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Abstract

We study a class of multivariate tempered stable distributions and introduce the associated
class of tempered stable Sato subordinators. These Sato subordinators are used to build addi-
tive inhomogeneous processes by subordination of a multiparameter Brownian motion. The
resulting process is additive and time inhomogeneous and it is a generalization of multivariate
Lévy processes with good fit properties on financial data. We specify the model to have unit
time normal inverse Gaussian distribution and we discuss the ability of the model to fit time
inhomogeneous correlations on real data.
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Introduction

Additive processes with independent but inhomogeneous increments have been proposed to
model asset returns. Carr et al. [6] showed that these processes can synthesize the surface of
option prices and Eberlein and Madan [8] empirically analyzed the use of Sato processes in
the evaluation of equity structured products.

Sato processes are a class of additive processes with inhomogeneous increments used in
finance to model asset returns. Sato [32] showed that given a self decomposable law p an
additive process Y () always exists such that Y (1) ~ w and the time ¢ distribution is the
law of 7Y (1). Eberlein and Madan [8] termed this additive process the Sato process. Sato
processes exhibit a moment term structure which is in line with the term structure observed
in financial markets, see Boen and Guillaume [3].

A possible approach to include time inhomogeneity in financial models is to use addi-
tive subordination (see Mendoza-Arriaga and Linetsky [26], Li et al. [18] and Kokholm and
Nicolato [15]). In this case, inhomogeneity comes from the subordinator. The success of
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subordination in finance stems from many factors. Price processes under no arbitrage are
semimartingales and these can be represented as time-changed Brownian motions. Further-
more, time change models economic time: the more intense the market activity, the faster
economic time runs compared to calendar time. When the change of time is a subordinator,
the resulting process belongs to the (pure jump) Lévy class, a class of analytically tractable
processes. In the one-dimensional case, the most famous subordinated Brownian motions,
such as the variance gamma and the normal inverse Gaussian processes, have unit time
self-decomposable distributions. Therefore, it is possible to define the corresponding Sato
processes. Unfortunately, in multivariate subordination this is not true.

In Takano [36], the author provided conditions for a multivariate subordinated Brownian
motion to have self-decomposable unit time distribution. The author also considered the sub-
case of a one-dimensional generalized gamma subordinator. Even in this case he found that if
the Brownian motion has non-zero drift the subordinated process distribution at unit time is
not self-decomposable. As a consequence, multivariate subordinated Brownian motions are
not good candidates to construct multivariate Sato processes. However, it is possible to con-
sider multivariate self-decomposable distributions to define multivariate Sato subordinators.
Sato subordinators associated with self-decomposable distributions are easy to construct,
introduce time inhomogeneity and perform well on financial data ( Sun et al. [35]). There-
fore, it is possible to use Sato subordination of multivariate Brownian motions to obtain
additive processes with inhomogeneous increments to model asset returns. Other additive
subordinators could be considered to introduce time inhomogeneity (see Mendoza-Arriaga
and Linetsky [26]), but the advantage of Sato subordinators is that they are parsimonious in
terms of parameters. In fact, there is only one parameter that drives time inhomogeneity.

In this paper we introduce and study a self-decomposable class of multivariate exponen-
tial tempered distributions and their associated multivariate Sato subordinators. This class is
defined as a particular case of the tempered distributions in Rosinski [30] and it is a general-
ization of the multivariate gamma distribution in Pérez-Abreu and Stelzer [27]. Exponential
tempered stable distributions are a multivariate version of the self-decomposable distribu-
tions most used in finance, such as the well known CGMY (Carr et al. [5]), the variance
gamma (Madan and Seneta [23]), the bilateral gamma (Kiichler and Tappe [16]), the gamma
and the inverse Gaussian distributions. We study some properties of multivariate exponential
tempered stable distributions, for example Proposition 2.2 provides the existence conditions
for their moments. We then characterize multivariate Sato subordinators by providing their
time t Lévy measure in Theorem 3.1 and we focus on a specific dependence structure widely
used in finance to include correlations in multivariate models.

Finally, we build a multivariate additive process using additive multivariate subordination
of a Brownian motion. The construction is designed to obtain a multivariate process with
the same unit time distribution as the factor-based pa-model in Luciano and Semeraro [21]
and with time varying correlations. For simplicity, correlations are assumed to be constant in
many financial models, however this is not a realistic assumption, as discussed e.g. in Téth
and Kertész [38], Teng et al. [37] and Lundin et al. [22]. A calibration on financial data shows
the ability of our model to fit correlations of asset returns at different time horizons.

The paper is organized as follows. Section 1 introduces tempered stable distributions.
Exponential tempered stable distributions are studied in Sect. 2, while Sect. 3 defines the
corresponding Sato subordinators. Section 4 discusses multivariate Sato subordination of a
multiparameter Brownian motion. The specification of an asset return model and its empirical
investigation on financial data is developed in Sect. 5. Section 6 provides concluding remarks
and outlines future research.
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1 Tempered stable distributions

This section introduces multivariate stable and tempered stable distributions.

Let 1« be an infinitely divisible distribution on R¢ without Gaussian component and v
its Lévy measure. The following proposition provides the polar decomposition of the Lévy
measure v (see e.g. Maejima et al. [24] and Rosinski [29]).

Proposition 1.1 Let v be a Lévy measure. Then there exists a measure % on S~!, where
§47 = {x e RY : ||x|| = 1}, with 0 < A(S?™Y) < oo and a family {vy : w € S¢1}
of measures on (0,00), 0 < vy (Ry) < oo, such that vy (E) is measurable in w for any
E € B((0, 00)) and it is o -finite for any w € §7~1,

1
/ r2vy (dr) < oo (1.1)
0
and

v(E) =/ A(dw) 1(sw)vy(ds),
gd—1 Ry
where A and vy, are uniquely determined up to multiplication of measurable functions 0 <

c(w) < oo and %w), respectively.

We say that v has polar decomposition (X, vy), where A and v, are the spherical and the
radial components of v, respectively. We write v = (A, vy,). Condition (1.1) guarantees that
vy 1S a one-dimensional Lévy measure for any w. The radial component of w is the real
valued infinitely divisible (i.d.) distribution 114, - without Gaussian component - whose Lévy
measure is vy,.

The measure v is said radially absolutely continuous (Sato [32]) if there exists a nonneg-
ative measurable function f(w, r) such that

v(E):/ A(dw)/ 1r(sw) f(w, s)ds.
§d—1 R+

From integration in polar coordinates (see e.g. Folland [10]), we have that if v(dx) is a
Lévy measure with Lévy density f(x), then there exists a unique Borel measure o on §¢~!
such that

v(B):/ IB(x)f(x)dx:/ / IB(rw)f(wr)rd_ldrcr(dw).
R sd-1 JR+

We call f,(r) := f(wr)r¢=! the radial component of the density of v.

If v is absolutely continuous then v is also radially absolutely continuous. The other
implication does not hold. It suffices to choose A with finite support and v is not absolutely
continuous.

Tempered stable distributions are obtained by tempering the radial component of the Lévy
measure of an «- stable distribution, « € (0, 2). It is well known that the Lévy measure vg
of an a-stable, o € (0, 2), measure g is of the form

1
\JQ(E)=/‘(H/]R lE(rw)mdr)L(dw), (1.2)
+

where A is a finite measure on S¢~!. Tempered stable distributions are formally defined as
follows (Rosinski [30]).

@ Springer



688 Mathematics and Financial Economics (2022) 16:685-712

Definition 1.1 A probability measure 1 on R¢ is called tempered a-stable (abbreviated as
TaS) if it is infinitely divisible without the Gaussian part and it has Lévy measure v of the
following form

q(r, w)
v(dr,dw) = ) dri(dw), (1.3)
where « € (0, 2), A is a finite measure on S¢~! and q : (0, 00) — (0, c0) is a Borel function
such that g (-, w) is completely monotone with lim,_, 5, ¢ (r, w) = 0. The measure u is called

a proper TaS distribution if, in addition to the above, ¢(0+, w) = 1 for each w € gd-1,

The complete monotonicity of ¢ (r, w) means that (—1)”" 83:,, q(r,w) > Oforallr >0, we
Sl andn=0,1,2,....In particular g (v, w) is strictly increasing and convex, see Rosinski
[30]. TS distributions are radially absolutely continuous and belong to the extended Thorin
class of infinitely divisible distributions introduced in Grigelionis [11]: Ti-@ (Rd) for a €

(0,1) and T*(R?) forall x > 0Oand 1 < &« < 2. The radial component [ty of a TaS

distributions has Lévy measure vy (dr) = qr(z ff) dr.

Stable and tempered stable distributions are clearly self-decomposable, see Egs. (1.2),
(1.3) and (A.1). The notion of self-decomposability is recalled in Appendix A.

2 Exponential tempered stable distributions

This section introduces tempered stable distributions with an exponential tempering function
q(r, w).

Definition 2.1 An infinitely divisible probability measure 1« on R? is called exponential TarS
(ETaS) if it is without the Gaussian part and it has Lévy measure v on R¢of the form

—B(w)r
V(E) :/ / 10rw) S —dri(dw), E € BR?) @2.1)
gd—1 Ry r

where o € [0, 2), Ais afinite measure on 9= and B: gd-1 (0, 00) is a Borel-measurable
function.

If 1« has Lévy measure (2.1) we write u© ~ ETaS(«, B, 1). We focus on « € (0,2) and
refer to Pérez-Abreu and Stelzer [27] for the case @« = 0. The following proposition gives
conditions for a ET oS distribution to exist and characterizes its Lévy measure.

Proposition 2.1 Equation (2.1) defines a Lévy measure and therefore there exists an ETa S
distribution.

1. ifa €[0,1), itholdsfH)CHSI [|x|[v(dx) < o0 and [pa v(dx) = o0
2. ifa € [1,2), it holds [, _, |Ix|lv(dx) =

[1x]

Proof Let v = (A, vy) be the Lévy measure in (2.1) and let B = {x € R? : ||x|| < 1}.

Since
e~ Bw)r
/||x|| v(dx) = / / ————dri(dw) </ / 1= “Ydri(dw)

1
_/ rdw) = —— 1S < o0,
sd-1 2 —a 22—«
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e~ Bw)r
/ / drk(dw) < / drA(dw)
sd—1 J1 gd—1

:/ f)h(dw) = f)\(Sd’l) < o0,
S o

d—1 O

and

we have fRd(HxII2 A 1v(dx) < oo and v is a Lévy measure.

1. See Pérez-Abreu and Stelzer [27] for« = 0 and let « € (0, 1) . It holds:

o~ By
/ lxllv(dx) = / / g
/ /—drk(dw) / ! —1 x(sd h.
sa-1 Jo 1% ga-1 1 —

The infinite activity of v follows from the infinite activity of its radial component. it holds:

—
/B||x||v(dx)=/Sdil/(; r e dridw)
1 ,—Bw)r 1 1
=/ / ¢ drk(dw)z/ e—ﬂ("”/ —dri(dw),
sd-1Jo re gd—1 0 re

and fol r%dr diverges if « > 1. Therefore [, ||x||v(dx) =

[m}

Remark 1 The ET«S distributions are proper T« S distributions (see Definition 1.1), they
are self-decomposable and they are radially absolutely continuous.

It u ~ETaS(a, B, A) and B is constant we say that the measure p and its Lévy measure v
are homogeneous.

Corollary 2.1 The characteristic function of an ET aS distribution has the form:

—B(ED x|
R ) . ) e P -
fi(z) = expliy -z + /Rd(e'“’” — =i e ) e Adn) 22)
where ). has the form of (A.2).
Proof From (2.1) and (A.1) u is self-decomposable with kw(r) = <’ thus it is self-
ﬂ( B >\| I

decomposable with /i function given by h(x) = k_x (llxl}) = % thus (2.2)
follows. ]

If v is a one-dimensional ET oS Lévy measure from Eq. (2.2) we have

BTl e—ﬂ x
v(dx) = (1 ooo><x>| T+ Lo (0 D,

where 81 = B(1), 8~ = B(—=1), AT = A({1}) and A~ = A({—1}). Thus, ET « S distributions
are multivariate versions of the tempered stable distributions studied in Kiichler and Tappe
[17], with the restriction that « is constant. By properly specifying the parameters, we find
multivariate versions of well known tempered stable distributions as the CGMY, the variance
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gamma, the inverse Gaussian and the gamma (o = 0) distributions. We also observe that the
one-dimensional radial component (i, of an ET«S distribution belongs to the class of one
sided tempered stable distributions studied in Kiichler and Tappe [17].

Tempered stable distributions have been characterized in Rosiniski [30] in terms of their
spectral measure R. We recall the definition of spectral measure and then we find it for ET S
distributions.

Let u € ETaS(w, B, A). The tempering function of x can be represented as

P _ / e O(dslw).
Ry

where Q(ds|w) = Sgw)(s)ds - ETaS are proper tempered stable distributions. Let us
introduce the measure Q:

Q(A) =/ / 14(rw) Q(dr|w)A(dw).
gd—1 Ry
Clearly in this case the measure Q becomes

o= [ [ towourwiaw = [ 1a@@wiaw

(2.3)
= / 1agz(w)A(dw),
Stl—l
where Ag = {w € gd-1 . B(w)w € A}. The spectral measure R is defined from Q as
R(A) 22/ 14 ( 2) llx[|* Q(dx),
Rd [1x]]
in this case we have
R(A) = rd 2.4
(4) /Sd—l (,3( )>ﬂ(W) (dw). (2.4)
Therefore
R(R?) = / Bw)*A(dw).
Sd—l
Furthermore, from (2.3) we have Q(R%) = A(S9~1). We also have
[, iR = f =21 () (dw) = / Mdw) = (5. @)
Rd B(w) d-1

Finally,

s = Q(Rd)=/ |x1|* R(dx).
Rd

The existence of the moments of tempered stable distributions depends on their spectral
measure, as proved in Proposition 2.7, Rosifiski [30]. Therefore, by (2.4), the existence
of the moments of an £T«S distributions depends on the function B and on the spherical
components X of its Lévy measure, as stated in the following proposition.

Proposition 2.2 Let u ~ ETaS(w, B, 1), a € (0, 2) then we have
1. [ga llx][*dp(x) < oo fork € (0, @);
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2. [ga lIxl|*du(x) < oo ifand only if [, 5.y)~ 1y B(W)* log(B(w))A(dw) < oo
3. Jpa IxlFdp(x) < oo if and only if fga B(w)*Fi(dw) < oo, fork > a.

Proof 1. Follows from Proposition 2.7, Rosinski [30].
2. Clearly

/H | 1||x||°‘10g(||x||)R(dx)=/ Lipw)>118(w)* log(B(w))A(dw).

gd—1

and then Proposition 2.7 Rosifiski [30] applies.
3. The condition fRd lx||¥dw(x) is equivalent to f{l\xl\>1} [Ix|¥v(dx) < oo (Sato [32]
p-159) that is equivalent to

o
/ x| v(dx) = / / e P pk=a=l 4,3 (dw) < co.
{llx[I>1} sd-1 J1

The latter is equivalent to f gd-1 ﬂ(w)’k’“k(d w) < oo, as proved in Pérez-Abreu and
Stelzer [27], Proposition 3.12.
O

Notice that, in particular, if A has finite support all its moments exist. The next proposition
provides the characteristic function of ET« S distributions.

Proposition 2.3 The characteristic function L of u ~ETaS(a, A, B) is:
fora € (0,1)

) = el () [ (B w) — itw, 2 — paw), YR 20
fora e (1,2)
(@) = expll (o) [ 1Gpw) = itw. )" — plany”
+i(w, 2)afw)* A (dw)}, Vz eR?, (2.7)
and fora = 1
az) = eXP{/Sdil[(ﬁ(w) —i(w, z))log(B(w) —i(w, ) +i(w, z)]A(dw)}, YzeR’". (2.8)

Proof The Lévy Khintchine formula in polar coordinates with (2.1) gives

fi(z) = exp{/Sdil bu((w, 2))A(dw)}, Yz eR?, (2.9)
where if o € (0, 1) we have
_ ~Bwyr
pulw.z) = | @9~ ar,
r

Ry
because by Proposition 2.1 it holds flx\<1 [|x]lv(dx) < oo. If @ € (1,2) we have
—Bw)r
. ) e
puw((w, 2)) :=/ (€™ — 1 —irly <1 () (w, 2) ——dr.
Ry r

Therefore for each w, ¢y, ((w, z)) is the characteristic exponent of the one sided ET« S
distribution p,, that are provided in Kiichler and Tappe [17].
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If @ € (0, 1), for each w the characteristic function of the radial component j, of 1 is:

Puw((w, z)) = F'(—a)[(B(w) — i(w, z))* — B(w)*]

and (2.6) follows. If @ € (1, 2), the characteristic exponent of the radial component (i, of 1
is:

$w(w,2)) = T(—)[(Bw) — i (w,2))* = B(W)* +i(w, 2)apw)* ']

and (2.7) follows.
If « = 1, from Theorem 2.9 in Rosinski [30] we have:

A(z) = exp {/ <I>(<x,z>>R(dx>} , VzeRY,
R
where

D ((x,z)) = (1 —i(x,z))log(l —i(x,z)) +i(x,z), VzeR?,
From (2.4) it follows

f(z) = exp{/ <1>(<L,z>)x(dw)}, vz e RY,
gd-1 B(w)

that gives (2.8). O

The following propositions allow us to construct multivariate £T« S distributions useful
in applications, as we do in the next section.

Proposition 2.4 A measure u ~ ETaS(«a, B, 1) is absolutely continuous if and only if the
support of A contains d linearly independent vectors wj, j = 1,...,d. Let X ~ u, X has
independent components in and only if A has supporton e;,i =1, ..., d in R%.

Proof 1If the support of A contains d linearly independent vectors, then the support of v is full
dimension. Therefore u is a genuinely d-dimensional self-decomposable distribution, then
1 is absolutely continuous (Sato [31]). Let X ~ w. Then X has independent components if
and only if v has support on the coordinate axes (see e.g. Sato [32], E 12.10).

O

Proposition 2.5 Leta € (0, 1). Let X1 ~ ETaS («, B, 1), Xo ~ ETaS («, B, 12) and let
them be independent. Then

1. X1+ X, ~&TaS (a, /3,)\1 + A2);
2. Foraconstantc > 0, c X1 ~ETaS («, g, c*Ap).

Proof 1. By independence

Ax,+x,(2) = fix, (2)ix,(z). = exp{l'(~a) /SH dw((w, 2)) (A1 + A2)(dw)}
2. Since (see Kiichler and Tappe [17])

Pw((w, cz)) = (=) [(B(w) — i(w, cz)* — B(w)“]
Bw) . cg)) — (ﬁ(:v)

E— 1
c

= T'(—a)c*[( )1,

from (2.9) we have the assertion.
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Proposition 2.6 Let « € (0, 1). The mean vector m and the covariance matrix ¥ of . ~
ETaS(a, B, L) are

m :/ (1l —a)Bw)* 'wr(dw)
gd—1
and
¥ = /d I —a)Bw* >ww’ A(dw)
§d—1
Proof The cumulant generating function exists on {z € R" : (w, z) < B(w)} and it is
k(z) = /SH C(—a)[(B(w) — (w, 2))* — B(w)* A (dw)

We have m; = %k(z)lz:o and %;; = %(az/k(Z)lzzo, the thesis follows by inverting
integration and differentiation. O

The higher order moments can be found with similar arguments. We report the third j4;j; and
fourth ;%7 cross moments because they are linked to co-skewness and co-kurtosis:

Wijk = / L Te- @) B(w)* P w;wjwih(dw)
0
and

it = [, T = 0Bt wonidw)
n

2.1 Specifications

By properly choosing the parameters we have the following multivariate distributions.

1. Multivariate CGMY distribution. A Multivariate CGMY (C, B, «) distribution is a
distribution p with Lévy measure in (2.1), where A(dw) = Co (dw) and o is the unique
measure induced on $?~! from the Lebesgue measure on R¢. In this case if j is one-
dimensional we have

—Glx| —Mx

D(dx) = C(L(—o0.0) ()t + 10,00 (1)

|x|ot+l xotJrl )dx’

and p is a CGMY distribution. We have G = B(—1), M = (1) and « is the parameter
Y, where CGMY are the original parameters in Carr et al. [5].

2. Multivariate gamma, bilateral gamma and variance gamma distributions. The case
o = 0 has been introduced and studied in Pérez-Abreu and Stelzer [27] under the name of
multivariate Gamma distribution. It includes multivariate versions of the bilateral gamma
distribution introduced in Kiichler and Tappe [16] and of the famous variance gamma
distribution Madan and Seneta [23]. With the further condition A(S¢) = 0 we have a
multivariate gamma distribution in a narrow sense, see also Semeraro [33].

3. Multivariate inverse Gaussian distribution. In the application on financial data we focus
on the inverse Gaussian distribution. A d-dimensional inverse Gaussian distribution p with
parameters A and B, denoted /G (A, B), is a ET S distribution with the following Lévy
measure:

e—Bwr
1z (rw) 3 dr,

viG(E) =/ Aldw)
Sd—l

Ry
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_ —B(w) . . . .
where Vw € $971, v, dr) = %dr is the Lévy measure of a one-dimensional IG

process with parameters (1, 8(w)). If A has support in Si_l then v;g has support on
Ri and we have a multivariate version of the one dimensional /G distribution. We also
provide its characteristic function that is easily derived from of Proposition 2.3.

Ai(2) = exp{=2v/m /S L WB@W) —iw,2) - VB@h@w), vz eR?

As in the one-dimensional case if A(dw) = Co (dw) and o is the unique measure induced
on S9! from the Lebesgue measure on R9, the inverse Gaussian distribution is a special
1

case of CGMY distribution with o = 5.

3 Multivariate £TaS Sato subordinators

This section introduces time inhomogeneous additive subordinators with unit time E7 S dis-
tribution. An additive subordinator is an increasing process with non stationary independent
increments. The characteristic function of an additive subordinator S(¢) is (Mendoza-Arriaga
and Linetsky [26])

t
fui(z) = expli(y (1), 2) +/0 /Rd (€ — Dg(dx, u)du}, 3.1)
+

where y (1) € ]Ri is the time dependent drift and g(dx, u) is a time-dependent measure so

that fol ||x|lg(dx, u) < oo foralmostall u. We assume y (1) = 0 and we call g the differential
Lévy measure of S(¢) according to Li et al. [18].

Sato processes are additive processes associated to self- decomposable distributions (see
Appendix A). Since a measure u ~ ETaS(a, B, 1) is self-decomposable, we can define a
Sato process associated with w, that we call ET«S Sato process.

Definition 3.1 A d-dimensional Sato subordinator is a Sato process with positive and increas-
ing trajectories for each coordinate.

We study multivariate Sato subordinators S(¢) with unit time £7«S distributions u, i.e.
S(1) ~ w. The next proposition gives condition for an £T«S distribution to be the self-
decomposable distribution associated with a Sato subordinator.

Proposition 3.1 The Lévy measure in (2.1) is the Lévy measure of an ET oS Sato subordinator
S(t) if and only if o € [0, 1) and ) has support on Si_l.

Proof Forany w € S9-1 et S, (7) be a one-dimensional Sato process with Lévy measure vy .
The process Sy () only has positive jumps because vy, is a positive Lévy measure. Therefore
Sw () is an increasing process if and only if f(o.l] Xy (dx) < 00, see Sato [32], thus if and
only if « € [0, 1). Finally, the Lévy measure v is positive if and only if A has support on
si=t

O

Theorem 3.1 Let u ~ ETaS(w, B, 1), the associated Sato subordinator S(t) has time t Lévy
measure given by

e—Bwyrt
v(E,t):/d ./ Lg (rw) ———1*dri(dw) (3.2)
sd=1 Jry r
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and it has characteristic function (3.1) with differential Lévy measure

_ —q
g(E, u) = /d 1/ 15 (rw)e P@ru qqu“q_]Wdrk(dw). (3.3)
st Jr,y r

Proof The time ¢ characteristic function of an £T «S-Sato subordinator with zero drift is
given by (2.6), therefore

o e B
fir(z) = A(t72) = exp / ("W — 1) ———dri(dw)
§d—1 rot

Ry

ired (w,2) e‘ﬁ(lﬂ)r
= exp Ad,l /D‘QJr(e — I)Wdrk(dw)

i (w.2) e~ Plwur™1 J
— 1w,z
= exXp /‘Sdfl /RJr(e — l)md”)&(d“)) s Vz € R¢.

and the time ¢ Lévy measure is (3.2). Let now

vy (r, u) _ e_ﬁ(w)r,qu ag—1 B(w)ru=4 +0£.

Bulr,u) = — prory

We have

. p t _ -9
ﬂt(z) = exp {/ (etr<w,11z) _ 1)/ e*ﬂ(w)ru "qu"“/”Wdudrk(dw)} .
gd—1 R, 0 r

Fubini-Tonelli applies and we have

' . - q
[l (z) = exp (eirwrta) )P gy a = e L, Mdw)du ¢,
0 Jsd-1 Ry I‘a+

that with (3.1) gives that g, (r, u) is the density of the radial component of the differential
Lévy measure, therefore (3.3) follows. O

The parameter ¢ in (3.2) drives time inhomogeneity of the increments of the subordinator
S(¢) and it is called Sato exponent.

We conclude this section with the specification of the Sato-inverse gamma subordinator
used in the financial application. A Sato-inverse gamma (S-IG) subordinator is a Sato process
S(t) such that S(1) ~ ETaS(}, B, ) and A has support on S¢'. We write S(r) ~ S-
IG(B, 1). The time ¢t Lévy measure of a S-IG subordinator is

tze_ﬂ(w)” 4
viG(E, t)—/ / 1E(rw) ————dri(dw).

The S-1G subordinator is used in Sect. 5 for our application to finance. Therefore we report
its time ¢ characteristic function. Let S(¢) ~ S-IG(B, A), then its characteristic function is

fir(z) = A(t92) = exp {—zﬁ/d 1 [\/bz(w) ~i(w. 197) — b(w)] A(dw)} . VzeRY,
4=

where b(w) = /B (w).

If A has support on S~! we have a multivariate Sato inverse Gaussian process.
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4 Sato-E£Tas subordinated Brownian motion

In this section we build a multivariate additive process by subordinating a multiparameter
Brownian motion with a multivariate £7«S Sato subordinator. For the formal definition of
multiparameter (Lévy) process we refer to Barndorff-Nielsen et al. [2]. The Sato subordinator
is assumed to have zero drift, i.e. y(0) = 0 in (3.1). This assumption allows us to avoid the
introduction of regularized Sato £T « S subordinators (see Li et al. [18]).

Let B;(¢) be independent Brownian motions on R" with drift 4 and covariance matrix
Y;,and let B = {B(s),s € Ri}, where B(s) := (B1(s1), ..., Ba(sq))T, be the asso-
ciated multiparameter Lévy process. Let A; € M, x,, (R). We can define the process
Ba ={Ba(s),s € R} as

Ba(s) = AiBi(s1) + ...+ AgBa(sa), s € RL. 4.1)

The process B4 is a multiparameter Lévy process on R”, see Example 4.4 in Barndorff-
Nielsen et al. [2]. We call the multiparameter Lévy process B 4(s) in (4.1) multiparameter
Brownian motion.

Definition 4.1 A process Y defined by
Y (1) := BA(S(1)), (4.2)

where B 4 (s) is the multiparameter process in (4.1) and S(¢) is a multivariate Sato subordi-
nator independent of B 4(s), is a Sato subordinated multiparameter Brownian motion.

The process Y (¢) is defined without a separate drift term that controls the mean. The drift
term is added in the application. We now provide the characteristic function of Y (¢) in (4.2).

Theorem 4.1 The Sato subordinated Brownian motion Y (t) in (4.1) is an additive pure jump
process with time t characteristic function:

fiu(z) = exp {r(—oo /S | [(Bw) = 17(10g(@a (). w)* - ﬁ(w)“]/\(dw)} . VzeR?,
4.3)

where log(qASA(z)) = (logé)](z), ..., log QAﬁd(z)), dA)z(z) is the characteristic function of
A/B/(1),l=1,....,d.

Proof Let A; € My, (R) and let the process B4 be defined as in (4.1). The process
B(sl) = A;B;(s;) is a n-dimensional Brownian motion with parameters p4 = A;u; and
X, = A/Z;A] . We have

B4@))=BaO,..., I,....00=A;B;(]).
j-th

Thus
¢;(z) = Elexp{i(A; B (1), 2)}] = Elexp{i (Ba(8;). 2)}]

and
i:(z) = Elexp{i (Y (2), z)}] = E[E[exp{i (B (s), 2)}|S() = s]]

. (4.4)
= E[exp{(log(¢4(2)), S())}] = f(—it?log(¢4(2))).
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where the second equality follows from Theorem 4.7 in Barndorff-Nielsen et al. [2] and last
equality follows because S(¢) is a Sato process. Equation (4.4) with (2.6), gives (4.3). O

Remark 2 Subordination of multiparameter processes has been introduced in Barndorff-
Nielsen et al. [2], where the authors consider the case of a Lévy subordinator. In Jevtié
et al. [14], the authors consider the case where the multiparameter process is the multipa-
rameter Brownian motion in 4.1. The Sato subordinated Brownian motion in (4.2) has the
same unit time distribution of a subordinated multiparameter Brownian motion, as one can
see from the unit time characteristic function.

5 Application to asset returns modeling

This section specifies a Sato-subordinated Brownian motion to model asset returns and
presents a first calibration on real data. We start with the introduction of factor-based ET S
distributions.

Proposition 5.1 Ler o € [0, 1). Let us consider a random vector S = (S1,..., Sp) ~ W,
such that

Si=X;+a;Z, j=1,...,d, (5.1)

where X; ~ ETaS(«, Bi, Ai) are independent of each other and they are independent of Z ~
5T(xS(a, Bz, Arz). Then S ~ ETaS(a, B, 1), where A has support Supp(A) = {w, e;, j =
d), {ej, j=1,...,d}is the canonical R? pasis, w = ﬁ and B : Supp(L) — R, is

deﬁned by Ble:) = pi and p(w) = %

Proof Let B : Supp(r) — Ry, such that f(w) = B; if w = e; and f(w) = HaH The
vectoraZ = (a1 Z,...,aq Z)T has ET oS distribution with parameters «, 8 and Az, where
Az is a finite measure with support on the point w = ﬁ see Lemma 2.1 in Semeraro [33].

Since X = (Xy,..., Xg) has independent components, by Proposition 2.4, its Lévy
measure has supporton {e;, j = 1,...,d}. Thus

7,3(31)"
vx (E) = Z vx(Ej) = Z 1, (rel T € = Z L, (rei)) —— x(ei)),
i=1

where E € B(R”\{O}), Ei=ENAjand A; ={x e R" : xx =0,k # j, k=1,...,n}.

Thus X ~ ETaS(a, B, Ax) with Ax ({w}) = X; if w = e; and Ly ({w}) = O otherwise.
Since aZ and X are independent, by Proposition 2.5 X +aZ ~ ETaS(«, B, A), where

A = Ax + Az and thus it has supporton {w; e;, j =1, ...,d}. ]

We say that S in Proposition 5.1 has a factor-based distribution u ~ ETa S (e, B, A).

Corollary 5.1 A factor-based measure u ~ ETaS(a, B, L) has characteristic function the
form

d
A@) =] [ expil(—)[(B; —iz))* — BYIAs}-

j=1
J (5.2)

cexpll(—)[(Bz — i) azx)® — P3lrz), Vz e RY,

k=1
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where Bj, Bz € Ry and Lj, Lz € Ry.

Proof 1t is sufficient to notice that if A has finite support {w;, j = 1, ...d}, then its charac-
teristic function becomes

d
@) = [ ] expiT (=) [(B; — i(w;. 2)* — B3I} Vz e R,
j=1
where B(w;) = B; and A({w;}) = A;. The assertion follows by choosing A and 8 as in
Proposition 5.1. O

Notice that, if A has finite support, the one-dimensional marginal distributions w; of u ~
ETaS(a, B, A) are convolutions of one-dimensional £T « S distributions.

Definition 5.1 A factor-based Sato subordinator S(z) is a Sato process such that S(1) has the
factor-based ET « S distribution in Proposition 5.1.

£S(1) ~ETaS(a, B, 1), the time ¢ characteristic function of the Sato subordinator S(¢) is
e (z) = ju(tz),

where /1 is the characteristic function in (5.2). If S(¢) is the Sato subordinator associated with
S we write S(t) ~ ETaS(a, B, A, q).

Proposition 5.2 If o € [0, 1/2), it holds fl\x|\<1 [|1x]|vy (dx) < oo and fRd vy (dx) = oo.
The process Y (t) is of bounded variations.

Proof Letv = (X, vy) be the time one Lévy measure in (3.2) and let B = {x € RY: ||x|| <
1}. Tt is sufficient to show that

/B l1x[1'2v(x) < oo, (5.3)

where v is the time one Lévy measure of S(¢). Then the assertion follows from Theorems 3.3
and 4.7 in Barndorff-Nielsen et al. [2]. The proof that (5.3) holds if and only if ¢ € [0, 1/2)
is similar to the proof of Proposition 2.1 and therefore omitted. O

5.1 Factor-based Sato subordinated Brownian motion

We propose here a model with the same dependence structure of the factor-Based subordinated
Brownian motion in Luciano and Semeraro [21]. Our aim is to keep the flexibility of their
dependence structure, to have one-dimensional unit time distributions in given classes and
to include time inhomogeneous increments.

Definition 5.2 Let B;(¢), j = 1, ..., d be independent Brownian motions with drift 41 ; and
diffusion o;. Let B (¢) be a correlated d-dimensional Brownian motion, with correlations p;,
marginal drifts uf = wja; and diffusion matrix X7 := (p;j0;0;/a; /a;)ij, i, j =1,...d.
The R?-valued subordinated process Y = {Y”(t),t > 0} defined by

Bi(X1(t)) + By (Z(1))
YP(t) = , 5.4

By(Xa(1)) + B (Z(1))
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where X ;(¢) and Z(¢) are the independent Sato subordinators with unit time distribution of
X; and Z in Proposition 5.1, independent from B(z) and B”(¢) is a p-factor-based Sato
subordinated Brownian motion.

The unit time dependence structure of p-factor-based Sato subordinated Brownian motions
is driven by the Brownian motion correlations and the common component of the Sato sub-
ordinator. The unit time dependence structure is widely discussed in Luciano and Semeraro
[21]. Tt should be noticed that the process may have dependent marginals also in the sym-
metric case - Brownian motions with zero drift - if B”(r) has independent components. In
this case all the -nonlinear- dependence derives from the component Z. The Sato exponent
of the subordinator drives time inhomogeneity and time varying correlations.

Proposition 5.3 Let Y (t) be a p-factor-based Sato subordinated Brownian motion in (5.4).
Then Y (t) belong to the class of Sato subordinated Brownian motions in Definition 4.1.

Proof Let us consider the independent Brownian motions B;(¢), i = 1,...d and B”(t) 5.4
and let
d
Ba(s) =) AiBi(s;) + A1 B (sat1),
i=1

where A; € M(d x 1),i =1,...,dand A € Mgy suchthat A; = (0,...,1,...,0),

it,...,d and Agy1 = I4. Let now S(t) = (X1(¢),..., Xq(), Z(t)) and ETaS Sato
subordinator with independent components. Let Y?(¢) be the process in (5.4) we have
Y()? = B4(S(1)). O

Corollary 5.2 If S(t) ~ ETaS(«, B, 1, q) is the Sato subordinator in (5.1) the subordinated
process Y (t) in (5.4) has characteristic function

d
1
fu(@) = [ Texpll (=e0l(B; — 1 (Gpjz; = S0%2)" = B 1
j=1 (5.5

1
exp(T(—)[(Bz — 11 (iu" p” — 22" 2P2)* = f7liz), vz € RY,
where B, Bz, A and Az are the parameters in Proposition 5.1.

Corollary 5.3 If the Brownian motions in Definition 5.2 have zero drift the subordinated
process YP(t) in (5.4) is a Sato process.

Proof Since Y”(t) = B 4(S(r)), it is the sum of the independent subordinated Brownian
motions B;(S;(¢)), i = 1,...,d and B”(Ss+1(2)). Itis sufficient to observe that if Brownian
motions in Definition 5.2 have zero drift the unit time distribution of B; (S;(¢)), i = 1,...,d
and B”(Sy4+1(t)) are self-decomposable (Takano [36]), therefore the unit time distribution
of and Y (¢) is. Furthermore, 124 log(qAbA ) = log((;AbA (t12)). O

Proposition 5.4 If all the parameters p;j in (5.4) collapse to 0 across different components,
ie. pjj =0, fori # j, pij =1, fori = j, the factor-based Sato subordinated Brownian
motion Y (t) in (5.4) becomes:

Y(t) = B(S(t)) = (B1(S1(1)), - .., Ba(Sa(1))), (5.6)

where S(t) is the factor-based Sato subordinator in Definition 5.1 and B(s) is a d-
dimensional multiparameter Brownian motion with independent components B(s;) that
have mean v j and diffusion o;.
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Proof By substituting p;; = 0 in (5.4) the characteristic function of Y (¢) becomes

d
1
fu(@) = [ expT(=)(B) = 1(injzj — 5022 = 1A}
j=1
4 1
exp(T(=)[(Bz — i1? ) a(uazi = 5072 = p51iz)
k=1

= exp{¥s(t7 log(¢1(2))}, Vz € RY,

where qAb 1(z) is the characteristic function of the multivariate Brownian motion in (5.6). From
Theorem 4.1 it follows that [i,(z) = exp{y¥s(t? log(¢1(z))} is the characteristic function of
Y (¢) in (5.6). m}

A very useful result for applications and calibration is the following, that can be easily proved
using characteristic functions, see Theorem 5.1, Luciano and Semeraro [20].

Proposition 5.5 The processes in (5.4) and in (5.6) have the same one-dimensional marginal
processes in law, that are one-dimensional Sato subordinated Brownian motions.

As a consequence the processes (5.4) and (5.6) clearly have one-dimensional marginal pro-
cesses that are themselves Sato-subordinated Brownian motions.

Linear correlation functions are usually used to calibrate the dependence structure in
multivariate Lévy models, see e.g. Guillaume [12] and Luciano et al. [19]. By the scaling
properties of Lévy processes that have independent and stationary increments, the correlation
function of a Lévy process is constant over time, i.e. py ) (h, j) = py)(h, j), t > 0, see
Appendix C. However, this is not a realistic assumption, see e.g. Téth and Kertész [38],
Teng et al. [37] and Lundin et al. [22]. We now show that linear correlation functions of
the factor-based Sato subordinated Brownian motion change over time and have a simple
analytical formula. Standard computations give the mean E[Y f (1)], the variance V[Y ]P 0]
and the correlation py» () (h, j) functions of Y (t):

E[Y!(0)] = wtEIS;1; VY] ()] = o 19E[S;]+ p**IV[S;]
and
PhjOn0j/anJajt BIZ] + wjpnajant®1V(Z)
J@HIELS; 14 1220 VIS; DO HIELSH] + 122 VIS D

pyray(h, j) = , (5.7

where Z = Z(1) and S; = §;(1). Consider the factor-based subordinated Brownian motion
in (B.2), where X;(¢) and Z(¢) are the independent subordinators with the same unit time
distribution of the Sato subordinators in (5.4). The correlation functions of the factor-based
Sato subordinated Brownian motion at unit time are equal to the correlations of the factor-
based subordinated Brownian motion Y% (r) defined in (B.2), see Eq. (C.1).

The linear correlation coefficients of ¥ (¢) in (5.6) are obtained by assuming p;; = 0.
Furthermore,

lim pyp(t)(l, 7)) =ps, j)
t—00

and
. . PhjJa1a;E[Z]
lim pyr (1, j) = et 2
=0 E[S/TELS;]
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Since E[S;] = E[X ;] +a;E[Z], lim,_¢ pyr ), j) = 1if we have the limit values p;; = 1
and E[X;]=0,i,j=1,...,d.

In the next section, we specify a distribution for the factor-based Sato subordinated Brow-
nian motion.

5.2 Normal inverse Gaussian case

We specify the factor-based Sato subordinator to have the same unit time distribution of the
factor-based pa-NIG in Luciano and Semeraro [21]. Let § = (S7, ..., Sg) asin (5.1) and
let X; and Z have inverse Gaussian distribution (IG) with parameters:

Xj~1G< —a,/aj, j=1,.,n and Z~1G(a,l), (5.8)

)

1
unit time distribution of §, its time ¢ characteristic function fi§(;)(z) has the form

1
is0(@) = ||ep(1—«ﬁ) /——M — |-
s j=1 " { ‘ |: e Vaj:|}

cexpi—a| |1-2i(t1) az)—1|¢, VzeR”
k=1

where 0 < a < j =1, ...,n.Letnow S(¢) be the factor-based Sato subordinator with

The distribution of § has one-dimensional /G (1, %j_) marginal distributions that are self-

decomposable. Therefore the processes S (¢) are one-dimensional Sato processes. Let now
vj.»Bj,dj besuchthaty; > 0,—y; < B; <vy;,8; >0.

Definition 5.3 Let Y”(¢) be the process defined in (5.4). If X ;(¢), i =1,...,d and Z(¢t) are
Sato subordinators with unit time distributions in (5.8). If we set u; = 8 j8]2. and o; = §;,

\/%Tj =6;./v i ,32., the process Y (¢) is called factor-based Sato-1G subordinated Brownian
motion.

From Proposition 5.5 the process Y (¢) in Definition 5.3 has the following one marginal
processes

Y1) = B85, (1) + 8, W(S; (1)), (5.9)

where W (¢) is a standard Brownian motion and equality is in distribution. Therefore the unit
time distributions of Y? (t) in (5.9) are normal inverse Gaussian distributions with parameters
(vj, Bj, 8;), that are self-decomposable. The one-dimensional processes Y ]P @®,j=1,...,d
are Sato subordinated Brownian motions. Therefore in a multivariate asset model the pro-
cess provides time varying correlations and time inhomogeneity also for single assets. The
process Y”(¢) has a total of 2 4+ 3n + "(" nw-1) parameters: a and g are common parame-
ters; y;, Bj,8j, j = 1, ..., n are marginal parameters and p;j,i,j =1, ..., n, are the B
correlations.
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From (5.5), the time ¢ characteristic function ,&f of Y (1), is

d
R , 1
Ay ) = — 1"[1exp ! (1 - ;) <\/§? = 20485 + 585u3) — q)
e
—a <\/1 — 2t (iul pr — %uTEpu) — 1)}

where {; = §; /yj2 — ﬂ]z. The linear correlations are givenin (5.7) witho; = §;, uj = ﬁ8]2.,
Jaj = % E[Z] = a and V[Z] = a where a < min{\/%}. The pa-NIG in Luciano and

Semeraro [21] is the Lévy process with unit time characteristic function ﬁ’f (2). A pa-NIG
process YL () has correlations constant over time and pYL(t)(i, J) = pyry(i, j), for each
t > 0. The pa-NIG process is recalled in Appendix B.

Recently, Boen and Guillaume [3] proposed a multivariate process with marginal Sato
processes to model asset returns. They model asset log returns at unit time as linear combina-
tions of independent self-decomposable random variables, obtaining the same dependence
structure as the multivariate Lévy process introduced in Ballotta and Bonfiglioli [1]. In fact,
these two processes have the same unit time distribution. Differences between the unit time
distribution in Boen and Guillaume [3] and ours are both in the one dimensional marginal
distributions and in the dependence structure. The marginal distributions in Boen and Guil-
laume [3] do not belong in general to a given class. The restrictions needed to specify the
marginal distributions become challenging from a numerical point of view in the calibration
of the model as the number of assets increases. The one dimensional unit time distributions of
the p-factor-based subordinated Brownian motion can easily be specified to belong to given
classes with good fit properties, e.g. the NIG distribution. This is an advantage for calibration,
where a simple two step procedure can be performed and easy calibration is possible also
with a large number of assets (Luciano et al. [19]). Regarding the dependence structure, Boen
and Guillaume [3] propose a linear combination of independent random variables and in their
model, if the correlation is zero, the marginals are independent. In our model, the dependence
that arises from the subordinator makes zero correlation and dependent marginals possible,
as discussed in Luciano and Semeraro [20]. Nevertheless, the main difference between the
two approaches is in time inhomogeneity. The multivariate Sato process in Boen and Guil-
laume [3] has time inhomogeneous increments, but their log return correlation is constant
over time. Our idea to include time homogeneity with a Sato subordinator allows us to model
time varying correlation, and this is the main feature of this model. Subordination allows us
to take advantage of the scaling properties of the Brownian motion to obtain time dependent
correlations. Other multivariate processes with marginal Sato processes have been introduced
before, e.g Guillaume [13], Boen and Guillaume [4] and Marena et al. [25]. The multivariate
process in Marena et al. [25] has the same pa — N I G unit time distribution. However, in all
these models correlation is constant over time.

5.3 Calibration and fit
The calibration of the process on financial data requires to estimate a multivariate time-

inhomogeneous process. The calibration of multivariate time-inhomogeneous processes is
out of the aim of this work. Some results of ML estimation of time inhomogeneous processes
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can be found in the literature, see for example Egorov et al. [9], where the authors considered
a one dimensional process.

This section aims at showing that log returns increments do not scale as stationary incre-
ments do and that the factor-based S-IG subordinated Brownian motion can be a good and
parsimonious - in terms of number of parameters - extension of the pa-NIG Lévy model. For
this reason, the parameters common to both the models are calibrated on the Lévy process
and kept as realistic parameters for the Sato extension. Then the potentiality of adding a
parameter that drives time-inhomogeneity is shown.

Define a bidimensional price process, S = {S(¢), t > 0}, by

S(1) = S(0)exp(er + Y (1)), ¢ € R?, (5.10)

where c is the drift term (equivalently, S;(t) = S;(0)exp(cjt +Y;(t)), t = 0,j =1,2.).
The actual horizon specific return for asset i on day t is evaluated as

Y (h) = log(?iﬁi) —¢cih. (5.11)

Suppose that the daily return is a random variable Y with a pa-NIG distribution. The po-
NIG distribution is associated with a Lévy process. However, this law is also associated to
the factor-based S-IG subordinated Brownian motion at unit time. This latter process has
independent increments that are not identically distributed. The scaling parameter ¢ drives
time-inhomogeneity that, in this first application, we observe by focusing only the correlation
function.

5.4 Sensitivity analysis

The parameters of the factor-based S-IG subordinated Brownian motion are: the marginal
parameters (c, y, B, ), the correlation parameters a, p and the parameter ¢. To have realistic
parameters we calibrated the pa-NIG Lévy process on daily returns. In this way, we calibrate
the marginal parameters (c, y, B, §) and the correlation parameters a, p. Since the pa-NIG
process has the same distribution of the factor-based S-IG Brownian motion at unit time, the
parameter found can be assumed to be realistic parameters also for the Sato extension. Then,
we kept the calibrated parameters fixed we moved the parameter g of the Sato extension
to show how ¢ drives the correlation function pyr(1,2) = pyr(). We considered log
returns on four assets of one of the main Italian indices, FTSE MIB, from September 29,
2016 to September 28, 2021. We looked at the following assets Amplifon (AMP.MI), Eni
(ENIL.MI), Mediobanca (MB.IM) and FinecoBank (FBK.MI), thus we had six pairs of assets.
The assets were chosen to have different levels of pairwise correlation. For example MB.IM
and FBK.IM belong to the same sector, while Amplifon is expected to have a low correlation
with them.

Calibration on daily returns was performed in two steps, following Luciano et al. [19]. We
fitted the marginal parameters from marginal daily return data; then we selected the common
parameters by matching daily historical return correlations for each pair. We used MLE to
estimate the marginal return distribution on each stock individually. The density function
was recovered by applying the Fractional Fast Fourier Transform (FRFT)' . Initial conditions

1 Following the notation in Chourdakis [7] the FRFT setup is: N = 217 5 = 0.25, where § is the u grid
spacing. Let b the absolute value of the maximum observed log return and let A = 2b/N; xy = —b + kA and
o =8r/(2m).
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Fig. 1 Model (dotted line) vs kernel (solid line) densities

were chosen according to the method of moments (see Seneta et al. [34] and Prause [28] for
details).

The goodness of fit was evaluated by the KS test. For all assets, we could not reject the
null hypothesis that the sample daily returns came from the model distribution, at the 5%
level of significance. Figure 1 provides the plots for the density fit of each marginal return.

Following Luciano et al. [19], given the marginal parameters, for each pair (i, j) we
jointly calibrate the common parameters a and p;; by fitting their sample return correlation.
Specifically, for each pair (i, j), we minimized the root-mean-squared error between the
empirical and the pa-model return correlation. Since all the marginal parameters were fixed
from step one, the correlation coefficient ,ol.}; between pair i and j depends only on @ and on
pij» this allowed us to have a very good fit in the bivariate case. As discussed in Marena et
al. [25] we underline that the same correlation can be fitted with different pairs (a, p;;). In
fact the parameter a also drives nonlinear correlation and makes it possible to achieve zero
correlation and nonlinear dependence (see also Luciano and Semeraro [20]). The estimated
marginal parameters y;, 8;, §; are reported in Table 1. The common parameters a and p;;
for each pair and the daily correlations are reported in Table 2.

We shall now focus on the factor-based S-IG subordinated Brownian model. We left the
same parameters calibrated on daily returns and we addressed long horizon correlations by
moving g. We firstly considered daily returns (1d) as a benchmark, then we considered returns
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Table 1 Maximum likelihood
Asset )
estimates of marginal NIG return 55 ¢ Y b
distributions for the paNIG AMPMI 0.0032 41.8689 —4.6962 0.0174
distribution
ENLMI 0.0013 40.1467 —5.2611 0.0107
FBK.MI 0.0021 49.4146 —3.2715 0.0185
MB.MI 0.0015 39.2550 —3.0975 0.0132
Table 2 Estimates of @ and p .
’ P f .
model correlations p 4. Asset airof assets “ P PA
correlations are equal tomodel  ANpMI; ENLMI 0.3823 0.3297 0.2522
correlation, because the error is )
lower that 10~3 AMP.MI ;FBK.MI 0.6074 0.3665 0.2745
AMP.MI; MB.MI 0.4711 0.3449 0.2763
ENLMI; FBK.MI 0.3963 0.7647 0.4809
ENILMI; MB.MI 0.4191 0.5802 0.5178
FBK.MI;MB.MI 0.5836 0.4414 0.3813
15 09—
1 0.8 ‘J‘
o o ,“
€05 €077 |
|
0 061
0 5 10 15 20 0 5 10 15 20
q
0.9 0.9
08| | 08l |
| o |
€077 | £ 071
| |
| |
06| 06/
0 5 10 15 20 0 5 10 15 20

Fig. 2 Correlation g-dynamics of Assets ENL.MI, MB.MI for the four choices of t - from left top to right
down: 1d, 1m, 3m, 6m

at different time horizons: a month (1m), a quarter (3m) and half a year (6m). All the pairwise
model correlations found with the estimated parameters have similar evolutions as functions
of ¢ and time. We shall therefore focus on the pair ENI.MI, MB.MI -the one with the highest
daily correlation. Figure 2 illustrates the correlation as a function of parameter ¢ for the four
different time horizons. It is evident that the correlation is increasing in g.

Figure 3 illustrates the correlation as a function of time horizon ¢ for the four different
values of g considered, the correlation increases in the time scale too.

Finally, Fig. 4 shows the correlation surface and its level curves.

The above figures show that -with our estimates of the other parameters- correlations are

increasing functions of ¢ and 7.
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Fig.4 Correlation surface and level curves

5.5 Correlation function fit

Firstly, we show that the Lévy model needs to be extended by showing that sample correlations
do not scale as they do in stationary processes, where they are not affected by the time scale,
as discussed in Appendix C. Then, we look for a value of ¢ able to fit the observed sample
correlations at different time scales: a day (benchmark), a month, a quarter and half a year.

For each pair of stocks we computed empirical correlations using returns at different time
scales over the same time period: we use daily increments for daily returns, monthly incre-
ments for monthly returns, etc... . If increments were i.i.d. the empirical correlation should
not be affected by the time scale. Table 4 shows that empirical correlations are significantly
different, being 0.52 for daily returns and 0.82 for 6m returns over the same time period,
therefore empirical returns do not scale as stationary processes do. We then proceeded by
looking for the value of ¢ that minimizes the distance between the four sample correlations
and the corresponding model correlations.
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Table 3 Estimates of g for

t = 1d. 1m. 3m. 6m Pair of assets q
AMP.MI; ENIMI 1.0836
AMPMI ;FBK.MI 0.9704
AMP.MI; MB.MI 1.1134
ENILMI; FBK.MI 0.9939
ENILMI; MB.MI 1.0925
FBK.ML;MB.MI 1.2010

Table 4 ‘ Merl and erppirical t P .

correlations for the pair ENL.MI;
Im 0.6411 0.6791
3m 0.7583 0.7627
6m 0.8186 0.7785

Formally for each pair of assets we minimized:

n

] em
RMSE (@)= | =3 (05" (1)) — py (ti, )
n

i=1

where py"" (t;) and py (t;, q) are the sample and model return correlations at horizon #,
respectively. These correlations depend only on the scale parameter ¢. Table 3 exhibits ¢
estimates, the calibration error order is always 1072 or lower.

Since the results are similar for each pair, we focus on the pair ENL.MI; MB.MI, that gave
the highest daily correlations. In Table 4 we report the model and empirical correlations. The
parameter ¢ found allowed us to fit correlations of returns at different horizons.

Although this first example does not provide a calibration of the process on real data,
its aim is twofold. Firstly, it shows that Lévy processes need to be extended to model time
inhomogeneity. Secondly, it shows that the correlation function of the factor-based S-1G
subordinated Brownian motion is able to fit sample correlations at different scales with only
one parameter and therefore this model is a good candidate for asset return modelling.

We conclude our analysis by showing (Table 5) the model limit correlations for t — 0
and ¢ — oo and the half a year empirical correlations. Notice the daily correlations (Table 2)
was close to the minimal correlation allowed by the model and the maximal correlation was
not been reached over six months. This is a possible consequence of our choice to set a day
as the unit time.

Remark 3 In a TS process, the regularity of the sample paths can be described in terms of
the single parameter «, as stated in Proposition 2.1. In our multivariate asset models we use
ETaS subordinators, for which the parameter « lies in [0, 1), as stated in Proposition 3.1.
In fact, subordinators have bounded variations. Nevertheless, moving the parameter «, the
subordinated process can exhibit bounded or unbounded variations - see Proposition 5.2.
For example, a Sato subordinated Brownian motion with a gamma subordinator has time
one distribution of variance gamma type. Thus, it has bounded variations, while a Sato
subordinated Brownian motion with an IG subordinator has time one distribution of NIG type
and unbounded variations. In a multi-asset setting, the sample paths of different asset prices
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Table 5 Correlation bounds for the pair ENI.MI; MB.MI

Pair lim;—0 pyr (I, ) PY (6m) lim; 00 pyr (1), J) = ps
AMP.MI; ENL.MI 0.2265 0.5963 0.6869
AMP.MI ;FBK.MI 0.2733 0.5087 0.7458
AMP.MI; MB.MI 0.2654 0.6325 0.7694
ENILMI; FBK.MI 0.4849 0.5439 0.6341
ENILMI; MB.MI 0.5175 0.8186 0.8921
FBK.MI;MB.M 0.4316 0.7329 0.7395

can exhibit different levels of local regularity. Multivariate tempered stable distributions, as
defined by Rosinski [29], have a unique parameter «. As a consequence, the trajectories
of each coordinate have the same parameter «. Our construction relies on subordinators
belonging to this class, therefore the sample paths of different asset prices exhibit the same
level of local regularity. Although the extension of the class of £T « S subordinators is beyond
the scope of this paper, this is an important issue. A first step to extend the class of ETaS
subordinators to have a vector parameter o could be to allow X ;(¢) and Z(¢) in (5.1) to have
different parameters «. For example in a bivariate case if X (#) and Z(¢) have « = 0 (gamma
distributed) and X,(¢) has o = % (IG distributed), the subordinated process in (5.4) has
marginals Y;(¢) of variance gamma type and Y, (¢) with the component B (X (7)) of NIG
type. Therefore, the sample paths of Y] (¢) have bounded variations and the sample paths of
Y>(¢) do not.

6 Conclusion

We began by introducing and characterizing a self-decomposable class of multivariate expo-
nential tempered distributions and the associated multivariate Sato subordinators. Then we
constructed a multivariate additive process which is able to incorporate time inhomogeneity
by additive subordination of a multivariate Brownian motion. The main contribution of Sato
subordination is the provision of time varying correlations, while remaining parsimonious in
the number of parameters and providing a good fit on financial data. Although the empirical
investigation of Sato subordination is beyond the purpose of this paper with a calibration
on financial data we have shown that the model is capable of fitting correlations at different
time scales for given unit time marginal parameters. In fact, we first calibrated the unit time
distribution -not affected by parameter ¢ - in two steps, following Luciano et al. [19]. Then
we performed a sensitivity analysis on g and then calibrated ¢ to fit time correlations of
returns at different time horizons. This way, we showed the features of the model and the
role played by the parameters. A joint multivariate calibration, for example with MLE, could
improve the fit of the model.

A full multivariate calibration of factor-based Sato subordinated Brownian motions on
financial data is one of our future research directions. A second research direction will be to
weaken the assumption of a Sato exponent common to all assets. In the present work, we built
on self-decomposability of multivariate ET oS distributions and considered a multivariate
Sato subordinator with scaling parameter ¢ common to all the one-dimensional processes.
Since the factor-based S-1G subordinator has self-decomposable marginal distributions, a
natural extension would be to allow each marginal process to have its own Sato exponent.
To this aim a further step will be to study operator self-decomposability of multivariate
ET o S-distributions and the associated Sato subordinators. Finally, path regularity of ETa S
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subordinated Brownian motions are linked to the parameter «, that is common to all assets.
A third future research direction will be to investigate the possibility of extending the class
of multivariate £T oS distributions to allow different asset returns to exhibit different levels
of path regularity.

Acknowledgements The author wishes to thank Marina Marena and Andrea Romeo for the helpful discussions
she had with them. The author also gratefully acknowledge financial support from the Italian Ministry of
Education, University and Research (MIUR), “Dipartimenti di Eccellenza” grant 2018-2022. The author also
thank the referees for their valuable suggestions.

Funding Open access funding provided by Politecnico di Torino within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendices
A Self-decomposability and Sato processes

The Lévy measure of a self-decomposable distribution y is of the form (Sato [32], Theorem
15.10):

r

o ky(r)
Vv(E) =/ / 1 (rw) dri(dw) (A.1)
sd=1Jo

where  is a finite measure on S9!, kw(r) > 0is measurable in w, decreasing in r > 0. The
Lévy measure of a self-decomposable distribution on R has the form:

v(E):f lE(x)@dx
R

[xl]

where k(x) > 0 is increasing on (—o0, 0) and decreasing on (0, co). Therefore a multi-
variate measure € L(R?) is self-decomposable if and only if its radial component is
self-decomposable. The characteristic function of a d-dimensional self-decomposable dis-
tribution p in Cartesian coordinates has the form

fi(z) = expliy -z +/ (eex) — 1 — z‘<z,x>1||xu51(x))@i(dx)},
i I|x]|

where

ME) = / /OO 1 (rw)dri(dw), (A2)
sd=1Jo
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and h(x) = kﬁ (|1x1]). Thus

W(E) =/ /le(rw)kW(r)drA(dw)
sd—1 Jo r

ko (D)
= / 1p(x) ——A(dx).
R4

||l

If A is the measure o induced on S¢~! by the Lebesgue measure on R? we have

, . e h)
a(z) =expliy -z +/ (e —1—i(z, x)leHSl)—ddx}, (A3)
Rl x|

A distribution is self-decomposable if and only if for any fixed ¢ > 0 it is the distribution
of Y (1) for some additive process {Y (¢), t > 0} which is g-self-similar (see Sato [32] as a
standard reference for self-similar processes ). A process Y (¢) is g-self-similar if for each
a>0

Yar) £ a%v @),

where = denotes equality in distribution of processes. The probability law of a Sato process
at time ¢ is obtained by scaling a self-decomposable law u (see Carr et al. [6]). If Y (¢) is a
Sato process, we have :

Y(t)éth,

where ¥ ~ p and ¢ is the self-similar exponent. The time ¢ characteristic function of
Y (t) ~ u; is given by

fir(z) = A(t72), Vz e RY

B Factor-based pamodels

We first introduce the Lévy class of factor-based multivariate subordinators used to con-
struct the R"-valued asset return process {Y (¢), t > 0}. A multidimensional factor-based
subordinator {G (¢), t > 0} is defined as follows

G(it)=X1()+a1 Z(@), ..., X (1) + o, Z(1)), oj >0, j=1,..n, (B.1)
where X(1) = {(X1(1), ..., X, (t)),t > 0} and {Z(¢),t > 0} are independent subordi-

nators with zero drift, and X (¢) has ;dependent components. Let B(s) and B°(t) =
(BY(t), ..., By (1)) be the multivariate Brownian motions in Definition 5.2, independent of

B(t). The R"-valued subordinated process (YL(t),t > 0} defined by

. Bi(X1(t)) + BY (Z(1))
YLl = , (B.2)
B (X (1)) + BL(Z(1))

where X ;(t) and Z(t) are independent subordinators, independent of B(¢) and B”(¢) is
a factor-based subordinated Brownian motion, called pa-model. Clearly if G(1) has the
same unit time distribution of S(1) in Definition 5.1, also Y£(1) and ¥Y#(1) have the same
distribution.

Let now YL (¢) be the process defined in (B.2). If X (¢) and Z(¢) are Lévy subordinators
with unit time distribution in (5.8) and if we set u; = B jS? and o; = §; the process

@ Springer



Mathematics and Financial Economics (2022) 16:685-712 711

YL (t) is the pa-NIG process in Luciano and Semeraro [21]. Obviously YL(r) and Y”(1) in
Definition 5.3 have the same distribution at unit time.

C Lévy vs Sato correlation functions

The correlation functions of a subordinated Lévy process Y ©(¢) defined in (B.2) are

IOYL([)(h, J=

Prjon0j N an JaELZ] + pwjupa;apV(Z)
JOIEIG 1+ 13VIG D OFEIG)] + 1} VIGH])

0<h<j<n.

(C.1)

They are constant over time and - if G(1) has the same unit time distribution of S(1) in
Definition 5.1 - equal to pye(1y(h, j) in (5.7). This is a consequence of the Lévy process
stationarity. If increments are i.i.d. the covariance functions scale as the variance functions,
specifically:

VIYE 0] =tVIYE (D] and cov(Y) (1), YT (1) = tcov(Y; (1), Y} (1)).  (C.2)

Consequently correlation functions are constant over time.
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