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Abstract
The mainstream in finance tackles portfolio selection based on a plug-in approach with-
out consideration of the main objective of the inferential situation. We propose minimum
expected loss (MELO) estimators for portfolio selection that explicitly consider the trading
rule of interest. The asymptotic properties of our MELO proposal are similar to the plug-in
approach. Nevertheless, simulation exercises show that our proposal exhibits better finite
sample properties when compared to the competing alternatives, especially when the tan-
gency portfolio is taken as the asset allocation strategy. We have also developed a graphical
user interface to help practitioners to use our MELO proposal.

Keywords Bayesian estimation · Minimum expected loss · Portfolio selection

JEL Classification C01 · C11 · G11

1 Introduction

The mainstream methods to estimate the optimal weights in the portfolio allocation problem
is based on the plug-in approach; that is, individual location and scale estimates are simply
plugged into the objective expression without explicit consideration of the main goal of the
inferential situation. However, this approach has some shortcomings: it ignores parameter
uncertainty [1–6], has infinite mean in some cases (tangency and Treynor–Black portfolios)
[7], and has unbounded risks relative to quadratic loss functions [8].
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To mitigate these issues, we follow a decision theory framework based on a Bayesian
approach, the minimum expected loss approach (MELO), where the posterior expected value
of a generalized quadratic loss function, which depends explicitly on the optimal assets
weights (the main estimation goal), is minimized. We analyze the global minimum variance
portfolio, tangency portfolio, and Treynor–Black portfolio.

Zellner [8] introduced theMELO approach in simultaneous equations models. He showed
that the MELO estimator has, at least, finite first and second moments, and finite risk with
respect to a generalized quadratic loss function. Further, Zellner [9] approximated the small
sample moments and risk functions of the MELO estimators, and Zellner [10] showed that
MELO estimates of structural parameters are weighted averages of direct least squares and
two-stage least squares. It has been shown in Monte Carlo experiments that the MELO esti-
mates have lessmean squared errors than the two-stage least squares estimates [11]. However,
the former has more bias than the latter [11]. In addition, Swamy and Mehta [12] showed
that conditions for existence of the full information maximum likelihood estimator are more
demanding than the conditions to get the MELO estimator in undersized sample conditions,
that is, when the number of exogenous variables exceeds the sample size. Zellner [13] pro-
posed the Bayesian method of moments, and related it to the MELO, extending his proposal
to cases where there are just moment conditions for estimation. Recently, Ramirez-Hassan
and Correa-Giraldo [14] proposed the MELO estimator using a generalized quadratic loss
function focused on rational functions of parameters. Ramirez-Hassan and Correa-Giraldo
[14] showed that the asymptotic properties of the MELO estimator are similar to the plug-in
approach. Nevertheless, simulation exercises show that the MELO has better finite statistical
properties than the plug-in approach. Moreover, the MELO estimator is rooted in a Bayesian
framework, therefore, it takes into account estimation error by construction.

Estimation error is a huge concern in optimal portfolio strategies. In particular, it seems
that expected returns are the primary source of estimation error [5] accounting 10 times more
error than the covariance matrix [15] (Kan and Zhou [6] argue against this point). Therefore,
many approaches have been proposed to mitigate this issue. The Bayesian approach, which
explicitly takes into account parameter uncertainty, has played a prominent role; Barry [2],
Brown [16] and Frost and Savarino [17] addressed this issue using diffuse priors for param-
eters, finding that their strategies drive to the same admissible set of optimal portfolios than
using traditional analysis. Nevertheless, their portfolio weight estimators differ from those
obtained by frequentist approaches.Meanwhile, Klein and Bawa [3] proposed an informative
prior setting, which changes the admissible set of portfolios and optimal portfolio weights.
The Bayes–Stein strategy si another important approach, which is an application of shrink-
age estimators that produce biased estimators but with lower mean squared error [18]. This
approach is used by Jorion [19] to estimate expected returns, Ledoit and Wolf [20,21] to
estimate the covariance matrix, the former based on a linear shrinkage approach, whereas
the latter in a non-linear fashion, and [22,23], where the shrinkage target depends on the
investor’s prior belief in an asset pricing model. Frahm and Memmel [24] promoted the
global minimum variance portfolio using a shrinkage estimator for the variance matrix due
to expected value accounting for most of the estimation error.

Recently, DeMiguel et al. [25] proposed to use naive (equal) weights to avoid the issue
of estimation risk. They used 14 portfolios strategies and seven datasets to test the power of
the naive strategy, showing that the naive portfolio outperforms most of the methodologies
with different datasets. However, this idea was strongly criticized by Kritzman et al. [26]
because it is based on particular designs of datasets. Kritzman et al. [26] showed examples
where optimization strategies perform better than naive strategies. Another stream is based
on combining portfolios from different optimal rules to diversify estimation errors. Kan and
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Zhou [6] proposed optimal portfolio allocation estimators minimizing a risk function that
dependents on the out-of-sample performance of the expected investor’s utility function. Kan
and Zhou [6] focused on admissible trading strategies, admissibility is a minimum require-
ment on decision rules, proposing a “three-fund” portfolio rule composed by the risk-free
asset, tangency portfolio, and the global minimum-variance. Tu and Zhou [27] proposed a
combined portfolio between the naive strategy and one that comes from an optimization
problem. They proposed the naive portfolio as a shrinkage target. Other strategies to miti-
gate estimation error are based on robust portfolios [28,29], and transforming the optimal
weight estimation problem into linear regressions [30,31]. In the former approach, parameter
uncertainty is taken into account in the optimization procedure. In the latter approach, Li
[30] proposed a sparse and stable methodology based on lasso and ridge regressions with
similar statistical characteristics than shrinkage estimators. Klimenka and Wolter [31], also
proposed a regression framework that uses the focused information criterion [32], which is
based on the trading strategy, and model averaging to take model uncertainty into account.

Our proposal has some characteristics from previous proposals due to being based on a
Bayesian setting [2,3,16,17] under a decision theory framework focused on the final infer-
ential goal [6,31]. However, our proposal is based on minimizing the posterior expected loss
function rather than the frequentist risk function, and our loss function is based on the trading
strategy rather than the utility function. In particular, we exploit the specific structure (ratio-
nal functions) of the main objective of estimation in three well known portfolio optimization
problems, and propose the MELO approach obtaining same asymptotic results as the plug-in
approach, but showing that our proposal obtains better statistical properties in finite samples
when compared to the competing alternatives, especially when the optimal trading rule is the
tangency portfolio. To the best of our knowledge, this the first time that the MELO estimator
is used for these three optimal portfolio strategies.

The rest of this paper is structured as follows. Section 2 shows theoretical framework of
different competing alternatives. Section 3 develops theMELOestimates for globalminimum
variance, tangency portfolio and Treynor–Black model. Section 4 exhibits the outcomes of
the simulation exercises. In Sect. 5, we develop an empirical study. Finally, we make some
conclusions.

2 Theoretical framework

Suppose that the investment universe consists on N assets. Denoting by Rt the excess of
returns of the N assets at time t , Rt = (r1t , r2t , . . . , rNt )

′.1 It is assumed that the excess of
returns has a multivariate normal distribution Rt ∼ N (μ,Σ). The portfolio weights are the
proportion of wealth invested in each of the N assets, w = (w1, w2, . . . , wN )′. We suppose
that the investor has a portfolio holding period of length κ and that the investor wants to
maximize their wealth at the end of the investment horizon, T +κ , where T is the last period
for which return data is available (sample size).

1 The excess of returns is defined as the asset returns minus the corresponding risk-free rate.
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2.1 Trading strategies

2.1.1 Global minimum variance portfolio

The globalminimumvariance (GMV) is a portfolio whoseweights represent the combination
that gives the minimum variance between all possible portfolios. It is defined as the solution
of the minimization problems,

argmin
w∈RN

w′ΣT +κw; s.t . w′1 = 1,

where 1 denotes a vector of ones. Because Σ is positive defined, the GMV is unique and the
solution of the minimization problem is

wvp = Σ−1
T +κ1

1′Σ−1
T +κ1

. (1)

2.1.2 Tangency portfolio

The tangency portfolio is defined as the portfolio that has the highest Sharpe ratio. The
tangency portfolio solves the constrained maximization problem

argmin
w∈RN

w′μT +κ√
w′ΣT +κw

; s.t . w′1 = 1,

thus, the solution has the expression

wtp = Σ−1
T +κμT +κ

1′Σ−1
T +κμT +κ

. (2)

2.1.3 Treynor–Black Model

Active management searches some sources of abnormal returns (alpha) to outperform a pas-
sive benchmark portfolio. The Treynor–Black model, which was proposed by Treynor and
Black [33], tackled this problem by assuming an investor who considers that most securi-
ties are mis-priced with respect to an asset pricing model but who believes that they have
information that can be used to predict the abnormal returns of a few of the securities.

Consider the following regression model,

rit = αi + βi rMt + eit

where rMt is the excess of return of the benchmark portfolio, and et ∼ N (0, H).
This strategy consists of investing in an active portfolio (A) containing the assets for

which the investor has made a prediction about abnormal return and a passive portfolio (B,
benchmark) containing all assets in proportion to their market value. Let’s w∗ denote the
weights for the active portfolio that maximize the information ratio.

argmin
w∈RN

w′αT +κ√
w′HT +κw

s.t . w′1 = 1,
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where αT +κ = (α1,T +κ , α2,T +κ , . . . , αN ,T +κ )
′
. The solution is given by

w∗ = H−1
T +καT +κ

1′H−1
T +καT +κ

. (3)

The second stage is to construct an optimal mix of A and B to form a risky portfolio P.
This is a standard two risk assets portfolio problem. Here,wA and 1−wA denote the weights
of wealth invested in A and B, respectively, where

wA = w0

1 + (1 − βA)w0
,

where w0 = αA/σ 2
A

rM /σ 2
M

, σ 2
A = w∗′

HT +κw∗, αA = w∗′
αT +κ , βA = β ′

T +κw∗, and βT +κ =
(β1,T +κ , β2,T +κ , . . . , βN ,T +κ )

′
.

Observe that all of the optimal weights depend on future expected returns at T + κ . As a
consequence, they depend on parameter estimates.

2.2 Statistical strategies

In this subsection, we show different statistical strategies to estimate μT +κ , ΣT +κ , αT +κ ,
βT +κ and HT +κ .

2.2.1 Plug-in approach

The classical approach estimates parameters using available sample information and then
plugs these estimates in the optimal solutions omitting parameter uncertainty. In particular,

μ̂ = 1

T

T∑

t=1

Rt ,

Σ̂ = 1

T − 1

T∑

t=1

(Rt − μ̂)(Rt − μ̂)′,

B̂ = (X ′X)−1X ′R,

and

Ĥ = 1

T − N − 1
(R − X B̂)′(R − X B̂),

where R is a T × N matrix of excess of returns, X = [1 rM ] is a T × 2 design matrix, and

B̂ =
[
α̂

′

β̂
′
]

.

2.2.2 Shrinkage approach

A shrinkage estimator is a weighted average of the sample estimator and the so-calledBayes–
Stein estimator of the mean. Under this approach,

μ̂
Sh = (1 − λ)μ̂ + λ1μ0,
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where μ0 is the shrinkage target, and the shrinkage intensity λ is given by

λ = min

{
1,

N − 2

T (μ̂ − 1μ0)′Σ̂(μ̂ − 1μ0)

}
.

Jorion [19] proposed as the shrinkage target the return on the global minimum variance
portfolio,2

μ0 = 1′Σ̂−1

1′Σ̂−11
μ̂.

2.2.3 Bayesian approach

The Bayesian approach accounts for parameter uncertainty. In particular, it expresses the
investor’s problem in terms of the predictive distribution of the future excess returns.Denoting
the unobserved κ next-periods excesses return data by RT +κ , the predictive return density is

p(RT +κ | R) ∝
∫ ∫

p(RT +κ | μ,Σ)p(μ,Σ | R)dμdΣ,

where p(μ,Σ | R) is the joint posterior density, and p(RT +κ | μ,Σ) is a multivariate
normal density

p(μ,Σ | R) ∝ L (μ,Σ | R) × p(μ,Σ),

where L (μ,Σ | R) ∝ |Σ |−T /2 exp
(
− 1

2

∑T
t=1(Rt − μ)′Σ−1(Rt − μ)

)
is the likelihood

function, and p(μ,Σ) is the prior density.
In the following, we show the Bayesian solution under two situations: non-informative

and informative priors (see supplementary material section 1).
Non-informative priors In this case, the investor is uncertain about the distribution of the

parametersμ andΣ , and has no particular prior knowledge. This situation can be represented
by a flat prior, which is typically taken to be the Jeffreys’ prior (see supplementary material
subsection 1.2).

The estimates for μT +κ , ΣT +κ , αT +κ , βT +κ and HT +κ are

μ̂N B = μ̂, (4)

Σ̂
N B = c−1

1 (T − 1)

(T + κ − N − 3)
Σ̂, (5)

B̂
N B = B̂, (6)

and

Ĥ
N B = c−1

2 (T − 1)

(T + κ − N − 4)
Ĥ, (7)

2 Shrinkage estimators for the covariance matrix have also been developed. For example, Ledoit and Wolf
[20,21] propose shrinkage estimators when the number of assets can be greater than the sample size. Frahm and
Memmel [24] propose an estimator that dominates the traditional estimator with respect to the out-of-sample
variance of the portfolio return.
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where c1 = T (T +κ)(T +κ−1)−(κ−1)(T −κ+1)
T (T +κ)2

, C = I − Z(X ′X + Z′Z)−1Z′ =
[

C1:κ−1,1:κ−1 C1:κ−1,κ

Cκ,1:κ−1 Cκ,κ

]
, Z = [1 rMκ ] is a κ × 2 matrix, rMκ is a forecast about future

benchmark portfolio returns, c2 = Cκ,κ − Cκ,1:κ−1C−1
1:κ−1,1:κ−1C1:κ−1,κ .3

Informative priors Now we suppose that the investor has information about parameters
in the investment period. We get the following results using conjugate family priors (see
supplementary material subsection 1.1),

μ̂I B = τ

T + τ
η + T

T + τ
μ̂, (8)

Σ̂
I B = c−1

3

(T + κ + ν − N − 2)

(
Ω + (T − 1)Σ̂ + T τ

T + τ
(η − μ̂)(η − μ̂)′

)
, (9)

B̂
I B = (V−1

0 + X ′X)−1(V−1
0 B0 + X ′R), (10)

and,

Ĥ
I B = c−1

2

(T + ν0 + κ − N − 2)

(
H0 + S + B′

0V
−1
0 B0 + B̂

′
X ′X B̂ − B̂

I B′
V̂

−1
B̂

I B
)

,

(11)
where η is an N dimensional vector of prior mean returns, τ is a hyperparameter that defines
prior precision, Ω and H0 are prior scale matrices associated with the covariance matrix,

v and v0 are degrees of freedom, V 0 =
[

1
τα

0
0 1

τβ

]

is a matrix that defines prior precision

in the Treynor–Black model (τα and τβ define precision regarding α and β, respectively),
c3 = (T +τ)(T +τ+κ)(T +τ+κ−1)−(κ−1)(T +τ−κ+1)

(T +τ)(T +τ+κ)2
, S = (R−X B̂)′(R−X B̂), and Ṽ = (V−1

0 +
X ′X)−1.4

Note that μ̂I B and B̂
I B

are weighted averages between sample and prior information.
More precision about prior information implies more weight associated with this source.

3 Minimum expected loss for trading strategies

Taking into account that the financial trading strategies (Eqs. 1, 2 and 3) are rational functions
of parameters and that these are the final objective of estimation, we propose the following
framework.

Suppose that the main concern of estimation is ω = g(θ) : Θ ⊂ R
L → R

N , N ≤ L;
that is, ω = (w1, w2, . . . , wN )

′ = (g1(θ), g2(θ), . . . , gN (θ))′, gi (θ) = li (θ)
m(θ)

: R
L →

R, i = 1, 2, . . . , N , li (θ) and m(θ) 
= 0 are polynomial functions in θ , such that gi (θ) is a
continuously differentiable constant order transformation.5

Setting ω = (w1, w2, . . . , wN ), the optimal portfolio weights, we propose to focus our
inferential problem directly on our final objective; that is, the trading strategies. Therefore,
we select as an estimator the Bayesian action that minimizes the posterior expected value of

3 In our simulation exercises, we get rMκ from a normal distribution. In our application, we use target price
indices from Bloomberg to calculate the target returns.
4 C = I − Z(V−1

0 + X ′X + Z′Z)−1Z′, c2 is defined as in the uninformative case.
5 Constant order means that gi is bounded (gi (θ) = O(1)).
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a generalized quadratic loss function focused on the optimal portfolio rules, let us say g(θ),

argmin
ω̂∈RN

Eπ(θ |Data)
{
L (g(θ), ω̂)

} = argmin
ω̂∈RK

∫

Θ

{
L (g(θ), ω̂)

}
π(θ |Data)dθ,

where π(θ |Data) is the posterior distribution, L (g(θ), ω̂) = h(θ)(g(θ) − ω̂)′(g(θ) − ω̂),
where h(θ) > 0 is a case specific weighting function.

Proposition 1 Let L (θ , ω̂) = h(θ)(ω̂ − g(θ))′(ω̂ − g(θ)) be a loss function, where h(θ) :
R

L → R
++ is a continuous constant order weighting function. Then, the MELO estimate is

ω̂
∗
(R) = Eπ(θ |R)[g(θ)h(θ)]

Eπ(θ |R)[h(θ)]
=

∫

Θ

g(θ)
h(θ)

∫
Θ

h(θ)π(θ |R)dθ
π(θ |R)dθ ,

provided previous assumptions on g(θ) and h(θ), and integration and differentiation can
be interchanged (see assumptions E and F in supplementary material subsection 2.1 for
details).

See the supplementary material for a proof (subsection 2.2).
Observe that Proposition 1 implies that the MELO is a kernel weighted average of

g(θ). These weights implicitly depend on the probability associated with each θ in their
parameter space, as well as their magnitude. When h does not depend on θ , which implies
equal weight to each θ , the minimum expected loss estimate is the posterior mean; that is,
ω̂∗(R) = Eπ(θ |R)g(θ).

If our problem is to estimate the weights for the global minimum variance portfolio,

g(Σ) = ω = Σ−11
1′Σ−11

, whereΣ is the covariance matrix of the excess of returns, then we have

that (1′Σ−11)ω−Σ−11 = 0. So, we setL (Σ, ω̂) = ε′ε, where ε = (1′Σ−11)ω̂−Σ−11 =
(1′Σ−11)(ω̂ − ω) is the estimation error introduced by the estimate ω̂. Then, the posterior
expected loss function is

Eπ(Σ |R)L (Σ, ω̂) = Eπ(Σ |R){((1′Σ−11)ω̂ − Σ−11)′((1′Σ−11)ω̂ − Σ−11)}
= Eπ(Σ |R){(1′Σ−11)2(ω̂ − ω)′(ω̂ − ω)}.

Corollary 1 The MELO estimate for the weights associated with the minimum variance port-
folio is given by

ω̂
∗ = [Eπ(Σ |R){(1′Σ−11)2}]−1

Eπ(Σ |R){(1′Σ−11)Σ−11}

=
∫

ω
(1′Σ−11)2

∫
(1′Σ−11)2π(Σ |R)dΣ

π(Σ |R)dΣ

=
∫

ω

1
(σ 2

MV P )2

∫ 1
(σ 2

MV P )2
π(Σ |R)dΣ

π(Σ |R)dΣ,

where σ 2
MV P = 1

1′Σ−11
is the variance of the minimum-variance portfolio.

Proof This is an immediate consequence of Proposition 1 taking g(θ) = Σ−11
1′Σ−11

and h(θ) =
(1′Σ−11)2. ��
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We can see from Corollary 1 that the MELO estimate for the weights of the minimum
variance portfolio is a weighted average, where the weights depend on the updated belief
regarding the variance of the minimum variance portfolio. In particular, covariance matrices
that imply larger portfolio’s variance have smaller weights to calculate the MELO estimates.
This is consistent with the logic of the optimization problem from a financial theory perspec-
tive, whose concern is to minimize the variance of the portfolio.

If the main concern is an estimate of the weights associated with the tangency portfolio,

ω = Σ−1μ

1′Σ−1μ
, where μ and Σ are the mean and covariance matrix of the excess of returns,

then we set ε = (1′Σ−1μ)ω̂ −Σ−1μ. Then, the loss function isL (Σ,μ, ω̂) = ε′ε, and the
posterior expected loss,

Eπ(Σ,μ|R)L (Σ,μ, ω̂) = Eπ(Σ,μ|R){((1′Σ−1μ)ω̂ − Σ−1μ)′((1′Σ−1μ)ω̂ − Σ−1μ)}
= Eπ(Σ,μ|R){(1′Σ−1μ)2(ω̂ − ω)′ω̂ − ω)}.

Corollary 2 The MELO estimate for the weights associated with the tangency portfolio is
given by

ω̂
∗ = [Eπ(Σ,μ|R){(1′Σ−1μ)2}]−1

Eπ(Σ,μ|R){(1′Σ−1μ)Σ−1μ}

=
∫

ω
(1′Σ−1μ)2

∫
(1′Σ−1μ)2π(Σ,μ|R)dΣdμ

π(Σ,μ|R)dΣdμ

=
∫

ω

(
μT P

σ 2
T P

)2

∫ (
μT P

σ 2
T P

)2

π(Σ,μ|R)dΣdμ

π(Σ,μ|R)dΣdμ,

where μT P = μ′Σ−1μ

1′Σ−1μ
and σ 2

T P = μ′Σ−1μ

(1′Σ−1μ)2
are the mean and variance of the tangency

portfolio.

Proof This is a consequence from Proposition 1 taking g(θ) = Σ−1μ

1′Σ−1μ
and h(θ) =

(1′Σ−1μ)2. ��

We can see from Corollary 2 that the MELO estimate for the weights of the tangency
portfolio is a weighted average, where the weights depend on the updated belief regarding the
ratio between themean and the variance of the tangency portfolio. In particular, combinations
of the mean and covariance matrices that imply larger portfolio’s ratios have larger weights
to calculate theMELO estimate. This is consistent with the logic of the optimization problem
from a financial theory perspective, whose concern is to maximize the Sharpe ratio.

In addition, we propose MELO estimates for the weights of the Treynor–Black model,

whose optimal solution is ω = H−1α

1′H−1α
, where α and H are the intercept and covariance

matrix of the stochastic errors in the model rit = α + βi rMt + eit . In this framework, we
set ε = (1′H−1α)ω̂ − Ω−1α, such that the loss function isL (H,α, ω̂) = (1′H−1α)2(ω̂ −
ω)′(ω̂ − ω), and the posterior expected loss,

Eπ(H,α|R,rM )L (H,α, Ĥ) = Eπ(H,α|R,rM ){((1′H−1α)ω̂ − H−1α)′((1′H−1α)ω̂ − H−1α)}
= Eπ(H,α|R,rM ){(1′H−1α)2(ω̂ − ω)′(ω̂ − ω)}.
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Corollary 3 The MELO estimate for the weights associated with the Treynor–Black portfolio
is given by

ω̂
∗ = [Eπ(H,α|R,rM ){(1′H−1α)2}]−1

Eπ(H,α|R,rM ){(1′H−1α)H−1α}

=
∫

ω
(1′H−1α)2

∫
(1′H−1α)2π(H,α|R)dHdα

π(H,α|R, rM )dHdα

=
∫

ω

(
αT B
σ 2

T B

)2

∫ (
αT B
σ 2

T B

)2

π(H,α|R)dHdα

π(H,α|R, rM )dHdα,

where αT B = α′H−1α

1′H−1α
and σ 2

T B = α′H−1α

(1′H−1α)2
are the wighted alpha and wighted stochastic

error variance of the Treynor–Black portfolio.

Proof This is a consequence from Proposition 1 taking g(θ) = H−1α

1′H−1α
and h(θ) =

(1′H−1α)2. ��
We observe in Corollary 3 that the MELO estimate for the weights of the Treynor–Black

portfolio is a weighted average, where the weights depend on the updated belief regarding
variables directly associated with the information ratio. This is consistent with the logic of
maximizing the information ratio.

For the asymptotic results, we find that our MELO proposal has the same properties as
the plug-in (ML) estimator.

Proposition 2 Assuming that g(θ) and h(θ) are continuous constant order functions having
nonzero first order, then the density function, f (R|θ), satisfies common assumptions of the
maximum likelihood estimator [34], and π(θ) satisfies the Bernstein–von Mises theorem’s
conditions [35] (see Assumptions in supplementary material, subsection 2.1 for details) then,

1. ω̂
∗ = g(θ̂) + o(1).

2.
√

T (ω̂
∗ − g(θ0)) = √

T (g(θ̂) − g(θ0)) + op(1).

where θ̂ and θ0 are the maximum likelihood estimator and “true” parameter, respectively.
See supplementary material for a proof (subsection 2.3).

Consequently,
Eπ(Σ |R){(1′Σ−11)Σ−11}
Eπ(Σ |R){(1′Σ−11)2}

p→ Σ̂
−1

1

1′Σ̂−1
1
,
Eπ(Σ,μ|R){(1′Σ−1μ)Σ−1μ}

Eπ(Σ,μ|R){(1′Σ−1μ)2}
p→ Σ̂

−1
μ̂

1′Σ̂−1
μ̂
and

Eπ(H,α|R){(1′H−1α)H−1α}
Eπ(H,α|R){(1′H−1α)2}

p→ Ĥ
−1

α̂

1′ Ĥ−1
α̂
in the cases of the minimum variance portfolio, tangency

portfolio estimator, and the Treynor–Black portfolio estimators. We find the same results

for asymptotic distributions; that is,
√

T (ω̂
∗ − g(θ0))

d→ √
T (g(θ̂) − g(θ0)). However, we

should take into account that in the case of tangency portfolio, and probably Treynor–Black
case, the moments of the exact distribution do not exist [7].

4 Simulation exercises

We conduct a synthetic data experiment to demonstrate the performance of our MELO
proposal in finite samples. We set the population parameters for the excess of returns and
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Table 1 Weights: global minimum variance

Method Sample size Min 1st Q Median Mean 3rd Q Max

Stocks = 10

Plug-in 120 0.0014 0.0060 0.0086 0.0093 0.0116 0.0303

Bayesian NI 0.0014 0.0060 0.0086 0.0093 0.0116 0.0303

Bayesian I 0.0015 0.0058 0.0084 0.0091 0.0113 0.0297

MELO NI 0.0012 0.0060 0.0085 0.0093 0.0115 0.0309

MELO I 0.0009 0.0057 0.0083 0.0092 0.0116 0.0319

Naive (1/N ) 0.0066 0.0066 0.0066 0.0066 0.0066 0.0066

Plug-in 240 0.0005 0.0027 0.0039 0.0042 0.0052 0.0149

Bayesian NI 0.0005 0.0027 0.0039 0.0042 0.0052 0.0149

Bayesian I 0.0006 0.0027 0.0038 0.0041 0.0052 0.0147

MELO NI 0.0005 0.0028 0.0039 0.0042 0.0053 0.0150

MELO I 0.0004 0.0031 0.0044 0.0047 0.0059 0.0151

Naive (1/N ) 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023

Stocks = 50

Plug-in 120 0.0068 0.0136 0.0168 0.0175 0.0206 0.0498

Bayesian NI 0.0068 0.0136 0.0168 0.0175 0.0206 0.0498

Bayesian I 0.0067 0.0130 0.0159 0.0167 0.0194 0.0448

MELO NI 0.0071 0.0136 0.0166 0.0174 0.0204 0.0465

MELO I 0.0070 0.0136 0.0165 0.0173 0.0201 0.0445

Naive (1/N ) 0.0123 0.0123 0.0123 0.0123 0.0123 0.0123

Plug-in 240 0.0022 0.0043 0.0051 0.0059 0.0107 0.0052

Bayesian NI 0.0022 0.0043 0.0051 0.0059 0.0107 0.0052

Bayesian I 0.0022 0.0042 0.0050 0.0058 0.0105 0.0051

MELO NI 0.0022 0.0043 0.0051 0.0060 0.0105 0.0052

MELO I 0.0023 0.0045 0.0054 0.0062 0.0106 0.0055

Naive (1/N ) 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056

This table shows summary statistics for the squared error
NI, non-informative priors; I, informative priors

covariancematrix. Then,we perform 1000 simulation exercises (S = 1000) using two sample
sizes (120 and 240), and two portfolio sizes (10 and 50). We evaluate estimation errors of
trading strategies (Sect. 2.1) using statistical strategies in Sect. 2.2 and MELO proposal
(Sect. 3).6 In particular, we calculate squared errors,

SEs =
N∑

i=1

(ω̂s
i − ωi )

2, i = 1, 2, . . . , N , s = 1, 2, . . . , S.

whereωi are optimal trading weights using population parameters and ω̂s
i are optimal trading

weight estimates for each simulation using different statistical approaches.
Table 1 shows descriptive statistics of the squared error for the global minimum variance

portfolios. As we can see, the results are almost the same for each methodology, except

6 We consider population parameters as hyperparameters in the case of informative Bayesian strategies, see
subsection 2.4.1 in supplementary material for further details.
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Table 2 Variance: global minimum variance

Method Sample size Min 1st Q Median Mean 3rd Q Max

Stocks = 10; σ120 = 0.3257; σ240 = 0.3212

Plug-in 120 0.3277 0.3343 0.3375 0.3386 0.3419 0.3671

Bayesian NI 0.3277 0.3343 0.3375 0.3386 0.3419 0.3671

Bayesian I 0.3276 0.3340 0.3372 0.3383 0.3414 0.3655

MELO NI 0.3275 0.3343 0.3375 0.3386 0.3419 0.3672

MELO I 0.3268 0.3341 0.3376 0.3385 0.3415 0.3704

Naive (1/N ) 0.3349 0.3349 0.3349 0.3349 0.3349 0.3349

Plug-in 240 0.3220 0.3254 0.3270 0.3275 0.3290 0.3424

Bayesian NI 0.3220 0.3254 0.3270 0.3275 0.3290 0.3424

Bayesian I 0.3221 0.3253 0.3270 0.3274 0.3289 0.3421

MELO NI 0.3220 0.3254 0.3271 0.3275 0.3290 0.3425

MELO I 0.3219 0.3259 0.3278 0.3281 0.3300 0.3431

Naive (1/N ) 0.3247 0.3247 0.3247 0.3247 0.3247 0.3247

Stocks = 50; σ120 = 0.1225; σ240 = 0.1253

Plug-in 120 0.1388 0.1551 0.1610 0.1617 0.1672 0.2193

Bayesian NI 0.1388 0.1551 0.1610 0.1617 0.1672 0.2193

Bayesian I 0.1389 0.1537 0.1591 0.1599 0.1652 0.2131

MELO NI 0.1404 0.1547 0.1602 0.1615 0.1670 0.2163

MELO I 0.1405 0.1544 0.1597 0.1607 0.1656 0.2128

Naive (1/N ) 0.1509 0.1509 0.1509 0.1509 0.1509 0.1509

Plug-in 240 0.1324 0.1387 0.1409 0.1433 0.1576 0.1412

Bayesian NI 0.1324 0.1387 0.1409 0.1433 0.1576 0.1412

Bayesian I 0.1324 0.1385 0.1406 0.1430 0.1561 0.1409

MELO NI 0.1325 0.1387 0.1409 0.1434 0.1572 0.1412

MELO I 0.1333 0.1395 0.1417 0.1439 0.1562 0.1419

Naive (1/N ) 0.1422 0.1422 0.1422 0.1422 0.1422 0.1422

This table shows summary statistics for the squared error
NI, non-informative priors; I, informative priors

naive weights, which gives the lowest mean squared errors. The fact that we got almost same
results with most of the trading strategies is in agreement with the literature, given that the
global minimum variance portfolio depends on only the covariance matrix and this does
not introduce excessive estimation error [15]. Additionally, we cannot forget that the main
concern of the global minimum variance portfolio is to minimize portfolio variance. Table 2
shows the descriptive statistics of portfolio variance of each methodology. We can observe
that there are no meaningful differences between them.

The results change drastically when using the tangency portfolio due to including estima-
tion of the expected return. We can see the outcomes of our simulation exercises in Table 3.
In particular, mean squared error (MSE) and range of variability associated with MELO are
lower than the other methodologies. As expected, the plug-in and non-informative Bayesian
both obtain same results. They are also the worst estimators in these settings. Table 4 shows
the Sharpe ratio for each methodology, where we observe that the twoMELOmethodologies
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Table 4 Sharpe ratio: tangency portfolio

Method Sample size Min 1st Q Median Mean 3rd Q Max

Stocks = 10; S R120 = 0.3793; S R240 = 0.3867

Plug-in 120 − 0.3530 0.2293 0.2860 0.1948 0.3177 0.3675

Shrinkage − 0.3526 0.2186 0.2791 0.1905 0.3134 0.3675

Bayesian NI − 0.3530 0.2293 0.2860 0.1948 0.3177 0.3675

Bayesian I − 0.3575 0.3405 0.3518 0.3363 0.3599 0.3760

MELO NI − 0.1854 0.3425 0.3507 0.3445 0.3576 0.3743

MELO I − 0.3321 0.3408 0.3524 0.3365 0.3601 0.3757

Naive (1/N ) 0.1131 0.1131 0.1131 0.1131 0.1131 0.1131

Plug-in 240 − 0.3578 0.3156 0.3375 0.2955 0.3539 0.3830

Shrinkage − 0.3576 0.3121 0.3355 0.2938 0.3530 0.3800

Bayesian NI − 0.3578 0.3156 0.3375 0.2955 0.3539 0.3830

Bayesian I − 0.3436 0.3676 0.3724 0.3707 0.3766 0.3853

MELO NI 0.3546 0.3741 0.3770 0.3764 0.3796 0.3856

MELO I − 0.3310 0.3675 0.3725 0.3707 0.3767 0.3851

Naive (1/N ) 0.1167 0.1167 0.1167 0.1167 0.1167 0.1167

Stocks = 50; S R120 = 1.2082; S R240 = 0.9470

Plug-in 120 − 0.8998 0.6823 0.7548 0.5525 0.8133 0.9540

Shrinkage − 0.8995 0.6753 0.7488 0.5488 0.8069 0.9585

Bayesian NI − 0.8998 0.6823 0.7548 0.5525 0.8133 0.9540

Bayesian I − 0.9851 0.8528 0.8917 0.7860 0.9309 1.0331

MELO NI − 0.8826 0.8472 0.8897 0.8006 0.9271 1.0301

MELO I − 0.8143 0.7987 0.8527 0.7422 0.8933 1.0053

Naive (1/N ) 0.1188 0.1188 0.1188 0.1188 0.1188 0.1188

Plug-in 240 − 0.7954 0.7185 0.7464 0.7761 0.8526 0.6842

Shrinkage − 0.7946 0.7165 0.7450 0.7752 0.8505 0.6833

Bayesian NI − 0.7954 0.7185 0.7464 0.7761 0.8526 0.6842

Bayesian I − 0.8255 0.8144 0.8300 0.8454 0.8819 0.8150

MELO NI − 0.7597 0.8248 0.8405 0.8545 0.8851 0.8318

MELO I − 0.7527 0.8087 0.8257 0.8414 0.8847 0.8097

Naive (1/N ) 0.1260 0.1260 0.1260 0.1260 0.1260 0.1260

This table shows summary statistics for the squared error
NI, non-informative priors; I, informative priors

and the Bayesian with informative priors have the highest Sharpe ratios, whereas the naive
weights get the worst performance on average.

Table 5 shows descriptive statistics of the squared error associated with Treynor–Black
trading strategy. We observe that the plug-in approach has the highest MSE followed by the
non-informative Bayesian. MELO informative presents the smallest MSE. Table 6 shows
descriptive statistics of information ratios. Informative Bayesian and MELO, on average,
have the best outcomes.

We also performed out of sample simulation exercises for tangency portfolio and Treynor–
Black model taking 12 periods as the investment horizon and holding portfolios until the end
of these periods. For this experiment,we consider the average of the portfolio returns in the out
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Table 6 Information ratio: Treynor–Black

Method Sample size Min 1st Q Median Mean 3rd Q Max

Stocks = 10; I R = 0.3214

Plug-in 120 − 0.0593 0.0095 0.0221 0.0226 0.0350 0.0964

Bayesian NI − 0.2187 0.1909 0.2275 0.2115 0.2550 0.3070

Bayesian I 0.2487 0.2886 0.2978 0.2957 0.3051 0.3171

MELO NI − 0.1155 0.2075 0.2401 0.2292 0.2648 0.3121

MELO I 0.2472 0.2901 0.2982 0.2967 0.3056 0.3182

Naive (1/N ) 0.0490 0.0490 0.0490 0.0490 0.0490 0.0490

Plug-in 240 − 0.0395 0.0157 0.0311 0.0296 0.0442 0.1041

Bayesian NI − 0.2279 0.2372 0.2620 0.2547 0.2812 0.3131

Bayesian I 0.2768 0.3036 0.3086 0.3077 0.3126 0.3211

MELO NI − 0.1117 0.2473 0.2691 0.2627 0.2854 0.3129

MELO I 0.2763 0.3042 0.3088 0.3080 0.3128 0.3212

Naive (1/N ) 0.0490 0.0490 0.0490 0.0490 0.0490 0.0490

Stocks = 50; I R = 1.9090

Plug-in 120 − 0.0666 0.0197 0.0359 0.0315 0.0483 0.0893

Bayesian NI 0.7516 1.0297 1.0966 1.0919 1.1570 1.3577

Bayesian I 1.1797 1.4175 1.4733 1.4692 1.5271 1.6595

MELO NI 0.9856 1.2953 1.3668 1.3584 1.4282 1.6244

MELO I 1.1749 1.4151 1.4719 1.4677 1.5255 1.6808

Naive (1/N ) 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882

Plug-in 240 − 0.0730 0.0322 0.0491 0.0442 0.0629 0.1034

Bayesian NI 1.1275 1.3191 1.3633 1.3619 1.4085 1.5466

Bayesian I 1.5599 1.6744 1.7015 1.6993 1.7290 1.7967

MELO NI 1.4489 1.6071 1.6418 1.6393 1.6767 1.7669

MELO I 1.5599 1.6720 1.7000 1.6977 1.7265 1.7950

Naive (1/N ) 0.0882 0.0882 0.0882 0.0882 0.0882 0.0882

This table shows summary statistics for the squared error
NI, non-informative priors; I, informative priors

of sample period as hyperparameter for the informative prior on the expected return, and the
average of the difference between the return and benchmark returns as hyperparameter for the
informative prior of the abnormal portfolio return in the Treynor–Black model. Information
about the covariance matrix is not considered.7

We calculate themean Sharpe ratio using 1,000 simulations for each of the sample periods.
Figure 1 shows the results. TheMELO and the Bayesian using informative priors have always
the greater Sharpe ratios. However, the goodness of using informative priors depends on how
well these priors are defined. For instance, in our experiments, we have the best possible
priors that could be used due to using population parameters (in sample) and mean future
returns (out of sample) as hyperparameters. Observe that the non-informative MELO is in
third place when the sample size is 120, whereas this position is for the shrinkage estimator
using 240 as sample size. Meanwhile, the non-informative Bayesian, which gives the same

7 The prior scale matrix is the sample covariance matrix.
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Fig. 1 Mean Sharpe ratio

results than the plug-in approach, obtains the second worst results, followed by the naive
approach, which obtains the worst performance.

Figure 2 shows the mean of the information ratios using 1,000 simulations for each of the
sample periods. We observe that MELO and Bayesian using informative priors have almost
greater information ratios, except when using 50 assets with a sample size of 120—where
only MELO using informative prior has the greatest information ratio. MELO and Bayesian
using non-informative priors have almost same mean information ratios using 10 assets.
MELO using non-informative priors has the second and third best information ratio when
using 50 assets and a sample size of 120 and 240, respectively. Meanwhile, the plug-in and
naives approaches obtain the worst results.

In subsection 2.4.2 in supplementary material, we show robustness checks regarding dis-
tributional assumptions of our previous results.
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Fig. 2 Mean information ratio

5 Empirical study

We use weekly historical return of 21 MSCI international equity indices: Canada, United
States, Austria, Belgium, Denmark, Finland, France, Germany, Israel, Ireland, Italy, Nether-
lands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, Australia, Japan,
and Singapore. The index is adjusted by dividends and splits. We use weekly closing prices
from June 2009 to June 2017.8 We calculate the excess of returns with respect to the interest
rate of the 3-month US treasury bill. We get 417 weekly excess of returns.

8 The sample period is selected after the 2008 financial crisis to avoid introducing this abnormal period.
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Table 7 Summary statistics: global minimum variance application

Min (%) 1st Q (%) Median (%) Mean (%) 3rd Q (%) Max (%)

5 stocks

Plug-in 2.47 9.04 11.78 12.22 15.41 26.03

Bayesian NI 1.37 6.78 10.68 10.82 14.59 21.92

Bayesian I 0.55 5.41 8.49 9.11 11.85 23.01

MELO NI 27.40 41.85 46.03 45.50 49.04 56.71

MELO I 5.48 13.15 17.26 18.18 22.47 38.36

Naive (1/N ) 0.822 2.740 4.110 4.170 5.479 9.315

10 stocks

Plug-in 1.92 7.67 9.86 10.43 12.88 22.74

Bayesian NI 2.74 7.12 9.59 9.59 11.85 19.73

Bayesian I 0.00 7.05 9.04 9.10 11.03 20.82

MELO NI 36.71 44.38 46.99 47.09 49.59 56.16

MELO I 8.22 15.34 18.22 18.52 21.71 29.86

Naive (1/N ) 1.10 4.11 5.21 5.28 6.30 10.68

15 stocks

Plug-in 3.01 6.58 8.90 9.24 11.23 20.55

Bayesian NI 3.29 7.95 9.59 9.87 11.78 19.73

Bayesian I 3.56 9.59 11.37 11.42 13.97 18.63

MELO NI 41.37 44.86 46.85 47.05 49.11 55.34

MELO I 6.85 14.18 16.30 16.77 19.25 26.85

Naive (1/N ) 2.47 4.38 5.48 5.65 6.64 11.23

This table shows the summary statistic of the percentage of the out of sample period that each methodology
get the highest return

We use a one year band width rolling window to estimate all trading and statistical strate-
gies. We re-balance trading strategies every three months. The first portfolio is set in June
2010, and is held constant up to September 2010. Then, out-of-sample returns are calculated
during this period. The second estimation is done in September 2010 and held constant up
to December 2010, and the out-of-sample returns are calculated during this period, and so
on.9 Therefore, we obtain 365 (417-52) out of sample returns for each strategy. Then, we
calculated the number of times that each strategy gets the highest out of sample return. Con-
sequently, their relative frequencies are the most profitable. We repeat this process 100 times.
Therefore we have 100 sets of relative frequencies counting the most profitable strategy. In
each iteration, we randomly draw equity indices to have three portfolio sizes (5, 10, and 15
stocks).

9 In the cases of methodologies that use informative priors, we used the target prices given by Bloomberg to
calculate the “target returns”, and these target returns were used as hyperparameters. We set hyperparameters
such that sample and prior information have the same weight in posterior inference. This means that τ = τα =
52, given 52 weeks in a year.

123



Mathematics and Financial Economics (2020) 14:97–120 117

Table 8 Summary statistics: tangency portfolio application

Min (%) 1st Q (%) Median (%) Mean (%) 3rd Q (%) Max (%)

5 stocks

Plug-in 6.58 12.26 15.21 16.24 20.27 34.52

Shrinkage 3.01 10.62 14.52 15.00 18.63 28.77

Bayesian NI 4.93 10.96 14.11 14.29 17.05 27.40

Bayesian I 5.21 18.36 22.47 22.77 26.92 48.49

MELO NI 12.60 21.58 24.93 24.85 28.49 37.53

MELO I 0.00 2.19 3.84 4.26 5.75 17.53

Naive (1/N ) 0.55 1.64 2.19 2.59 3.56 6.85

10 stocks

Plug-in 4.93 12.33 14.79 14.82 17.60 23.56

Shrinkage 6.58 12.33 14.66 14.76 16.99 24.11

Bayesian NI 2.47 9.79 12.74 13.59 16.78 28.49

Bayesian I 12.60 20.82 23.70 24.22 27.74 35.34

MELO NI 13.15 23.29 25.89 26.04 29.59 35.34

MELO I 0.00 1.64 2.88 3.43 4.66 14.52

Naive (1/N ) 0.55 2.19 3.01 3.15 3.90 7.12

15 stocks

Plug-in 4.66 11.64 13.97 13.95 16.51 24.11

Shrinkage 7.67 15.62 18.08 17.70 19.73 26.58

Bayesian NI 3.29 9.52 12.47 12.27 14.86 23.01

Bayesian I 10.41 17.81 21.51 21.77 24.66 34.25

MELO NI 18.90 25.14 28.22 27.73 29.93 37.53

MELO I 0.00 1.85 2.74 3.04 4.11 7.40

Naive (1/N ) 0.82 2.40 3.29 3.54 4.38 9.59

This table shows the summary statistic of the percentage of the out of sample period that each methodology
get the highest return

We can see in Table 7 that, on average, the non-informative MELO got the highest out of
sample return in 45.50%, 47.09%, and 47.05% of times using portfolio sizes equal to 5, 10,
and 15 assets, respectively. On the other hand, the naive weights got on average the worst
out of sample performance.

Table 8 shows the results for the tangency portfolio. We can observe that, on average, non-
informative MELO got the highest out of sample return in 24.85%, 26.04%, and 27.73% of
times using 5, 10, and 15 assets, respectively. On the other hand, the naive weights got the
worst performance on average with 5 and 10 stocks, and the informative MELO was the
worst using 15 stocks.

In the Treynor–Black empirical study (see Table 9), the naive approach got the best out
of sample performance, 22.59%, 24.39% and 27.48% of times using 5, 10, and 15 assets,
respectively. The non-informative Bayesian got the second best performance using 5 stocks,
and the non-informative MELO got this position using 10 and 15 stocks. The informative
Bayesian got worst out of sample performance on average.
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Table 9 Summary statistics: Treynor–Black application

Min (%) 1st Q (%) Median (%) Mean (%) 3rd Q (%) Max (%)

5 stocks

Plug-in 3.29 10.34 13.15 13.01 15.62 28.22

Bayesian NI 7.95 15.07 20.96 20.80 25.27 34.52

Bayesian I 2.19 8.42 11.78 11.54 13.97 24.93

MELO NI 6.03 13.15 17.67 18.36 22.47 35.89

MELO I 2.74 8.77 12.60 13.70 17.33 35.62

Naive (1/N ) 7.95 17.26 23.29 22.59 27.40 41.64

10 stocks

Plug-in 6.03 13.42 16.16 16.45 19.18 27.95

Bayesian NI 5.48 11.78 17.26 17.10 21.23 32.60

Bayesian I 3.01 6.85 10.14 10.03 12.05 21.37

MELO NI 6.30 14.18 19.18 19.01 23.63 33.42

MELO I 3.56 10.00 12.88 13.01 16.23 25.48

Naive (1/N ) 10.14 19.73 24.38 24.39 28.22 41.92

15 stocks

Plug-in 9.32 15.82 18.36 18.47 21.16 27.12

Bayesian NI 2.74 10.62 14.11 14.37 18.36 25.21

Bayesian I 2.19 5.48 8.49 8.60 10.96 19.18

MELO NI 2.74 13.63 19.73 18.98 23.56 31.78

MELO I 1.64 8.97 11.78 12.09 14.38 27.12

Naive (1/N ) 7.40 23.84 27.12 27.48 30.68 49.86

This table shows the summary statistic of the percentage of the out of sample period that each methodology
get the highest return

6 Conclusions

In this paper, we proposed a decision theory framework to mitigate estimation risk. Our pro-
posal has the same statistical properties as the delta method (maximum likelihood) estimator.
However, it seems from our simulation exercises that our non-informative MELO proposal
has better finite properties than competing alternatives. The degree of estimation improve-
ment depends on the trading strategy. In particular, it seems that tangency can be better
estimated using our approach. The non-informative MELO is the most realistic scenario in
our simulation exercises, showing less degree of estimation variability and the lowest error.
Our results are robust to heavy and serially correlated error distributions.

It seems from our empirical study that the non-informative MELO is the best statistical
strategywhenglobalminimumvariance or tangencyportfolios are used as the trading strategy.
Meanwhile, the naive approach is the best in the case of Treynor–Black trading strategy.
However, the naive weights have the worst performance in the other trading strategies. It
seems that the non-informative MELO is robust to these three trading strategies, and the
implicit data generating process of the returns [Student’s t and autoregressive process,AR(1)].

We should note at this point that real world applications are surrounded by a lot of noise,
which invalidates many of the implicit assumptions in portfolio selection methodologies at
financial and statistical level. Consequently, our recommendation is to implement all of these
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methodologies, then identify which generates the best outcomes in a cross-validation dataset,
and finally make decisions based on these results. Therefore, we have developed a graphical
user interface that helps to apply traditional approaches, as well as our proposal, which
can be download at https://besmarter-team.shinyapps.io/meloportfolio/. See supplementary
material, section 3.

OpenAccess This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
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