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Abstract
Wedevelop amodelling framework for estimating and predictingweighted network data. The
edgeweights inweighted networks often arise fromaggregating some individual relationships
between the nodes. Motivated by this, we introduce a modelling framework for weighted
networks based on the compound Poisson distribution. To allow for heterogeneity between
the nodes, we use a regression approach for the model parameters. We test the newmodelling
framework on two types of financial networks: a network of financial institutions in which
the edge weights represent exposures from trading Credit Default Swaps and a network of
countries in which the edge weights represent cross-border lending. The compound Poisson
Gamma distributions with regression fit the data well in both situations. We illustrate how
this modelling framework can be used for predicting unobserved edges and their weights in
an only partially observed network. This is for example relevant for assessing systemic risk
in financial networks.

Keywords Weighted directed networks · Compound Poisson distribution · Regression ·
Subnetwork prediction · Financial networks · Systemic risk

JEL Classification C02 · C46 · C53 · D85 · G32

1 Introduction

Weprovide amodelling framework that can be used to estimate and predict weighted network
data. The edge weights in weighted networks often arise from aggregating some individual
relationships between the nodes. For example, they can represent trades between financial
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institutions in trading networks, see e.g. Gandy and Veraart [20] for a network of financial
exposures arising from trading financial derivatives, or they can represent the supply of goods
or services between different sectors in the economy modelled as an input–output network,
see e.g. Acemoglu et al. [1]. Other applications arise for example in transport networks where
the weights can represent the number of passengers travelling, see e.g. Barrat et al. [4], or
in networks representing co-authorship in scientific publications, see also Barrat et al. [4],
where the weights are a measure that accounts for the number of joint papers written in
co-author networks. Motivated by this, we introduce a modelling framework for weighted
directed networks based on the compound Poisson distribution.

We are interested in these weights and not just the topology of the underlying network,
because in many applications the weights are fundamental for the behaviour of processes
that can be observed on these networks. For example, in the 2007–2008 financial crisis,
the interconnections between the financial institutions served as transmission channels for
stress and losses that led to significant feedback and amplification mechanisms with severe
consequences for the real economy. The magnitude of these losses is fundamentally linked to
the weights of the edges in the network. This is clear from many studies on systemic risk in
financial networks such as models looking at solvency contagion [16,42], contagion caused
by marking-to-market effects [44], fire sales [7,9,11,12,22] or liquidity contagion [29]; see
also Glasserman and Young [21], Capponi [6] for surveys.

The compound Poisson model class which we propose includes the size of the weights
as an integral part of the model. Many financial networks are essentially the aggregation
of several individual trades. This is why compound Poisson based models seem a natural
choice. The networks would be resulting from a random number of individual items, that are
themselves random.

Another feature of weighted networks is that they are heterogeneous. Financial networks
are a prime example. Some nodes are strongly connected with a large number of trading part-
ners, whereas others only trade with a small number of counterparties. In transport networks,
we see similar effects. E.g., if the nodes are the cities and the weights are available seats on
non-stop flights between two cities per day as in Barrat et al. [4], these networks are strongly
heterogeneous.

We take account of this heterogeneity by allowing the nodes in the network to have
individual characteristics, which we call fitness, with the interpretation that a larger fitness
leads to a larger number of edges.

We model these fitness parameters using a regression framework (Sect. 2). In particular,
we model some characteristics of the compound Poisson Gamma distribution (such as its
mean, which represents the mean weight between two nodes in the network) as a suitable
function of a fitness parameter that is associated with every node. By doing that, both the
existence of an edge and also its weight is influenced by the fitness parameters associated
with the nodes in between which the edge is formed. This enables us to reproduce several
stylised facts of financial networks.

We apply the new model class to two different types of financial network data (Sect. 3):
First, we consider networks that describe exposures based on a special type of financial
derivative (Credit Default Swaps). Second, we consider networks that describe international
lending relationships between financial institutions. We fit some models of our new model
class to the empirical financial network data and find in general that they fit the data well.
In particular, we find that in most cases the compound Poisson models that model both the
expectation of the Poisson random variable and the expectation of the Gamma distribution
via separate regression models perform best.

123



Mathematics and Financial Economics (2021) 15:131–153 133

As an application, we show how the modelling framework can be used to predict unob-
served parts of a larger network. For that, we take the empirical networks as given and assume
that a subset of the edges is no longer observable. We fit several models from our framework
to the observable part of the network and use the results to predict the unobserved edges.
For the Credit Default Swap data we find that a model which only uses one regression for
the mean of the Poisson distribution performs best. The Credit Default Swap data exhibit a
rather traditional monotonic relationship between strengths and degrees in the network. For
the international lending network the relationship between strengths and degrees is no-longer
monotonic. In this case we find a clear advantages of using a model with both a regression
for the mean of the Poisson distribution and a separate regression for the mean of the Gamma
distribution. This type of analysis, namely predicting unobserved parts of a network, could
be incorporated into a macro-prudential stress test for assessing systemic risk in partially
observed financial networks.

1.1 Related literature

Networkmodels have been developed for awide range of applications, for example in biology,
information science and economics. The seminal model by Erdős and Rényi [17] (henceforth
ER) considers a network of n nodes and assumes that every pair of nodes is connected with
probability p ∈ [0, 1]. To account for properties of empirical networks, a wide selection of
models has been suggested, see Albert and Barabási [2] and Newman [33,34] for overviews.

The existing literature that analyses financial network data mainly focuses on the corre-
sponding adjacency matrix or on the degree distribution. Financial network data have been
studied for various countries, e.g. Austria [5], Brazil [10], Germany [43], Italy [25], Mexico
[31], the Netherlands [24] and the UK [45]. Papers that do consider the weights of the net-
work usually focus on the tail of the weights and find heavy tails, see e.g., Boss et al. [5] and
Cont et al. [10]. The focus on adjacency matrices and degree distributions is also evident in
the literature on core-periphery financial networks [13,18,24], as well as in the literature on
reconstructing financial networks from partial information; see Gandy and Veraart [19].

Ahugevariety offitnessmodels for financial networks has been considered in the literature,
see e.g. Jacobs and Clauset [26] and Gandy and Veraart [19]. Fitnesses are also sometimes
referred to as sociability parameter [8], or capacities [35]. The statistics literature considers
these fitnessmodels in the context of graphonswhich are functions in two variables (fitnesses)
determining the link existence probabilities between any two nodes [30,37,47].

The majority of fitness models use the fitnesses only to model the existence of the edges
in a network but not its weights. To the best of our knowledge, Gandy and Veraart [19] is
the only model that uses a fitness approach to model both the existence and the weight of
an edge in a (financial) network. This is also what we suggest in this paper. In contrast to
the model considered in Gandy and Veraart [19] we can allow for a wider class of models
for the weights of the distribution of the edges. This is because in the present paper we fit
a network model to observed network data and do not try to reconstruct a network from
observed aggregates of the network. The statistical inference for the former problem seems
to be more easily tractable than for the latter which allows us to consider a wider class of
probability distributions for the financial network.

Compound Poisson models for networks have been considered before but in a slightly
different context. For non-weighted networks, for example, Ranola et al. [41] and Norros
and Reittu [35] propose models in which number of edges is modelled using a Poisson
distribution that depends on fitness parameters. In contrast to these approaches, we consider
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weighted networks and the fitness parameters do not just influence the existence of edges but
also their weights.

Exponential random graph models [23,38] are another popular approach for statistical
inference of networks. While these models do not consider weighted edges, there are some
proposals for extensions to weighted random graphs, see for example the generalized expo-
nential random graph model (GERGM) byWilson et al. [46] who specify a joint distribution
for an exponential family of graphs with edge weights. They provide a Metropolis-Hasting
method to estimate the model and apply it to several real-world networks one of which is
also an international lending network of the type that we consider in our empirical study as
well.

In our models, we develop stochastic (probabilistic) models for random weighted graphs
(the financial networks)—so the random object is the graph itself. This is different from the
field of probabilistic graphical models [28] and from the field of high-dimensional random
graph estimation [32], where graphs are used to help describe dependencies between com-
ponents of a multivariate random variable. There the graph is not an (observable) random
object—it is a property of the random object.

2 Compound Poissonmodels

2.1 Definitions

In the following, we introduce a newmodel class forweighted and directed graphs consisting
of a fixed number n ∈ N of nodes. Furthermore, we assume that the edges are modelled
as random variables. A network consisting of n ∈ N nodes is given by a matrix L =
(Li j )i, j∈{1,2,...,n}, where the Li j are random variables modelling the weight of the directed
edge from node i to node j . A weight of 0 indicates that the corresponding edge is not
present. This definition of a network allows for at most one weighted directed edge between
two nodes. In practice, these weights are often aggregates of several individual relationships
between the nodes, which motivates our model choice.

We propose using a compound PoissonGamma distribution for theseweights, with param-
eters given by a regression model. A compound Poisson Gamma distribution can be defined
via the random variable

X =
N∑

ν=1

Sν,

where N ∼ Poisson(λ) and Sν ∼ Gamma(α, μS), ν = 1, . . . , N , are independent, where
Poisson(λ) is the Poisson distribution with mean λ and Gamma(α, μS) is the Gamma distri-
bution with shape parameter α and mean μS .1 Then Var(Sν) = μ2

S/α and E[S2ν ] = μ2
S
1+α
α

.
It is well known that E[X ] = E[N ]E[Sν] = λμS and Var[X ] = E[N ]E[S2ν ] = λμ2

S
1+α
α

.
This can be seen as a special case of the so-called Tweedie distribution Jorgensen [27] and
Dunn and Smyth [15], which is usually parametrised via its mean μ and parameters φ, p
such that E[X ] = μ and Var[X ] = φμp .2

1 In particular, the probability density function of Sν is given by f (s) = �(α)−1
(

α
μs

)α
xα−1 exp(−x α

μS
)

for x ∈ (0, ∞).
2 We can set μ = λμS , p = 2, φ = 1+α

αλ
. Then, indeed E[X ] = μ and Var(X) = λμ2

S
1+α
α = φμp .
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Our network L = (Li j )1≤i, j≤n will be modelled as independent random variables having
a compound PoissonGamma distributions, with parameters defined via a regression.3 Wewill
propose two ways of doing this—the first (CPNet1) will model μi j := E[Li j ] via regression
and the second (CPNet2) will model both the mean of N , i.e. λ and the mean of Sν , i.e. μS ,
via regression. The numbers 1 and 2 in the names of CPNet1 and CPNet2 indicate howmany
regressions are embedded in the model.

The parameters of CPNet1 are chosen as follows. The shape parameter of the Gamma
distribution is a fixed constant α. As mentioned before, we would like to define the overall
mean via regression—thus we want to achieve E[Li j ] = μi j for given μi j . That leaves
flexibility on how to define the means of the Poisson and Gamma part of the distribution.
We resolve this by imposing a second moment condition, namely Var[Li j ] = φμ

p
i j , where

p = α+2
α+1 . This ensures that every element of L will follow a Tweedie distribution with

parameters μi j , φ, p, with p ∈ (1, 2).

Definition 2.1 (CPNet1) Let p ∈ N, X ∈ R
n×p , let θ = (β1, . . . , βp, α, φ) ∈ R

p × (0,∞)2

and let l : R2 → (0,∞). Then we say that the matrix L has a Compound Poisson Gamma
Network regression model for the mean (CPNet1) if for all i, j ∈ {1, . . . , n},

Li j =
Ni j∑

ν=1

Sν
i j ,

where Ni j ∼ Poisson(λi j ), Sν
i j ∼ Gamma(α, μS

i j ), λi j = 1
φα

μ
α

α+1
i j , μS

i j = φαμ
1

α+1
i j , with

μi j = l( fi , f j ) and

fi =
p∑

ν=1

Xiνβν.

In the above, Xi j , i ∈ {1, . . . , n}, j ∈ {1, . . . , p}, are the elements of the design matrix.
The variable fi can be interpreted as “fitness” of node i .

We refer to l in the definition above as a link function. Examples for link functions are
l(x, y) = exp(x + y), l(x, y) = max(exp(x), exp(y)) and l(x, y) = exp(x) + exp(y). We
would usually choose link functions that are monotonically non-decreasing in each of their
arguments. This then implies that higher values of the fitnesses imply higher means of the
corresponding compound Poisson distributions.

Example 2.2 (CPNet1Fmodel)One example of amodel that falls into theCPNet1model class
is the model that we refer to as CPNet1F model, which we will use in our empirical analysis
later. It is defined by setting p = n, X = In ∈ R

n×n and l : R2 → (0,∞) with l(x, y) =
exp(x + y). Hence, it has n + 2 parameters given by the vector θ = (β1, . . . , βn, α, φ) ∈
R
n × (0,∞)2. In this model, the fitness parameter satisfies fi = βi and the overall mean of

the edge from i to j is given by E[Li j ] = μi j = l( fi , f j ) = exp(βi +β j ). The parameter of

the Poisson distribution is then given by λi j = 1
φα

μ
α

α+1
i j = 1

φα
(exp(βi + β j ))

α
α+1 , the shape

parameter of the Gamma distribution is given by α and the mean of the Gamma distribution

is given byμS
i j = φα(exp(βi +β j ))

1
α+1 . Hence, we see that both the mean of the Poisson and

the mean of the Gamma distributions are controlled simultaneously by the fitness parameter
(β1, . . . , βn) and the parameters α and φ.

3 We might have additional information of the network such as for example that no self-loops exists. If that
is the case we set Lii = 0 for all i ∈ {1, . . . , n}.
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Next we consider CPNet2, which is a model in which both the mean of the Poisson
distribution and the mean of the Gamma distribution are modelled separately via regression.
The shape parameter α of the Gamma distribution is again a fixed constant.

Definition 2.3 (CPNet2) For n ∈ N, for k ∈ {N , S} let pk ∈ N, Xk ∈ R
n×pk and lk : R2 →

(0,∞) and let θ = (βN
1 , . . . , βN

pN , βS
1 , . . . , βS

pS , α) ∈ R
pN+pS × (0,∞).

Then a network L consisting of n nodes follows a Compound Poisson Gamma network
model with links on lambda and the mean of the Gamma distribution(CPNet2) if L is given
by

Li j =
Ni j∑

ν=1

Sν
i j ,

where for i, j = 1, . . . , n, Ni j ∼ Poisson(l N ( f Ni , f Nj )) and for ν = 1, . . . , Ni j , Sν
i j ∼

Gamma(α, l S( f Si , f Sj )), with

f ki =
pk∑

j=1

Xk
i jβ

k
j , k ∈ {N , S}; i = 1, . . . , n.

In the above, Xk
i j , i ∈ {1, . . . , n}, j ∈ {1, . . . , pk}, k ∈ {N , S} are the elements of the

design matrices. Examples for link functions are as above. The variables f Ni and f Si can be
interpreted as fitnesses of node i , one affecting the Poisson part of the model, the other the
Gamma part of the model.

Example 2.4 (CPNet2FPGmodel)We introduce theCPNet2FPG as an example of a CPNet2
model. It has fitness-based parameters on both the Poisson and the Gamma part of the model,
i.e. pN = n, XN = In , pS = n, XS = In , l S(x, y) = l N (x, y) = exp(x + y). It thus has
2n + 1 parameters, namely 2n fitness parameters and the shape parameter of the Gamma
distribution α. In particular, the fitness parameters for the Poisson distribution are given by
f Ni = βN

i , i ∈ {1, . . . , n}. Hence, the mean of the Poisson distribution used to model the
edge from i to j is given by exp(βN

i + βN
j ). Furthermore, the fitness parameters for the

Gamma distribution are given by f Si = βS
i , i ∈ {1, . . . , n}. Hence, the mean of the Gamma

distribution for the edge from i to j is given by exp(βS
i + βS

j ). The parameters for the
Poisson distribution are different from the parameters used for the Gamma distribution. This
will enable us to model the existence of edges independently of the weights of the edges as
we will discuss later.

2.2 Motivation behind the choice of compound Poisson distributions

One motivation behind the compound Poisson models (Definitions 2.1 and 2.3) is that many
weighted networks consist of multiple directed edges between the nodes and these are then
aggregated to obtain one network with at most one directed edge between each node. For
example, consider a network of bilateral exposures on individual CDS. Each bilateral expo-
sure consists in fact of several separate transactions, as described in Peltonen et al. [39].

Anothermotivation comes from the fact that many financial networks do not automatically
net exposures between counterparties. Using the compound Poisson distribution indepen-
dently for both possible directional exposures allows for exposures in both directions, as
well as for no exposure at all between counterparties.
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Furthermore, our basic framework has enoughflexibility tomatch important features of the
link existence distribution and of the exposure distribution. The compound Poisson Gamma
distribution has three parameters (one for the Poisson part and two for the Gamma part), thus
enabling us to match 3 properties such as the probability of no link, as well as the mean and
the variance of the exposure.

2.3 Interpretation as fitness models

These new models were inspired by the classical fitness models (see Sect. 1.1) that assign
fitnesses to every node which then determines the link existence probabilities for every edge.
We, however, take a broader view by considering a general regression framework that enables
us to characterise more general features of the random graph. In particular, our regression
framework incorporates fitness models as special cases but with the additional feature that
fitnesses are used to characterise properties of theweights of edges in addition to the existence
of edges.

To see how CPNet1 can be interpreted as a classical fitness model (in which no regression
is used to determine the fitness parameter), we can set X = In , where In is the n× n identity
matrix in CPNet1. Then, fi = ∑p

j=1 Xi jβ j = βi for all i ∈ {1, . . . , n}. Hence, the overall
mean of Li j is given by μi j = l( fi , f j ) = l(βi , β j ) which can be interpreted as a fitness
model for the mean of the weighted edges where βi , i ∈ {1, . . . , n} are the fitnesses.

Similarly, we can set XN = XS = In in CPNet2. Then, l N ( f Ni , f Nj ) = l N (βN
i , βN

j )

can be interpreted as a fitness model for the mean of the Poisson distribution where βN
i ,

i ∈ {1, . . . , n} are the fitnesses and l S( f Si , f Sj ) = l S(βS
i , βS

j ) can be interpreted as is a

fitness model for the mean of the Gamma distribution with fitnesses βS
i , i ∈ {1, . . . , n}.

Both CPNet1 and CPNet2 could be extended to give every node an in-fitness and an
out-fitness. For example, in CPNet2, we could have 4 instead of 2 design matrices, i.e. for
k ∈ {N , S} and l ∈ {in, out} we have Xk,l ∈ R

n×pk,l and corresponding fitnesses

f k,li =
pk,l∑

j=1

Xk,l
i j β

k,l
j

that then define the model via

Ni j ∼ Poisson(l N ( f N ,out
i , f N ,in

j )) and Sν
i j ∼ Gamma(α, l S( f S,out

i , f S,in
j )).

Similarly, one could define an extension of CPNet1 with in-fitness and out-fitness.
As discussed in our literature review fitness models have been studied before and it has

been shown that they can also be used to construct degree distributions with heavy tails,
see e.g. Gandy and Veraart [19]. These results carry over to our class of compound Poisson
models, since as one can see from the formulae for the link existence probabilities (1) one
can model a wide range of link behaviour with an appropriate choice of fitness parameters
and link functions l.

2.4 Expected degrees and strengths

Next, we derive formulae for the existence and non-existence of edges, for the expected
in- and out-degrees and the expected in- and out-strengths in the new models. In particular,
we show that only the parameters of the Poisson distribution determine the link existence
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probabilities of the edges (together with the link function l in CPNet1 or l N in CPNet2). The
distribution used for the individual Sν

i j only matters for the actual weights along the edges
and these weights are then also influenced by the parameters of the Poisson distribution.

Proposition 2.5 Let L beCPNet1 as inDefinition 2.1 and let L̃ beCPNet2 as inDefinition 2.3.
Then, for any i, j ∈ {1, . . . , n},
1. the probability for the non-existence and the existence of a directed edge from i to j is

given by

P(Li j = 0) = exp

(
− 1

φα
l( fi , f j )

α
α+1

)
, P(Li j > 0) = 1 − P(Li j = 0),

P(L̃i j = 0) = exp
(
−l N ( f Ni , f Nj )

)
, P(L̃i j > 0) = 1 − P(L̃i j = 0);

(1)

2. the expected in- and out-degrees are given by

E[din(L)i ] = E

⎡

⎣
n∑

j=1

I{L ji>0}

⎤

⎦ = n −
n∑

j=1

exp

(
− 1

φα
l( f j , fi )

α
α+1

)
,

E[dout(L)i ] = E

⎡

⎣
n∑

j=1

I{Li j>0}

⎤

⎦ = n −
n∑

j=1

exp

(
− 1

φα
l( fi , f j )

α
α+1

)
,

E[din(L̃)i ] = n −
n∑

j=1

exp
(
−l N ( f Nj , f Ni )

)
,

E[dout(L̃)i ] = n −
n∑

j=1

exp
(
−l N ( f Ni , f Nj )

)
;

(2)

3. the expected in- and out-strengths are given by

E[sin(L)i ] = E

⎡

⎣
n∑

j=1

L ji

⎤

⎦ =
n∑

j=1

l( f j , fi ),

E[sout(L)i ] = E

⎡

⎣
n∑

j=1

Li j

⎤

⎦ =
n∑

j=1

l( fi , f j ),

E[sin(L̃)i ] = E

⎡

⎣
n∑

j=1

L̃ j i

⎤

⎦ =
n∑

j=1

l N ( f Nj , f Ni )l S( f Sj , f Si ),

E[sout(L̃)i ] = E

⎡

⎣
n∑

j=1

L̃i j

⎤

⎦ =
n∑

j=1

l N ( f Ni , f Nj )l S( f Si , f Sj ).

(3)

The results follow directly from the definition of the new models and properties of com-
pound Poisson distributions and therefore we omit the proof.

When comparing the expected strengths to the degrees, i.e., formula (3) to (2) we see
the main difference between CPNet1 and CPNet2. In CPNet1 the same model parameters
determine the magnitude of the degrees and the strengths. In CPNet2 there are additional
model parameters f Si , and link functions l Si , i ∈ {1, . . . , n} that influence the strengths of
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the nodes but not the degrees. Hence, if there is no clear monotonic relationship between
strengths and degrees this can be captured with the model class CPNet2. We will discuss this
in more detail in our empirical case study.

2.5 Special cases: Erdos–Rényi and core-peripherymodel

Both CPNet1 and CPNet2 reduce to the classical Erdős–Rényi random graph model for the
existence of edges for special choices of the model parameters. Indeed, in CPNet1, if we
set all parameters fi to the same value, say x , then from (1) we see that all link existence
probabilities are identical and hence the CPNet1 model reduces to the classical ER model
for the existence of the edges. The same holds for CPNet2 if all parameters f Ni are set to the
same value.

We can also reproduce a core-periphery structure with our new model classes. One could,
for example, choose two fitnesses xcore ≥ xperiphery and assign all nodes i in the core the
fitness fi = xcore and all nodes i in the periphery the fitness fi = xperiphery. This can be
achieved by setting β1 = xcore, β2 = xperiphery, pk = 2, Xk

i1 = 1 if i is in the core and
0 otherwise and Xk

i2 = 0 if i is in the core and 1 otherwise. Then for any function lk that
is non-decreasing in its first two arguments, one would obtain the highest probability for
existing edges between two members of the core and the lowest between two members of
the periphery. From (2) it is also clear that nodes in the core would have higher expected in-
and out-degrees compared to nodes in the periphery. This approach could be generalised by
considering possibly more than two types of vertices as in the stochastic block models for
random graphs.

2.6 Possible applications of themodels

Our modelling framework can be used to deal with missing information in network models.
For example, situations in which a financial network is only partially observed and one would
like to fill in the remaining parts. In contrast to the literature on network reconstruction, see
e.g. Gandy and Veraart [19,20] we do not assume that the row and column sums of the
network matrix L are observed and the individual entries need to be estimated, but we have a
situation in mind in which the row and column sums are not observable but some individual
entries of the matrix are observable. In such a situation one could fit our new model class to
the available data and predict the missing entries from the fitted model. We will demonstrate
how this can be done in our empirical case study.

An alternative application would be that one observes a network in the past (on one or
several occasions) and fits the new model class to these observations. One then uses these
results to predict a network in the future.

Alternatively, one might be in a situation that one observes a network that is related to a
network of interest, e.g., a derivative exposure network corresponding to Credit Default Swap
exposures written on a given reference entity is observed (for example where the reference
entity is aUKcompany) but one is interested in the same type of networkwritten on a different
reference entity (for example a non-UK company) and would like to make predictions about
this network.

All these possible application areas could arise in the context of macro-prudential stress
testing for systemic risk analysis in financial networks. To be able to conduct a macro-
prudential stress test one needs to consider the financial system as a whole and analyse
potential feedback and amplification mechanisms between the market participants. Often,
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the connections that give rise to such feedback mechanisms are not fully observable and
therefore one will need to rely on statistical and simulation methods to deal with the missing
information. This is where our compound Poisson model class can be used. In Gandy and
Veraart [19,20] it was demonstrated how a network reconstruction method can be used in a
macroprudential stress test if the network of interest is not fully observable. As mentioned
before, in these papers the assumption was that the network matrix itself was not observable
but its row and column sumswere. Here we assume that a subset of the network is observable,
andweuse the subset to estimate a statisticalmodel thatwill then be used to predict themissing
edges in the original network that is not fully observable.

3 Empirical case studies

We will now fit the new class of compound Poisson models to two different data sets of
financial networks. The first data set contains financial networks representing exposures
due to financial derivatives and the second data set contains financial networks representing
cross-border lending activities. In addition to the compound Poisson models with regression
introduced in this paper, we will compare the fit to some alternative models for financial
networks. We compare the performance of the models in-sample in Sect. 3.4 (using the
Akaike information criterion (AIC)) and out-of-sample in Sect. 3.5 (using cross-validation).

3.1 Data description: derivative exposure network

First, we consider a data set that contains a snapshot of roughly 134,000 outstanding positions
in Credit Default Swaps (CDS) referencing 89 different UK institutions, taken in the second
half of 2011.Wewill refer to them asCDS data. The data come from theDepository Trust and
Clearing Corporation’s (DTCC) Trade Information Warehouse (TIW) and were supplied to
us by the Bank of England with anonymized counterparties. These data were also considered
in Gandy and Veraart [20]. As described there, these data record for each reference entity,
both counterparties of a position (buyer and seller) and the notional amount.We only consider
positions forwhich the notional amounts are quoted in EUR. The notional amount “represents
the par amount of credit protection bought or sold, equivalent to debt or bond amounts, and
is used to derive the coupon payment calculations for each payment period and the recovery
amounts in the event of a default” [14, p. 3]. From these data, we construct for each UK
reference entity being referenced a network between buyers and sellers describing the total
outstanding positions in credit default swaps referencing this particular institution. This leads
to 89 networks in total. Sometimes, for a given reference entity, a pair of buyer and seller
is listed more than once which corresponds to outstanding positions for different maturities.
For these cases, we just add up all the multiple entries to obtain the total weight for such
an edge. In the following we consider (an arbitrary selection of) 5 of these networks—we
refer to them as CDS_A, where A ∈ {1, . . . , 5}. Table 1 provides some summary statistics
for these five networks.

Figure 1 contains a plot of one of these networks consisting of 107 nodes. The network
matrix has been normalised such that the sum of all entries of the matrix equals 1. We see
that there is a strong clustering of exposures in the lower right corner representing mainly
exposures between dealers in this network. This network represents a very typical financial
network exhibiting some core-periphery structure.
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Table 1 Network characteristics for the five CDS networks

Network name CDS_1 CDS_2 CDS_3 CDS_4 CDS_5

Number of nodes 32 20 33 62 107

Density 0.21 0.43 0.15 0.09 0.04

Fig. 1 Normalized exposure
network for CDS_5 (row:
protection seller, column:
protection buyer)
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Fig. 2 Empirical cumulative distribution function of the in- and out-degrees (left) and the in- and out-strengths
for the CDS_5 network

In the following we consider some more descriptive statistics to understand some prop-
erties of the network. Figure 2 shows the empirical cumulative distribution functions of the
in- and out-degrees (left) and the in- and out-strengths (right). In general, we find that this
network appears to be symmetric with almost no difference between the in- or out-degrees
and the in- or out-strengths.

To understand the relationship between strengths and degrees, we consider Fig. 3 which
shows a scatter plot of the strengths against the degrees. There is a clear tendency for nodes
with high degrees to also have high strengths.Wefit a simple linearmodel to the observed total
strengths (in- + out-strengths) using an intercept β0 and slope parameter β1 where we use the
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Fig. 3 Relationship between
strengths and degrees and fitted
regression line for the CDS_5
network
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total degree as explanatory variables. In particular, we set strengthi = β0 + β1degreei + εi ,
i ∈ {1, . . . , n} where εi is the error term. The regression line is also included in Fig. 3 and
we see that the linear relationship seems to describe the data reasonably well. Hence, for this
data set, a model that associates higher weights with more links seems to be appropriate. We
will see that this can be achieved by our compound Poisson models.

Similar monotonic relationships between strengths and degrees have been found in other
networks. For example, Barrat et al. [4] finds in an analysis of a world-wide airport network
(in which nodes represent airports, and the weighted edges represent the number of available
seats on direct flights between these airports) that the average strength of a node with degree
k increases with the degree proportional to kb for some parameter b.

3.2 Data description: international lending network

As the second example, we consider data from the Bank for International Settlements that
they collect as part of their locational banking statistics (LBS). We will refer to them as
LBS data. These data are publicly available.4 These data contain information on claims and
liabilities of financial institutions aggregated on a country level. From these data, we chose
the 38 countries that report their financial activities to the BIS, see Table 2. These reporting
countries have financial interactions with 521 other countries or groups of countries, but
we only consider the trading activities between the 38 reporting countries that we have
chosen. Hence, all the networks we consider in this case study contain 38 nodes. The data
set contains additional information such as the sector of the counterparty (e.g. bank or non-
bank). To keep the analysis tractable we have chosen the highest level of aggregation, i.e.,
we do not differentiate based on additional information available in the data set. The data
are reported quarterly (starting from 1977 for some countries) and we have chosen the first
quarter (Q1) of the following three years: 2000, 2009, 2018. For these three time points, we
construct three networks as follows. First, we consider the network of claims reported by
the reporting countries, i.e., the individual entries of the network L(c)

i j represent the cross-
border outstanding claims from country i to country j in million USD (i, j ∈ {1, . . . , 38})
that were reported by the reporting countries. If pairs of countries occur multiple times, we
add the corresponding positions. Second, we consider the network of liabilities reported by

4 We used the data set available under the Link Locational banking statistics on the website https://www.bis.
org/statistics/full_data_sets.htm.
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Table 2 Selected countries of the BIS reporting countries
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Macao SAR Malaysia Mexico Netherlands Norway

Panama Philippines Portugal Russia Singapore
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Fig. 4 Total cross-border liabilities between the LBS reporting countries in million USD

the reporting countries. Hence, L(l)
i j represent the cross-border outstanding liabilities from

country i to country j inmillionUSD (i, j ∈ {1, . . . , 38}) reported by the reporting countries.
Again, if there are multiple entries for pairs of countries we just add up these positions. Third,
we consider a combined network of claims and liabilities given by L(t)

i j = L(l)
i j +L(c)

j i .Wewill
refer to the resulting 9 matrices as LBS_A_B, where A ∈ {2000, 2009, 20018} denotes the
year and B ∈ {L,C, T } denotes whether the network it the network of liabilities (L) (from
the perspective of the reporting country), claims (C) (from the perspective of the reporting
country) or the combined network (T).

The BIS data have been used in a wide range of studies, see e.g. Oatley et al. [36] for
another application.

Figure 4 contains a plot of one of these networks consisting of 38 nodes and representing
the combined network of claims and liabilities reported in Q1 2018 (in million USD). We see
that theUnited States and theUnitedKingdom are dominating the picture by being essentially
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(a) (b)

Fig. 5 Empirical cumulative distribution function of the in- and out-degree (left) and the in- and out-strength
for the LBS data from 2018 Q1

Fig. 6 Relationship between
log-strength and degree and fitted
regression line for the LBS data
from 2018 Q1

the only two countries that are connected to almost all other countries. Furthermore, the cross-
border liabilities from the UK to the USA and vice-versa are by orders of magnitude larger
than liabilities between any other pair of countries. When observing the data over time (not
reported here) we find that the cross-border liabilities seem to concentrate and the UK and the
USA have become more important over time, both when measured in terms of their degrees
and their strengths. This concentration has been analysed further in Aldasoro and Ehlers [3].

In the following, we investigate the relationship between strength and degree in the LBS
data. Figure 5 shows the empirical cumulative distribution functions of the in- and out-degrees
(left) and the in- and out-strengths (right). Similarly to the results for the CDS data, we find
that this network appears to be quite symmetric. The in-strength seem to be quite similar to
the out-strengths and the same holds for the in- and out-degrees. In contrast to the CDS data,
now (in-/out-) degrees seem to exhibit a different pattern compared to (in-/out-) strengths.
In particular, as one can see from the empirical cumulative distribution functions the in- and
out-degree distributions appear to be bimodal which is not the case for the distribution of
the in- and out-strengths. To illustrate this difference further we again look at a scatter plot
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of the log-strengths against the degrees in Fig. 6. We fit a regression line which still exhibits
a positive slope indicating that there is still some tendency for nodes with higher strengths
to be associated with nodes that have higher degrees, with considerable scatter around the
regression line. We clearly see that there are some nodes which have very high strengths but
rather low degrees and nodes that have rather high degrees but low strengths.

On the one hand, there are four countries for which their total strength is greater or equal
than the median strength of all countries and at the same time their total degrees are less or
equal than the median degrees over all countries (this holds for China, Germany, Japan and
Singapore). These countries have rather low degree despite their high strength. On the other
hand, there are four countries whose total strength is less or equal than themedian strength but
their total degree is larger or equal than themedian degree (this holds for Finland, Philippines,
South Africa, South Korea). These countries have high degrees despite their small strengths.
Hence, according to this informal “outlier” criterion 8/38 ≈ 21% nodes are outliers. The
same analysis for the CDS network only reveals 11/107 ≈ 10%outliers. Hence, the LBS data
have different features compared to the CDS data. In particular, ordering the nodes according
to their strength does not coincide with ordering the nodes according to their degree. To be
able to fit such a type of behaviour we need a model class that is flexible enough to at least
accommodate a partial separation of the weights of an edge from the existence of an edge.We
will in the following show how this can be achieved with the compound Poisson regression
models.

3.3 Models in the comparisons

We now list the models that we consider in our comparisons for the empirical case study.
Since our model classes CPNet1 and CPNet2 are very flexible, we choose several choices
of models that fall within these two model classes. In addition, we consider some modelling
approaches that do not fall within the classes CPNet1 and CPNet2 but appear to be a natural
alternative modelling approach to the compound Poisson approach.

The first three models are models for homogeneous networks. The other models allow for
differences between the nodes by introducing fitness parameters.

1. ERE uses an Erdős–Rényi network for the link existence probability and then has weights
following an exponential distribution. Formally, its model parameter is θ = (p, λ) ∈
[0, 1] × (0,∞) and independently, P(Li j > 0) = p and Li j |Li j > 0 ∼Exponential(λ).
This model has been used in Gandy and Veraart [19] as an a priori model in a Bayesian
framework for network reconstruction. This model is not part of the CPNet1 or CPNet2
class.

2. ERG extends the previous model by allowing a Gamma distribution for the distribution
of the weights. The parameter is now θ = (p, α, β) ∈ [0, 1]× (0,∞)2, P(Li j > 0) = p
and Li j |Li j > 0 ∼ Gamma(α, β). This model is also not part of the CPNet1 or CPNet2
class.

3. Tweedie is a special case of CPNet1 with p = 1, X = (1, . . . , 1)T and l(x, y) =
exp(x + y). This implies that all entries follow the same Tweedie distribution.

4. CPNet1F is a fitness-based model from the CPNet1 family of models. It uses the fitness
in the regression of the overall mean. To be precise, it sets pN = n, X = In and uses the
link function l(x, y) = exp(x + y). It has n + 2 parameters.

5. CPNet2FP is a CPNet2 model with fitness-based parameters on the Poisson part of the
model only, i.e. pN = n, XN = In , pS = 1, XS = (1, . . . , 1)T . It uses the link functions
l S(x, y) = l N (x, y) = exp(x + y). The distribution of the Gamma part of the model is
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only controlled by a one-dimensional parameter for themean and by the shape parameter.
It has n + 2 parameters in total.

6. CPNet2FGuses the regression on theGammapart ofCPNet2 only. It hasn+2 parameters,
and uses the following settings: pN = 1, XN = (1, . . . , 1)T , pS = n, XS = In ,
l S(x, y) = l N (x, y) = exp(x + y).

7. CPNet2FPG is a CPNet2 model with fitness-based parameters on both the Poisson and
the Gamma part of the model, i.e. pN = n, XN = In , pS = n, XS = In , l S(x, y) =
l N (x, y) = exp(x + y). It thus has 2n + 1 parameters.

8. CPNet2FPGmax is the same as CPNet2FPG but with a different link function on the
Poisson part, namely l N (x, y) = max(exp(x), exp(y)). It also has 2n + 1 parameters.

9. GlmF is a fitness based model that is not part of the compound Poisson Gamma family.
GlmF is a combination of a logistic regression and a Gamma generalized linear model.
The existence of a link, i.e. I{Li j>0}, is defined via a logistic regression model and the
weight of the link (conditional on existence), i.e. Li j |Li j > 0 is defined via a Gamma
regressionwith the inverse function as the link function.Both regressions use as predictors
only the row and the column index, i.e. the linear predictor for I{Li j>0} in the logistic

regression is θ
logistic
i + θ

logistic
j and for Li j |Li j > 0 the Gamma regression it is θ�

i + θ�
j .

The overall parameter vector is (θ
logistic
1 , . . . , θ

logistic
n , θ�

1 , . . . , θ�
n , φ), where φ is the

dispersion parameter in the Gamma regression. Thus, the dimension of the parameter of
the model is 2n + 1.

All models are implemented in R [40]. All models but GlmF get fitted by optimising the
likelihood using general-purpose optimisers (optim). The likelihood of the Tweedie, CPNet1
and CPNet2 models are using the methods developed in Dunn and Smyth [15]. GlmF uses
the glm function available in R.

3.4 In-sample results

We now assess the fit of the models in the empirical case studies. Table 3 gives the
Akaike information criterion (AIC) of the models, which is given by −2l + 2k, where l is
the maximised log-likelihood of the model and k is the number of parameters in the model.
To ease comparisons, we have subtracted the AIC of the basic ERE model for all datasets.
Smaller numbers indicate a better fit.

In addition to the data from the case studies, two simulated networks are included (ER8
and ER50); these are simulated from the ERE model with 8 and 50 nodes, with p = 0.3
and λ = 0.2. As expected, the true underlying model (ERE) performs best. For the networks
from the case studies the picture is different.

We find that ERG and Tweedie outperform ERE. However, compared to the fitness-based
models, their performance is relatively poor.

The models CPNet1F, CPNet2FP and CPNet2FG all have one fitness parameter per node
and additionally two free parameters. For the LBS data, CPNet1F, which is modelling the
overall mean in a regression, seems to be slightly better than modelling only the mean of the
Poisson distribution (CPNet2FP) in most cases. For the CDS data modelling the mean of the
Poisson distribution CPNet2FP is slightly better than modelling the overall mean (CPNet1F).
In both cases, the results formodelling only themean of theGamma distribution (CPNet2FG)
are worst.
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Fig. 7 Degree and strength plotted against the fitted exponential fitness for the LBS data from 2018 Q1

Both CPNet2FPG and GLmF have two fitness parameters per node. They seem to be
doing better than the models with just one fitness parameter. Their performance is somewhat
comparable, with CPNet2FPG slightly outperforming GlmF overall.

CPNet2FPGmax seems to be doing slightly better for some of the networks, specifically
the LBS networks with total liability.

Figure 7 illustrates the estimated finesses of one particular model fitted onto the LBS Data
from 2018 Q1, the network used in Figs. 4, 5 and 6. The model we consider is CPNet2FPG
which has 2n+1 parameters. One plot shows the estimated exponential fitness exp( f Ni ) of the
Poisson part against the degrees of the nodes. The other plot shows the combined exponential
fitnesses exp( f Ni ) exp( f Si ) of the Poisson and the Gamma part against the strength. These
demonstrate a good alignment and show that the fitnesses are indeed capturing the desired
strength and degrees of the network.

3.5 Cross-validation results

Next, we use a cross-validation approach to compare the performance of the compound
Poisson models. We partition the elements of the network matrix into tenfolds (roughly
equally sized; all elements belong to exactly onefold) and they stay in these folds for the
duration of the analysis. We fit the model using the data for ninefolds and then compute the
log-likelihood (using the fitted model) of the remaining fold. We repeat the process for all
folds and average the results. Hence, every observation is used to fit the model 9 times and
is used to test the fit exactly once.

Table 4 presents the average log-likelihood in the testing fold. For the simulated data sets
(ER8 and ER50), the true underlying model (ERE) does best as we would expect. For the
CDS data sets, the CPNet2FP model seems to be doing best. For the LBS data set, it is one of
the models with two fitness models—either CPNet2FPG or CPNet2FPGmax. For the CDS
data sets, the CPNet1F data set seems to be doing badly.

Table 5 is also based on cross-validation, but with a different error criterion. It simulates
from the fitted model 100 times and then reports the average accuracy (the proportion of
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elements that were correctly present/not present). The table reports the results in percent.
Generally speaking, models that allow for a fitness parameter in the Poisson part of the model
(such as CPNet2FP, CPNet2FPG or CPNet2FPGmax) are doing best. This is not surprising
since in (1) we have seen that the link existence probabilities are directly determined by the
fitnesses associated with the Poisson distribution.

4 Conclusion

We have introduced a new model class for directed and weighted random graphs with a
fixed number of nodes in which each edge has a compound Poisson distribution for its
weight.We have proposed different regression approaches tomodel features of the compound
Poisson distribution. When fitting the new models to empirical network data we found that
in most cases the compound Poisson models that model both the expectation of the Poisson
randomvariable and the expectation of theGammadistribution via separate regressionmodels
performed best (measured in terms of their AIC), i.e., the CPNet2 model class is preferable
to the CPNet1 model class which itself is preferable to more basic Erdős–Rényi-type models.

In our tests on using these models for predicting subnetworks of a larger network we
found the following. TheCDS data exhibit amore traditionalmonotonic relationship between
strengths and degrees. Consistent with this finding, the CPNet2 model class with only one
regression for the mean of the Poisson distribution performed best for the CDS data. The
LBS data do not have a monotonic relationship between strengths and degrees. Therefore,
we found clear advantages of using the CPNet2 model with both a regression for the mean
of the Poisson distribution and a separate regression for the mean of the Gamma distribution
for the LBS data.
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