 and show that an equilibrium control is given by a threshold
control. In Sect. 4, we show that the n-tuple consisting of the mean field equilibrium controls
is anO(n−1/2)-Nash equilibrium of the n-player game. This means, in the approximate Nash
equilibrium players only use information about their own state and choose maximal diffusion
intensity below the optimal threshold and minimal diffusion intensity above. All additional
information about the opponents’ states or the random times is irrelevant. In Sect. 5, we
analyze the winning probability of a given player depending on the time horizon T and
in Sect. 6, we provide a particular application of our model setting to online competitions.
Finally, we consider in Sect. 7 an extension of the game to more general reward functions
that are continuous, have exponential growth, satisfy a symmetry condition, and are convex
below a certain threshold and concave above. We show that the same tuple consisting of the
mean field equilibrium controls is also an approximate Nash equilibrium for these reward
functions.

2 Gamemodel

We describe the players’ states by means of controlled martingale problems. To this end,
let R+ := [0,∞), and C(R+,Rn) denote the space of continuous functions f : R+ → R

n

equipped with the metric

d(ω1, ω2) :=
∞∑

n=1

1

2n
supt∈[0,n] |ω1(t) − ω2(t)|

1 + supt∈[0,n] |ω1(t) − ω2(t)| , ω1, ω2 ∈ C(R+,Rn).

Let B (C(R+,Rn)) denote the corresponding Borel σ -algebra on C(R+,Rn) and denote by
X = (X1, . . . , Xn) the canonical process on C(R+,Rn), i.e., Xi

t (ω) := ωi (t), t ≥ 0, for
i = 1, . . . , n and ω ∈ C(R+,Rn). We refer to [18], Section 1.3, for more details on the
construction of this measurable space and its properties.

Let T be a probability measure on R+, equipped with the usual Borel σ -algebra B(R+),
that describes the distribution of the players’ random times. We suppose that T satisfies:

Assumption 2.1
∫ ∞

0

1√
t
T (dt) < ∞.

Let B
(
R
n+
)
be the Borel σ -algebra on R

n+ and define the measure T n = ⊗n
i=1 T on R

n+,
i.e., T n is the n-fold product of T . We define τ = (τ1, . . . , τn) as canonical map on R

n+,
i.e., τ(ω) = (τ1(ω), . . . , τn(ω)) = (ω1, . . . , ωn) for any ω ∈ R

n+. Note that τ1, . . . , τn are
independent and identically distributed under T n by definition and the law of τi is given by
T .

We define a common measurable space by setting:

(i) � := C(R+,Rn) × R
n+,

(ii) F := B (C(R+,Rn)) ⊗ B
(
R
n+
)
, i.e., the smallest σ -algebra containing all sets of the

form A × B for A ∈ B (C(R+,Rn)), B ∈ B
(
R
n+
)
.
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We extend the definitions of X and τ to � by setting X(ω1, ω2) := X(ω1) and τ(ω1, ω2) :=
τ(ω2) for (ω1, ω2) ∈ �. We define on (�,F) the filtration (Ft )t≥0 by

Ft = σ(τ1, . . . , τn) ∨ σ(Xs : 0 ≤ s ≤ t), t ≥ 0.

The filtration (Ft )t≥0 describes the overall information flow including the information about
the values of the time horizons. Moreover, for Player i , we introduce the filtration (F i

t )t≥0

describing the private information of Player i .We assume thatσ
(
Xi
s : 0 ≤ s ≤ t

) ⊆ F i
t ⊆ Ft

for all t ≥ 0.
Let Ai denote the set of all (F i

t )t≥0-progressively measurable α : � × R+ → [σ1, σ2].
We refer to elements of Ai as admissible controls or strategies and write An for the product
A1 × . . . × An . We characterize the law of the state processes by means of martingale
problems, introduced by Stroock and Varadhan. We refer to the monograph [18] for more
details on martingale problems.

Definition 2.2 Let α = (α1, . . . , αn) ∈ An . Then, a probability measure Pα on (�,F) is
called a feasible state distribution if

(i) Pα ◦ X−1
0 = δ0,

(ii) Pα(C(R+,Rn) × B) = T n(B) for all B ∈ B
(
R
n+
)
,

(iii) for all f ∈ C2c (Rn,R), i.e., for all twice continuously differentiable f : Rn → R with
compact support, the process M f , defined by

M f
s := f (Xs) − f (0) − 1

2

∫ s

0

n∑

j=1

(
α
j
r

)2
∂ j j f (Xr ) dr , s ≥ 0, (1)

is an (Ft )t≥0-martingale under Pα .

We denote by Q(α) the set of all feasible state distributions Pα .

Remark 2.3 The assumptions on the tuple α in the previous definition do not exclude that
Q(α) is empty. For a tuple α to be a Nash equilibrium it is necessary, however, thatQ(α) �= ∅
(see Definition 2.8 below).

Remark 2.4 Note that condition (ii) implies that each random time τi has distribution T .
Moreover, condition (iii) yields that each state process Xi is a local (Ft )t≥0-martingale and

〈Xi , X j 〉t =
{∫ t

0 (αi
s)

2 ds, if i = j,

0, else,
t ≥ 0.

The state processes are even true martingales that are square integrable, i.e., EPα [
(Xi

t )
2
]

<

∞, t ≥ 0, because the controls are bounded and thus, EPα [〈Xi , Xi 〉t
]

< ∞ for all t ≥ 0
(see, e.g., [17], Section II.6, Corollary 3, p.73).

Remark 2.5 The definition of the filtrations (F i
t )t≥0 is rather general. Each filtration (F i

t )t≥0

can contain information about the other players’ states and random times. Therefore, the
game setting covers the cases where players can or cannot observe each other, and have
knowledge about the random time horizons.

If, e.g., F i
t = Ft , each player can observe the state processes of the opponents and make

her strategy depend on the opponents’ state trajectories. Moreover, each player has prior
knowledge of the random time horizons. If, however, F i

t = σ(Xi
s : 0 ≤ s ≤ t), then each

player can only observe her own state process. Neither information about the opponents’
states nor about the random times is available.
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Despite this quite general information structure, we show in Theorem 4.1 that an approxi-
mateNash equilibrium is given by a tuple of threshold controls depending only on the position
of the single player’s state process.

Remark 2.6 The state processes can be equivalently described as weak solutions to an n-
dimensional SDE (or via a stochastic integral w.r.t. someBrownianmotion). Indeed, for some
control α ∈ An with Q(α) �= ∅ and P ∈ Q(α), there exists an n-dimensional Brownian
motion W on (�,F, (Ft )t≥0, P) such that the state processes X1, . . . , Xn satisfy P-a.s.

Xi
t =

∫ t

0
αi
s dW

i
s , t ≥ 0, i = 1, . . . , n, (2)

and (�,F, (Ft )t≥0, P, X ,W ) is a weak solution to (2) (see, e.g., [11], Proposition 5.4.6).
We use this connection in the mean field game presented in Sect. 3, and thus, characterize
the state processes via stochastic integrals.

Remark 2.7 For all measurable feedback functions a : R+ × R
n → [σ1, σ2]n , there exists

a solution Pa to the martingale problem (1) with (αs)s≥0 = (
a(s, X1

s , . . . , X
n
s )

)
s≥0. This

follows, e.g., from [13], Theorem 2.6.1, and [11], Proposition 5.4.11. If the filtration (F i
t )t≥0

contains the information about all states, i.e. if σ (Xs : 0 ≤ s ≤ t) ⊂ F i
t , then the control(

a(s, X1
s , . . . , X

n
s )

)
s≥0 is contained in Ai and {Pa} ⊆ Q(α). This particularly holds for

control tuples where each entry is a threshold control, i.e., each entry is given by the feedback
function

mb(x) =
{

σ2, if x ≤ b,

σ1, if x > b,
(3)

where b ∈ R. In this case, the solution to the martingale problem (1) is even unique: Remark
3.1 below implies that the SDE (7) with m = mb has a unique strong solution and [11],
Corollary 5.4.9, then implies that uniqueness for the martingale problem (1) holds.

We suppose that each player aims at maximizing the probability of her own state at her
terminal random time to be greater than the empirical (1 − p)-quantile of all states at the
individual random times. More precisely, let

μn = 1

n

n∑

i=1

δXi
τi

be the empirical distribution of the players’ states at the terminal times. We define the empir-
ical (1 − p)-quantile by q(μn, 1 − p) = inf{r ∈ R : μn((−∞, r ]) ≥ 1 − p}. Note that
Xi

τi
> q(μn, 1 − p) if and only if the state of Player i is among the best �np� players at the

terminal times.
It is standard to predict or explain the players’ behavior in terms of (approximate) Nash

equilibria, which are here defined as follows.

Definition 2.8 Let ε ≥ 0. A tuple α = (α1, . . . , αn) ∈ An with Q(α) �= ∅ is called ε-Nash
equilibrium of the n-player game if for all i ∈ {1, . . . , n} and Pα ∈ Q(α), we have

Pα(Xi
τi

> q(μn, 1 − p)) + ε ≥ sup
β∈Ai

sup
P∈Q(α−i ,β)

P(Xi
τi

> q(μn, 1 − p)), (4)

where (α−i , β) = (α1, . . . , αi−1, β, αi+1, . . . , αn) and sup∅ = −∞.
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Note that for ε = 0, the tuple α in Definition 2.8 is a Nash equilibrium in the usual sense.
In the case ε > 0, the tuple α is also called an approximate Nash equilibrium.

We do not assume that the solutions to the martingale problem (1) are unique by limiting
the set of controls. Hence, we require that (4) holds for all solutions to themartingale problem
(1). We emphasize that for an arbitrary control tuple α ∈ An , uniqueness of solutions to the
martingale problem (1) can fail. For example, if n ≥ 3, then it was shown in [15] that there
exists a diffusion coefficient, and hence, an operator such that the corresponding martingale
problem does not have a unique solution. Equivalently, there exists a diffusion coefficient
σ : Rn → R

n×n that is uniformly elliptic and such that for the correspondingSDEuniqueness
in law fails (see also [5], Example 1.24). Thus, one can interpret (4) as follows: Player i has
no incentive to change her strategy from α to β, no matter which distribution fromQ(α−i , β)

is chosen. We stress, however, that for the approximate Nash equilibria derived from the
corresponding mean field game, uniqueness is always satisfied.

Wedo not compute an exactNash equilibrium for the n-player game.As in [1],we compute
an approximate Nash equilibrium for large games by considering the mean field limit of the
game. We show that a mean field equilibrium strategy is given by a threshold control.

Remark 2.9 Let T > 0 and τ1 = . . . = τn = T , i.e., T = δT . Set F i
t = σ(Xs : 0 ≤ s ≤ t),

t ≥ 0, i = 1, . . . , n, and consider only controls of the form αt = a(t, X1
t , . . . , X

n
t ) for some

a : R+ × R
n → [σ1, σ2]. Then, the above model is equivalent to the game model presented

in the article [1].

3 Mean field game

In this section we describe the mean field version of the game introduced in Sect. 2.
Let 0 < σ1 < σ2 and (�,F, (Ft )t≥0, P) be a complete filtered probability space satisfy-

ing the usual conditions. We suppose that (�,F, (Ft )t≥0, P) supports an (Ft )t≥0-Brownian
motion (Wt )t≥0 and an R+-valued random variable τ . We assume that (Wt )t≥0 and τ are
independent and

E
[
τ− 1

2

]
< ∞, (5)

see Assumption 2.1 above. Let Ã be the set of all processes α : � × R+ → [σ1, σ2] that
are (Ft )t≥0-progressively measurable. Given an agent chooses the control α ∈ Ã, the state
process is defined by

Xα
t :=

∫ t

0
αs dWs, t ≥ 0. (6)

Remark 3.1 All feedback controls with a feedback function m : R → [σ1, σ2] of bounded
variation are contained in Ã. Indeed, the SDE

dXt = m(Xt )dBt , X0 = 0, (7)

has a weak solution because of Theorem 2.6.1 in [13], and pathwise uniqueness applies
according to results in [16]. Hence, there exists a unique strong solution Xm to (7) (cf.
Section 5.3 in [11]) and the control (m(Xm

t ))t≥0 is contained in Ã.

Let p ∈ (0, 1) and denote by q(μ, 1 − p) the (1 − p)-quantile of some probability
measure μ ∈ P(R), i.e., for a Borel probability measures μ on R, q(μ, 1 − p) = inf{r ∈
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R : μ((−∞, r ]) ≥ 1− p}. If μ = Law(Xα
τ ), i.e., μ is the law of Xα

τ for a control α ∈ Ã, we
write q(Xα

τ , 1− p) for q(μ, 1− p). In the mean field game that corresponds to the n-player
game described in Sect. 2, a single player wants to maximize the probability of being larger
than the population (1 − p)-quantile over all admissible controls. In the mean field game,
we define equilibria in the following sense:

Definition 3.2 A tuple (μ∗, α∗) ∈ P(R) × Ã is called mean field equilibrium if

(i) for all α ∈ Ã,

P
(
Xα∗

τ > q(μ∗, 1 − p)
) ≥ P(Xα

τ > q(μ∗, 1 − p)),

(ii) it holds μ∗ = Law(Xα∗
τ ).

Lemma 3.3 Let b ∈ R. Then

P(Xmb
τ > b) = max

α∈Ã
P(Xα

τ > b), (8)

where mb is defined in Eq. (3).

Proof The result follows from the diffusion control problem studied by McNamara [14]. In
more detail, let α ∈ Ã. Assume, without loss of generality, that there exists a regular condi-
tional probability Q : R+ × F → [0, 1] for F given τ . Because τ and W are independent,
W is also a Brownian motion under Q(t, ·) for Pτ -a.e. t ∈ R+. Hence, we see that

Q(t, {Xα
τ > b}) = Q(t, {Xα

t > b}) ≤ Q(t, {Xmb
t > b}), for Pτ -a.e. t ∈ R+,

using either [14], Remark 8, or [19], Proposition C.5. Finally,

P(Xα
τ > b) =

∫ ∞

0
Q(t, Xα

t > b) Pτ (dt) ≤
∫ ∞

0
Q(t, Xmb

t > b) Pτ (dt) = P(Xmb
τ > b).

We refer to [11], Section 5.3.C, or [10], Section 1.3, for more details on regular conditional
probabilities. ��

Lemma 3.3 implies that the optimal control for (8) is the threshold control mb. In the
following, we just write Xb for the state Xmb . The process Xb is a so-called oscillating
Brownianmotion (OBM)with threshold b, introduced in [12]. Inmore detail, OBM is defined
as follows.

Definition 3.4 Let b ∈ R. We call the solution Xb of the SDE

dXt = mb(Xt )dBt , X0 = 0, (9)

oscillating Brownian motion (OBM) with threshold b and initial value 0.

There exists indeed a unique strong solution to the SDE (9) because of Remark 3.1.
For OBMs, one can explicitly calculate the probability density function and the cumulative
distribution function. For the reader’s convenience, we recall the following result on OBMs.

Proposition 3.5 Let b ∈ R and Xb be an OBM with threshold b and initial value 0. Then,
for all t > 0, the random variable Xb

t has a probability density function p(t,−b, · − b) with
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respect to the Lebesgue measure, where

p(t, x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2σ1
σ2(σ1+σ2)

1√
2π t

e
−( x

σ1
− y

σ2
)2 1

2t , if x ≥ 0, y < 0,

2σ2
σ1(σ1+σ2)

1√
2π t

e
−(

y
σ1

− x
σ2

)2 1
2t , if x < 0, y ≥ 0,

1
σ1

√
2π t

(
e
− (y−x)2

2σ21 t + σ2−σ1
σ1+σ2

e
− (y+x)2

2σ21 t

)
, if x ≥ 0, y ≥ 0,

1
σ2

√
2π t

(
e
− (y−x)2

2σ22 t + σ1−σ2
σ1+σ2

e
− (y+x)2

2σ22 t

)
, if x < 0, y < 0,

for all x, y ∈ R. Moreover, the cumulative distribution function of Xb
t is given by

Fb
t (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(

x
σ2

√
t

)
− σ2−σ1

σ1+σ2
�

(
x−2b
σ2

√
t

)
, if x < b, b ≥ 0,

2σ2
σ1+σ2

�

(
x−b

(
1− σ1

σ2

)

σ1
√
t

)
− σ2−σ1

σ1+σ2
, if x ≥ b, b ≥ 0,

2σ1
σ1+σ2

�

(
x−b

(
1− σ2

σ1

)

σ2
√
t

)
, if x < b, b < 0,

�
(

x
σ1

√
t

)
− σ2−σ1

σ1+σ2
�

(
2b−x
σ1

√
t

)
, if x ≥ b, b < 0.

(10)

The proof of Proposition 3.5 follows either from [12], Theorem 1, or [19], Proposition
B.2 and Proposition B.4. For more details on OBMs, we refer to [12] and [19], Appendix
B. Using the independence of the OBM Xb and the random time τ , one can derive from
Proposition 3.5 the cumulative distribution function of Xb

τ .

Lemma 3.6 Let b ∈ R and Xb be an OBM with threshold b and initial value 0. Then the
cumulative distribution function of the random variable Xb

τ , denoted by Fb
τ , is given by

Fb
τ (x) =

∫ ∞

0
Fb
t (x) Pτ (dt), x ∈ R.

We refer to Proposition B.8 in [19] for the proof of Lemma 3.6. One can show that the
functions Fb

t and Fb
τ are Lipschitz continuous in the state variable as well as in the threshold

b (see Appendix B in [19] for more details).
The standard approach to solvemean field games is to consider mappings from probability

distributions to the distributions of optimally controlled states and find their fixed points, the
so-called equilibrium measures (see, e.g., [3] and [4]). However, Lemma 3.3 allows to study
the distributions of OBMs only, which can be parameterized by the real-valued threshold
b ∈ R. For identifying equilibria, it suffices to show that the function

f : R → R, b �→ q(Xb
τ , 1 − p),

has a unique fixed point. Indeed, if f (b) = b, then b = q(Xb
τ , 1 − p). Lemma 3.3 fur-

ther implies that P(Xb
τ > q(Xb

τ , 1 − p)) = maxβ∈M P(Xβ
τ > q(Xb

τ , 1 − p)); hence,
(Law(Xb

τ ),mb) is an equilibrium. The main result of this section is the following:

Theorem 3.7 There exists a unique b∗ ∈ R such that q
(
Xb∗

τ , 1 − p
)

= b∗. The tuple

(Law(Xb∗
τ ),mb∗) is a mean field equilibrium.
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Proof Recall that Fb
τ (x) = P(Xb

τ ≤ x), x ∈ R. Consider the map f (b) := Fb
τ (b). Using the

explicit formula for Fb
τ given by Proposition 3.5 and Lemma 3.6 (see also [19], Proposition

B.4 and Proposition B.8), we observe that

f (b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ ∞

0

(
2σ2

σ2 + σ1
�

(
b

σ2
√
t

)
− σ2 − σ1

σ2 + σ1

)
Pτ (dt), if b ≥ 0,

∫ ∞

0

2σ1
σ2 + σ1

�

(
b

σ1
√
t

)
Pτ (dt), if b < 0.

(11)

The function f is strictly increasing and f (0) = σ1
σ1+σ2

. Moreover, f is Lipschitz continuous
because of the assumption (5) above, and Proposition B.10 and Proposition B.12 in [19].
Monotone convergence implies that limb→+∞ f (b) = 1 and limb→−∞ f (b) = 0. Hence,
the intermediate value theorem implies that there exists a unique b∗ ∈ R such that

f (b∗) = 1 − p ∈ (0, 1).

We have f (0) ≤ 1− p if and only if b∗ ≥ 0.We conclude that q
(
Xb∗

τ , 1 − p
)

= b∗ because
Fb∗

τ (b∗) = 1 − p. Lemma 3.3 implies that

P
(
Xb∗

τ > q
(
Xb∗

τ , 1 − p
)) = P

(
Xb∗

τ > b∗)

= sup
α∈Ã

P
(
Xα

τ > b∗) = sup
α∈Ã

P
(
Xα

τ > q
(
Xb∗

τ , 1 − p
))

,

and thus, (Law(Xb∗
τ ),mb∗) is a mean field equilibrium. ��

Example 3.8 If τ is exponentially distributed with parameter λ > 0, then the threshold b∗ in
Theorem 3.7 is given by

b∗ =
⎧
⎨

⎩
− σ2√

2λ
log

(
σ1+σ2

σ2
p
)

, if p < σ2
σ1+σ2

,

σ2√
2λ

log
(

σ1+σ2
σ1

(1 − p)
)

, if p ≥ σ2
σ1+σ2

.
(12)

Note that the exponential distribution satisfies the condition (5). Proposition 3.5 and Lemma
3.6 imply that for b ≥ 0

Fb
τ (b) = 1 − 2λσ2

σ1 + σ2

∫ ∞

0
e−λt�

(
− b

σ2
√
t

)
dt = 1 − σ2

σ1 + σ2
e
− b

σ2

√
2λ

.

The last step follows because

�

(
− b

σ2
√
t

)
= 1

2
erfc

(
b

σ2
√
2t

)
, erfc(x) := 2√

π

∫ ∞

x
e−y2 dy,

and the Laplace transform of the right-hand side is equal to 1
2λe

− b
σ2

√
2λ

(see, e.g., [9], Chapter
8, Table 3). Similarly, we see for b < 0 that

Fb
τ (b) = σ1

σ1 + σ2
e

b
σ1

√
2λ

.

Therefore, the function f in (11) is given by

f (b) =
⎧
⎨

⎩
1 − σ2

σ1+σ2
e
− b

σ2

√
2λ

, if b ≥ 0,
σ1

σ1+σ2
e

b
σ1

√
2λ

, if b < 0.
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Now, it is straightforward to verify that f (b∗) = 1 − p if and only if b∗ satisfies Eq. (12).

Example 3.9 Suppose that τ is uniformly distributed on some interval [t1, t2]with 0 ≤ t1 < t2.
Notice that condition (5) is again satisfied. The cumulative distribution function of the OBM
Xb at time τ and the point b is given by

Fb
τ (b) =

∫ t2

t1

1

t2 − t1
Fb
t (b) dt

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

t2 − t1

2b2

σ2(σ1 + σ2)

∫ σ22
b2

t2

σ22
b2

t1
�

(
1√
t

)
dt − σ2 − σ1

σ1 + σ2
, if b > 0,

σ1

σ1 + σ2
, if b = 0,

1

t2 − t1

2b2

σ1(σ1 + σ2)

∫ σ21
b2

t2

σ21
b2

t1

(
1 − �

(
1√
t

))
dt, if b < 0,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

t2 − t1

2b2

σ2(σ1 + σ2)

(
G

(
σ 2
2 t2
b2

)
− G

(
σ 2
2 t1
b2

))
− σ2 − σ1

σ1 + σ2
, if b > 0,

σ1

σ1 + σ2
, if b = 0,

1

t2 − t1

2b2

σ1(σ1 + σ2)

(
G

(
σ 2
1 t2
b2

)
− G

(
σ 2
1 t1
b2

))
, if b < 0,

where G(s) := (s + 1)�
(

1√
s

)
+√

sϕ
(

1√
s

)
, s > 0, and where ϕ and � denote respectively

the standard Gaussian density and cumulative distribution functions. For given parameters,
one can solve the equation Fb

τ (b) = 1 − p for b numerically, but one cannot find a solution
in closed form.

4 Approximate Nash equilibrium

We return to the setting of Sect. 2 and state the main result.

Theorem 4.1 Let b∗ ∈ R be the threshold of the mean field equilibrium control, given by
Theorem 3.7. Let α∗ = (α1,∗, . . . , αn,∗) ∈ An be the tuple of strategies, defined by

α
i,∗
t := mb∗(Xi

t ) =
{

σ2, if Xi
t ≤ b∗,

σ1, if Xi
t > b∗,

(13)

Then, there exists a sequence εn ≥ 0 with limn→∞ εn = 0 such that α∗ is an εn-Nash
equilibrium of the n-player game. We can choose εn ∈ O(n−1/2).
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Remark 4.2 The approximate equilibrium in Theorem 4.1 does not depend on the information
structure of the game. Playersmay ormay not have information about the other players’ states
and the random times. For implementing the strategy (13), Player i only needs to observe her
own state. Therefore, the tuple of strategies (13) is also an approximate Nash equilibrium for
the game version where the players cannot observe each other.

Moreover, the tuple of strategies (13) is an approximate Nash equilibrium for the game
where players are only allowed to choose feedback strategies depending on all players’ states
as in the article [1]. In the case τ1, . . . , τn ≡ T , Theorem 4.1 covers the main result of the
n-player game with finite deterministic time horizon presented in article [1]. We refer to
Remark 2.9 above for more details.

The proof of Theorem 4.1 is similar to the proof of Theorem 2 in [1], where the case
with a common deterministic time horizon is treated. Nevertheless, we present the proof of
Theorem 4.1 in a concise manner. More details can be found in [19], Theorem 3.2.16.

Proof of Theorem 4.1 Note thatQ(α∗) �= ∅ (seeRemark 2.7). Let i ∈ {1, . . . , n}.We compare
α∗ = (α1,∗, . . . , αn,∗) with the tuple where Player i deviates from αi,∗ by choosing a
strategy β. To this end, let β ∈ Ai such that Q(α−i,∗, β) �= ∅, and let P ∈ Q(α∗) and
P̃ ∈ Q(α−i,∗, β). In the proof, we use the following notation:

• (α−i,∗, β) = (α1,∗, . . . , αi−1,∗, β, αi+1,∗, . . . , αn,∗),
• X−i = (X1, . . . , Xi−1, Xi+1, . . . , Xn),
• τ−i = (τ1, . . . , τi−1, τi+1, . . . , τn),
• μ := P ◦ (

X1
τ1

)−1
(i.e., the law of an OBM with threshold b∗ at time τ1),

• μn = 1
n

∑n
j=1 δ

X j
τ j
and μn−1 = 1

n−1

∑
j �=i δX j

τ j
.

We aim at showing that

P̃
(
Xi

τi
> q(μn, 1 − p)

)
− P

(
Xi

τi
> q(μn, 1 − p)

)
≤ C√

n
, (14)

for some constant C > 0 independent of P̃ , P , and the control β. Note that

P ◦
(
X−i , τ1, . . . , τn

)−1 = P̃ ◦
(
X−i , τ1, . . . , τn

)−1
. (15)

Step 1. We first estimate P(Xi
τi

> q(μn, 1 − p)) from below. Notice that Xi
τi
and the

empirical quantile q(μn, 1 − p) are not independent. Therefore, we consider the empirical
measure μn−1 and define

A(n) := q

(
μn−1,

n

n − 1
(1 − p)

)
, (16)

i.e., A(n) is the empirical n
n−1 (1 − p)-quantile of the states X−i . Notice that A(n) is inde-

pendent of Xi
τi
under P and

A(n) ≥ q(μn, 1 − p).

Thus,

P
(
Xi

τi
> q(μn, 1 − p)

)
≥ P

(
Xi

τi
> A(n)

)
= E

[
1 − Fb∗

τ (A(n))
]
, (17)

where E denotes the expectation under P and Fb∗
τ denotes the cumulative distribution func-

tion of the OBM with threshold b∗ at a random time τ (see Lemma 3.6).
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Step 2.Next, we estimate the first term in (14) from above: we replace in (14) the quantile
q(μn, 1 − p) with a quantile that does not depend on β. To this end, we observe that

D(n) := q

(
μn−1, 1 − n

n − 1
p

)
≤ q(μn, 1 − p). (18)

From (18), we conclude that

P̃
(
Xi

τi
> q(μn, 1 − p)

)
≤ P̃

(
Xi

τi
> D(n)

)

= Ẽ
[
P̃

(
Xi

τi
> D(n) | X−i , τ1, . . . , τn

)]
,

(19)

where Ẽ denotes the expectation w.r.t. the probability measure P̃ . If Player i knew from the
very beginning the value D(n), then mD(n) would be the control maximizing the probability
for Player i’s state to be greater than D(n) at time τi . This is a consequence of the control
problem studied by McNamara [14].

To be more precise, note that � is a complete, separable metric space and F is its Borel
σ -algebra. Thus, there exists a regular conditional probability Q : � × F → [0, 1] for F
given σ

(
X−i , τ1, . . . , τn

)
. For P̃-almost every ω ∈ �, we make the following observations:

we can construct a Brownian motion under Q(ω, ·) such that

Xi
t =

∫ t

0
βs dW

i
s , t ≥ 0, Q(ω, ·)-a.s.

Moreover, we can work on a probability space (�, F̂, (F̂t )t≥0, Q(ω, ·)) satisfying the usual
conditions because we can consider the completed version of F , denoted by F̂ , and the
completed and right-continuous version of (Ft )t≥0, denoted by (F̂t )t≥0. Now, the results of
McNamara (see [14], Remark 8) imply that on the probability space (�, F̂, (F̂t )t≥0, Q(ω, ·))
with Brownian motion W , time horizon T = τi (ω), and b = D(ω, n), we have

Q
(
ω,

{
Xi
T > b

})
≤ 1 − Fb

T (b),

where Fb
T denotes the cumulative distribution function of an OBM with threshold b at time

T (see Proposition 3.5 above). Hence,

P̃
(
Xi

τi
> D(n) | X−i , τ1, . . . , τn

)
(ω) ≤ 1 − Fb

T (b)|b=D(ω,n),T=τi (ω),

for P̃-almost every ω ∈ �. This implies, using the estimate (19), that

P̃
(
Xi

τi
> q(μn, 1 − p)

)
≤ E

[
1 − Fb

τ (b)|b=D(n)

]
, (20)

where we use the identity (15), the fact that D(n) only depends on (X−i , τ−i ), the indepen-
dence of τ1, . . . , τn and X−i , and the connection of Fb

τ and Fb
t (see Lemma 3.6).
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Step 3.We can now combine the estimates in (17) and (20) above leading to

P̃
(
Xi

τi
> q(μn, 1 − p)

)
− P

(
Xi

τi
> q(μn, 1 − p)

)

≤ E[Fb∗
τ (A(n))] − E[FD(n)

τ (D(n))]
≤ E

∣∣∣Fb∗
τ (A(n)) − Fb∗

τ

(
q

(
μ, n

n−1 (1 − p)
))∣∣∣ (21)

+
∣∣∣Fb∗

τ

(
q

(
μ, n

n−1 (1 − p)
))

− Fb∗
τ

(
q

(
μ, 1 − n

n−1 p
))∣∣∣ (22)

+ E
∣∣∣Fb∗

τ

(
q

(
μ, 1 − n

n−1 p
))

− Fb∗
τ (D(n))

∣∣∣ (23)

+ E
∣∣∣Fb∗

τ (D(n)) − FD(n)
τ (D(n))

∣∣∣ . (24)

We estimate the four terms on the right-hand side separately.

(i) The term (21) can be estimated, using the Lipschitz continuity of Fb∗
τ (see [19], Propo-

sition B.10):

E
∣∣∣Fb∗

τ (A(n)) − Fb∗
τ

(
q

(
μ, n

n−1 (1 − p)
))∣∣∣

≤ E
[
C1

∣∣∣A(n) − q
(
μ, n

n−1 (1 − p)
)∣∣∣ ∧ 2

]

=
∫ ∞

0
P

(
C1

∣∣∣A(n) − q
(
μ, n

n−1 (1 − p)
)∣∣∣ ∧ 2 > ε

)
dε

= C1

∫ 2
C1

0
P

(∣∣∣A(n) − q
(
μ, n

n−1 (1 − p)
)∣∣∣ > ε

)
dε, (25)

for C1 := 2
σ1

√
2π

E[τ−1/2
1 ]. The (n − 1)-states X j

τ j , j �= i , are independent and identi-

cally distributed under P . Using Hoeffding’s inequality, one can deduce that

P
(∣∣∣A(n) − q

(
μ, n

n−1 (1 − p)
)∣∣∣ > ε

)
≤ 2e−2(n−1)C2

2ε2 , 0 < ε < 2,

where the constant C2 > 0 only depends on C1. We find with (25) that

E
∣∣∣Fb∗

τ (A(n)) − Fb∗
τ

(
q

(
μ, n

n−1 (1 − p)
))∣∣∣

≤ 2C1

∫ 2
C1

0
e−2(n−1)C2

2ε2 dε ≤ C1

C2
√
n − 1

∫ ∞

0
e− x2

2 dx ≤
√
2πC1

C2

1√
n − 1

.

(26)

(ii) The term (22) can be rewritten as follows:
∣∣∣Fb∗

τ

(
q

(
μ, n

n−1 (1 − p)
))

− Fb∗
τ

(
q

(
μ, 1 − n

n−1 p
))∣∣∣

=
∣∣∣ n
n−1 (1 − p) −

(
1 − n

n−1 p
)∣∣∣ = 1

n − 1
,

(27)

because Fb∗
τ (x) = μ((−∞, x]), x ∈ R.

(iii) The term (23) can be estimated as the term (21), and thus,

E
∣∣∣Fb∗

τ

(
q

(
μ, 1 − n

n−1 p
))

− Fb∗
τ (D(n))

∣∣∣ ≤
√
2πC1

C2

1√
n − 1

. (28)
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(iv) For the term (24), we observe, using the Lipschitz continuity of Fb
τ in the threshold b

(see [19], Proposition B.12),
∣∣∣Fb∗

τ (D(n)) − FD(n)
τ (D(n))

∣∣∣

≤ (
C1|b∗ − D(n)|) ∧ 2

≤
(
C1

∣∣∣b∗ − q
(
μ, 1 − n

n−1 p
)∣∣∣

)
∧ 2 +

(
C1

∣∣∣q
(
μ, 1 − n

n−1 p
)

− D(n)

∣∣∣
)

∧ 2,

(29)

withC1 defined as above in (i). The expected value of the second term can be estimated
as the term (21). For the first term, we observe that there exists a constant C3 > 0 such
that

∣∣∣b∗ − q
(
μ, 1 − n

n−1 p
)∣∣∣ =

∣∣∣(Fb∗
τ )−1(1 − p) − (Fb∗

τ )−1
(
1 − n

n−1 p
)∣∣∣

≤ C3

∣∣∣1 − p −
(
1 − n

n−1 p
)∣∣∣ = C3 p

n − 1
.

We conclude that

E
∣∣∣Fb∗

τ (D(n)) − FD(n)
τ (D(n))

∣∣∣ ≤
(√

2πC1

C2
+ C3 p

)
1√
n − 1

. (30)

Finally, Eqs. (26), (27), (28), and (30) imply that

P̃
(
Xi

τi
> q(μn, 1 − p)

)
− P

(
Xi

τi
> q(μn, 1 − p)

)
≤ C√

n − 1
∈ O

(
1√
n

)
,

for an appropriate constant C > 0 independent of β, P , and P̃ . Thus, the feedback strategy
α∗ is an O(n−1/2)-Nash equilibrium. ��
Remark 4.3 The assumption that the random times τ1, . . . , τn in the n-player game are inde-
pendent is crucial. Theorem 4.1 does not extend to the case where the random times are
non-constant and identical, because then the corresponding mean field game consists of

1. solving the optimization problem

sup
α

∫ ∞

0
P(Xα

t > q(μt , 1 − p)) Pτ (dt),

and finding an optimal control α∗(μ) for a given measure flow μ = (μt )t≥0,

2. finding a fixed point of the map μ �→ Law
(
Xα∗(μ)

)
.

Thismean field game is different from the one defined in Sect. 3. The control problemdepends
on flows of probability measures instead of a single probability measure on R. Therefore,
the fixed point arguments used in the proof of Theorem 3.7 are not applicable.

5 Themore time, the higher the winning probability

In this section we analyze how the winning probability of a player depends on the actual time
horizon. We consider only the case where the competition is sufficiently fierce, i.e.

p <
σ2

σ1 + σ2
. (31)
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Notice that (31) implies that the threshold level b∗ of Theorem 3.7 is positive. We denote
the mean field equilibrium distribution by μ∗. Recall that μ∗ is the law of the OBM with
threshold b∗ at an independent random time with distribution T .

Now suppose that n is large and that in the game with n players everyone controls their
states with the threshold control mb∗ . We select one player and assume that her realized time
horizon is t . Then the probability for this particular player to be among the best p at the end
of the game is approximately given by

w(t) := P
(
Xb∗
t > q

(
μ∗, 1 − p

)) = 1 − Fb∗
t (b∗) = 2σ2

σ1 + σ2

(
1 − �

(
b∗

σ2
√
t

))
.

We refer to the function w as the winning probability. Note that the winning probability is
continuous and increasing in t . Moreover, we have

lim
t↓0 w(t) = 0.

Thus, if the actual time horizon t is small, then the winning probability is close to zero. This
is plausible, since the state process starts in zero and is stopped early, and hence attains the
positive level b∗ with a small probability only.

Next observe that

lim
t→∞ w(t) = σ2

σ1 + σ2
.

Thus, the winning probability is bounded by σ2
σ1+σ2

, and the bound is almost attained for
large time horizons t . The bound corresponds to the expected average time that an OBM is
spending above the threshold in the long run. Indeed, irrespective of the threshold b, one can
show that

lim
t→∞ P(Xb

t ≥ b) = σ2

σ1 + σ2
. (32)

The bound allows also for a control theoretical interpretation: to this end consider the ergodic
control problem with target functional

J (α) := lim inf
T→∞

1

T
E

∫ T

0
1{Xα

t ≥b}dt, α ∈ Ã,

where Ã is defined as in Sect. 3 and Xα is defined as in (6). One can show that mb is an
optimal control (see Remark 8 in [14]) and hence, using (32), supα∈Ã J (α) = σ2

σ1+σ2
.

6 An application to online competitions

Our game formulation is generic and can correspond to a variety of practical situations. For
example, the game applies to managers of mutual funds striving for their funds to be among
the best performing. This application is described, for homogeneous managers, in detail in
Section 7 of [1].

We here provide an alternative application to online competitions in which, usually, teams
have to collaborate in order to solve a problem and provide a solution within a limited time
frame.Hackatons are examples of such competitions, but also data science andmachine learn-
ing related competitions offered on some platforms such as Kaggle, DrivenData, AICrowd
etc. During these competitions, a score, based on a given evaluation metric, can be calculated
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by each participant and a "public leaderboard" displays the relative ranks during the whole
length of the competition.

In this context, the private state Xi
t of player i is interpreted as her score displayed at time

t . The number of teams involved in online competitions can reach several tens of thousands,
enough to consider the mean field approximation.
Level of risk.

We interpret the diffusion control as the possibility to control the level of risk taken. In the
online contest’s setting, teams can indeed choose to try and use well established methods,
whose robustness is already studied and for which errors can be more easily and quickly
corrected. We interpret this as low risk and diffusion coefficient σ1. On the other hand, the
choice of diffusion coefficient σ2 is interpreted as trying new techniques, for which there is
less or no experience. Our results rigorously show in this context that if subtasks are going
well, players will play safe, whereas if a given team is poorly performing on the evaluation
metric, it has an incentive to play risky and try less common strategies.
Observability.

Participants to online competitions can submit a solution, and in that case their current
score is calculated and displayed to all participants. However, if a team obtains a solution
and tests it offline on the provided data set, then the associated score is not visible during the
time it is not submitted on the platform. A given team can choose to reveal its solution and
score only towards the end of the submission period.

Moreover, it is possible to design online competitions with only partial observability: one
could easily imagine that teams only observe the best score, or a given quantile of the scores
distribution, to assess their relative performance.

Our results show that if the number of players is large, observability does not matter, at
least for the particular type of discontinuous criteria that we consider, which are common
in these competitions, where a fixed cash prize is offered to the best performing team. This
result also holds for continuous functions of the rank satisfying the symmetry condition given
in Assumption 7.1.
Terminal time.

We consider two cases. Firstly, the case where the time horizons of all players are constant
equal to T ∈ (0,∞), interpreted as the date at which a final assessment of the evaluation
metric ismade by the contest organizers. Secondly, the time horizon τi of team i quantifies the
resources it can put into the competition, e.g. the number of working hours. For example, τi
can be set proportional to the deterministic assessment date and the number of teammembers.
Section5 reveals that larger teams have an advantage compared to smaller teams.

7 Extensions

In this section, we discuss more general reward criteria for the n-player game. In particular,
we consider rewards at the random time horizons that are given by measurable functions
g : R × R → R of the state and the population quantile, instead of the “all-or-nothing”

payoff given by the function (x, q) �→ 1(q,∞)(x) before. First, we show that the mean
field equilibrium control of Sect. 3 is also an equilibrium for the reward functions g, if g
satisfies a symmetry and convexity condition. Then, we prove that this equilibrium provides
an approximate Nash equilibrium of the n-player game.
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7.1 Mean field game

Assume that we are in the setting of Sect. 3. The whole analysis in Sect. 3 depends on the
optimality of the threshold controlmb for the particular choice of the reward 1(b,∞) (Lemma
3.3). Results of McNamara [14] imply that mb is not only optimal for this reward but also
for more general reward functions that are continuous, have exponential growth, and satisfy
a convexity condition and a symmetry condition. In more detail, we can generalize Theorem
3.7 to measurable functions g : R × R → R satisfying:

Assumption 7.1 (i) g(·, q) is continuous and has exponential growth for any q ∈ R,
(ii) g(·, q) is convex on (−∞, q] and concave on [q,∞) for any q ∈ R,
(iii) for all x ≥ 0 and q ∈ R it holds

σ2g(σ1x + q, q) + σ1g(−σ2x + q, q) = (σ1 + σ2)g(q, q).

Proposition 7.2 Let b∗ be given by Theorem 3.7 and g satisfy Assumption 7.1. Then,
(Law(Xb∗

τ ),mb∗) is also a mean field equilibrium for the reward function g, i.e.,

E
[
g
(
Xb∗

τ , q
(
Xb∗

τ , 1 − p
))] = sup

α∈Ã
E

[
g
(
Xα

τ , q
(
Xb∗

τ , 1 − p
))]

.

Proof As in Lemma 3.3, one can show for fixed b ∈ R that

E
[
g
(
Xb

τ , b
)] = sup

α∈Ã
E

[
g

(
Xα

τ , b
)]

,

using either [14], Theorem 6, or [19], Theorem C.5. The assumptions on g guarantee that
these theorems apply. Moreover, Theorem 3.7 implies the existence of a unique fixed point
b∗ of the map b �→ q

(
Xb

τ , 1 − p
)
. For this fixed point b∗, we see that

E
[
g
(
Xb∗

τ , q
(
Xb∗

τ , 1 − p
))] = sup

α∈Ã
E

[
g
(
Xα

τ , q
(
Xb∗

τ , 1 − p
))]

,

i.e., (Law(Xb∗
τ ),mb∗) is an equilibrium for the reward function g. ��

7.2 Approximate Nash equilibrium in the n-player game

Now, in the setting of Sect. 2, we show that the n-tuple with each entry equal to the mean
field equilibrium strategy provides an approximate Nash equilibrium of the n-player game
with reward g.

Definition 7.3 Let ε > 0. A tuple α = (α1, . . . , αn) ∈ An with Q(α) �= ∅ is called ε-Nash
equilibrium of the n-player game if for all i ∈ {1, . . . , n} and Pα ∈ Q(α)

EPα
[
g

(
Xi

τi
, q(μn, 1 − p)

)]
+ ε ≥ sup

β∈Ai
sup

P∈Q(α−i ,β)

EP
[
g

(
Xi

τi
, q(μn, 1 − p)

)]
,

where (α−i , β) = (α1, . . . , αi−1, β, αi+1, . . . , αn) and sup∅ = −∞.

With some additional assumptions on the terminal reward g, we can show:

Proposition 7.4 Let g satisfy Assumption 7.1. In addition, assume that g is uniformly
bounded, continuous, and g(x, ·) is monotonically decreasing for all x ∈ R. Let α∗ ∈ An be
defined as in Theorem 4.1. Then, there exists a sequence εn ≥ 0 with limn→∞ εn = 0 such
that the control tuple α∗ = (α1,∗, . . . , αn,∗) is an εn-Nash equilibrium of the n-player game.

123



Mathematics and Financial Economics

Proof All details of the proof can be found in Proposition 3.2.25 in [19]. Let i ∈ {1, . . . , n}.
Moreover, let β ∈ Ai such that Q(α−i,∗, β) �= ∅ and choose P ∈ Q(α∗), P̃ ∈ Q(α−i,∗, β).
Using the empirical quantiles A(n) and D(n) defined in (16) and (18), respectively, we find
that

Ẽ
[
g(Xi

τi
, q(μn, 1 − p))

]
≤ Ẽ

[
g(Xi

τi
, D(n))

]
,

E
[
g(Xi

τi
, q(μn, 1 − p))

]
≥ E

[
g(Xi

τi
, A(n))

]
,

because of the monotonicity of g(x, ·). We use the notation E and Ẽ for the expectation w.r.t.
P and P̃ , respectively. Define the function

G(q) := E[g(Xi
τi
, q)] =

∫ ∞

0

∫ ∞

−∞
g(x, q)p(t,−q, x − q) dx Pτ (dt), q ∈ R,

where p denotes the probability density function of the OBM defined in Proposition 3.5.
Note that

E
[
g(Xi

τi
, A(n))

]
= E [G(A(n))] ,

because X1
τ1

, . . . , Xn
τn

are independent under P . Similar to S, one can show that

Ẽ
[
g(Xi

τi
, D(n))

]
≤ Ẽ [G(D(n))] = E [G(D(n))] ,

similar to Step 2 in the proof of Theorem 3.2.16 in [19]. The upper bound follows from
Theorem 6 in [14]: the control maximizing the left-hand side is the threshold control with
threshold D(n), if conditioned on D(n). We conclude that

Ẽ
[
g(Xi

τi
, q(μn, 1 − p))

]
− E

[
g(Xi

τi
, q(μn, 1 − p))

]
≤ E [G(D(n))] − E [G(A(n))] .

Note that G is bounded and continuous, and the right-hand side only depends on the distri-
bution of n − 1 independent OBMs with threshold b∗. Moreover, A(n) and D(n) converge
to b∗ in probability (see Lemma 3.2.20 in [19]) and hence, also in distribution. This means

lim
n→∞ |E [G(D(n))] − E [G(A(n))]| = 0.

Therefore, we can find a sequence (εn)n∈N with the desired properties. The sequence (εn)n∈N
is independent of i ∈ {1, . . . , n}, β ∈ A, P ∈ Q(α∗), and P̃ ∈ Q(α−i,∗, β) because the
distributions of A(n) under P and of D(n) under P̃ are unique. ��
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