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Abstract Assuming that the wealth process Xu is generated self-financially from the given
initial wealth by holding its fraction u in a risky stock (whose price follows a geometric
Brownian motion with drift μ ∈ R and volatility σ > 0) and its remaining fraction 1−u in
a riskless bond (whose price compounds exponentially with interest rate r ∈ R), and letting
Pt,x denote a probability measure under which Xu takes value x at time t , we study the
dynamic version of the nonlinear mean-variance optimal control problem

sup
u

[
Et,Xu

t
(Xu

T ) − cVart,Xu
t
(Xu

T )
]

where t runs from 0 to the given terminal time T > 0, the supremum is taken over admissible
controls u, and c > 0 is a given constant. By employing the method of Lagrange multipliers
we show that the nonlinear problem can be reduced to a family of linear problems. Solving the
latter using a classic Hamilton-Jacobi-Bellman approach we find that the optimal dynamic
control is given by

u∗(t, x) = δ

2cσ

1

x
e(δ2−r)(T−t)

where δ = (μ−r)/σ . The dynamic formulation of the problem and the method of solution
are applied to the constrained problems ofmaximising/minimising themean/variance subject
to the upper/lower bound on the variance/mean from which the nonlinear problem above is
obtained by optimising the Lagrangian itself.
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1 Introduction

Imagine an investor who has an initial wealth which he wishes to exchange between a risky
stock and a riskless bond in a self-financingmanner dynamically in time so as tomaximise his
return andminimise his risk at the given terminal time. In linewith themean-variance analysis
of Markowitz [11] where the optimal portfolio selection problem of this kind was solved in
a single period model (see e.g. Merton [12] and the references therein) we will identify the
returnwith the expectation of the terminalwealth and the riskwith the variance of the terminal
wealth. The quadratic nonlinearity of the variance then moves the resulting optimal control
problem outside the scope of the standard optimal control theory (see e.g. [5]) which may
be viewed as dynamic programming in the sense of solving the Hamilton–Jacobi–Bellman
(HJB) equation and obtaining an optimal control which remains optimal independently from
the initial (and hence any subsequent) value of the wealth. Consequently the results and
methods of the standard/linear optimal control theory are not directly applicable in this
new/nonlinear setting. The purpose of the present paper is to develop a new methodology
for solving nonlinear optimal control problems of this kind and demonstrate its use in the
optimal mean-variance portfolio selection problem stated above. This is done in parallel to
the novel methodology for solving nonlinear optimal stopping problems that was recently
developed in [13] when tackling an optimal mean-variance selling problem.

Assuming that the stock price follows a geometric Brownian motion and the bond price
compounds exponentially, we first consider the constrained problem in which the investor
aims to maximise the expectation of his terminal wealth Xu

T over all admissible controls
u (representing the fraction of the wealth held in the stock) such that the variance of Xu

T
is bounded above by a positive constant. Similarly the investor could aim to minimise the
variance of his terminal wealth Xu

T over all admissible controls u such that the expectation
of Xu

T is bounded below by a positive constant. A first application of Lagrange multipliers
implies that the Lagrange function (Lagrangian) for either/both constrained problems can
be expressed as a linear combination of the expectation of Xu

T and the variance of Xu
T with

opposite signs. Optimisation of the Lagrangian over all admissible controls u thus yields the
central optimal control problem under consideration. Due to the quadratic nonlinearity of
the variance we can no longer apply standard/linear results of the optimal control theory to
solve the problem.

Conditioning on the size of the expectation we show that a second application of Lagrange
multipliers reduces the nonlinear optimal control problem to a family of linear optimal con-
trol problems. Solving the latter using a classic HJB approach we find that the optimal control
depends on the initial point of the controlled wealth process in an essential way. This spatial
inconsistency introduces a time inconsistency in the problem that in turn raises the question
whether the optimality obtained is adequate for practical purposes.We refer to this optimality
as the static optimality (Definition 1) to distinguish it from the dynamic optimality (Defin-
ition 2) in which each new position of the controlled wealth process yields a new optimal
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control problem to be solved upon overruling all the past problems. This in effect corre-
sponds to solving infinitely many optimal control problems dynamically in time with the
aim of determining the optimal control (in the sense that no other control applied at present
time could produce a more favourable value at the terminal time). While the static optimality
has been used in the paper by Strotz [21] under the name of ‘pre-commitment’ as far as
we know the dynamic optimality has not been studied in the nonlinear setting of optimal
control before. In Sect. 4 below we give a more detailed account of the mean-variance results
and methods on the static optimality starting with the paper by Richardson [19]. Optimal
controls in all these papers are time inconsistent in the sense described above. This line of
papers ends with the paper by Basak and Chabakauri [1] where a time-consistent control
is derived that corresponds to the Strotz’s approach of ‘consistent planning’ [21] realised
as the subgame-perfect Nash equilibrium (the optimality concept refining Nash equilibrium
proposed by Selten in 1965).

We show that the dynamic formulation of the nonlinear optimal control problem admits a
simple closed-form solution (Theorem 3) in which the optimal control no longer depends on
the initial point of the controlled wealth process and hence is time consistent. Remarkably
we also verify that this control yields the expected terminal value which (i) coincides with the
expected terminal value obtained by the statically optimal control (Remark 4) and moreover
(ii) dominates the expected terminal value obtained by the subgame-perfect Nash equilibrium
control (in the sense of Strotz’s ‘consistent planning’) derived in [1] (Sect. 4). Closed-form
solutions to the constrained problems are then derived using the solution to the unconstrained
problem (Corollaries 5 and 7). These results are of both theoretical and practical interest.
In the first problem we note that the optimal wealth exhibits a dynamic compliance effect
(Remark 6) and in the second problem we observe that the optimal wealth solves a meander
type equationof independent interest (Remark8). In both problemsweverify that the expected
terminal value obtained by the dynamically optimal control dominates the expected terminal
value obtained by the statically optimal control.

The novel problems andmethodology of the present paper suggest a number of avenues for
further research. Firstly, we work within the transparent setting of one-dimensional geomet-
ric Brownian motion in order to illustrate the main ideas and describe the new methodology
without unnecessary technical complications. Extending the results to higher dimensions
and more general diffusion/Markov processes appears to be worthy of further consideration.
Secondly, for similar tractability reasons we assume that (i) unlimited short-selling and bor-
rowing are permitted, (ii) transaction costs are zero, (iii) the wealth process may take both
positive and negative values of unlimited size. Extending the results under some of these
constraints being imposed is also worthy of further consideration. In both of these settings
it is interesting to examine to what extent the results and methods laid down in the present
paper remain valid under any of these more general or restrictive hypotheses.

2 Formulation of the problem

Assume that the riskless bond price B solves

dBt = r Bt dt (2.1)

with B0 = b for some b > 0 where r ∈ R is the interest rate, and let the risky stock price S
follow a geometric Brownian motion solving

dSt = μSt dt + σ St dWt (2.2)
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with S0 = s for some s > 0 where μ ∈ R is the drift, σ > 0 is the volatility, and W is
a standard Brownian motion defined on a probability space (�,F,P). Note that a unique
solution to (2.1) is given by Bt = b ert and recall that a unique strong solution to (2.2) is
given by St = s exp(σWt+(μ−(σ 2/2))t) for t ≥ 0.

Consider the investor who has an initial wealth x0 ∈ R which he wishes to exchange
between B and S in a self-financing manner (with no exogenous infusion or withdrawal of
wealth) dynamically in time up to the given horizon T > 0. It is then well known (see e.g.
[2, Chapter 6]) that the investor’s wealth Xu solves

dXu
t = (

r (1−ut )+μut
)
Xu
t dt + σ ut X

u
t dWt (2.3)

with Xu
t0 = x0 where ut denotes the fraction of the investor’s wealth held in the stock at

time t ∈ [t0, T ] for t0 ∈ [0, T ) given and fixed. Note that (i) ut < 0 corresponds to short
selling of the stock, (ii) ut > 1 corresponds to borrowing from the bond, and (iii) ut ∈ [0, 1]
corresponds to a long position in both the stock and the bond.

To simplify the exposition we will assume that the control u in (2.3) is given by ut =
u(t, Xu

t ) where (t, x) �→ u(t, x) · x is a continuous function from [0, T ]×R into R for which
the stochastic differential equation (2.3) understood in Itô’s sense has a unique strong solution
Xu (meaning that the solution Xu to (2.3) is adapted to the natural filtration of W and if X̃u

is another solution to (2.3) of this kind then Xu and X̃u are equal almost surely). We will call
controls of this kindadmissible in the sequel.Recalling that the natural filtration of S coincides
with the natural filtration of W we see that admissible controls have a natural financial
interpretation as they are obtained as deterministic (measurable) functionals of the observed
stock price. Moreover, adopting the convention that u(t, 0) · 0 := lim 0 �=x→0 u(t, x) · x we
see that the solution Xu to (2.3) could take both positive and/or negative values after passing
through zero when the latter limit is different from zero (as is the case in the main results
below). This convention corresponds to re-expressing (2.3) in terms of the total wealth ut Xu

t
held in the stock as opposed to its fraction ut which we follow throughout (note that the
essence of the wealth equation (2.3) remains the same in both cases). We do always identify
u(t, 0) with u(t, 0) · 0 however since x �→ u(t, x) may not be well defined at 0.

Note that the results to be presented below also hold if the set of admissible controls
is enlarged to include discontinuous and path dependent controls u that are adapted to the
natural filtration ofW , or even controls u which are adapted to a larger filtration still making
W a martingale so that (2.3) has a unique weak solution Xu (meaning that the solution Xu to
(2.3) is adapted to the larger filtration and if X̃u is another solution to (2.3) of this kind then
Xu and X̃u are equal in law). Since these extensions follow along the same lines and needed
modifications of the arguments are evident, we will omit further details in this direction and
focus on the set of admissible controls as defined above.

For a given admissible control u we let Pt,x denote the probability measure (defined
on the canonical space) under which the solution Xu to (2.3) takes value x at time t for
(t, x) ∈ [0, T ]×R. Note that Xu is a (strong) Markov process with respect to Pt,x for
(t, x) ∈ [0, T ]×R.

Consider the optimal control problem

V (t, x) = sup
u

[
Et,x (X

u
T )−cVart,x (Xu

T )
]

(2.4)

where the supremum is taken over all admissible controls u such that Et,x [(Xu
T )2] < ∞ for

(t, x) ∈ [0, T ]×R and c > 0 is a given and fixed constant. A sufficient condition for the
latter expectation to be finite is that Et,x

[ ∫ T
t (1+u2s )(X

u
s )

2 ds
]

< ∞ and we will assume in
the sequel that all admissible controls by definition satisfy that condition as well.
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Due to the quadratic nonlinearity of the second term in the expression Vart,x (Xu
T ) =

Et,x [(Xu
T )2]−[Et,x (Xu

T )]2 it is evident that the problem (2.4) falls outside the scope of the
standard/linear optimal control theory for Markov processes (see e.g. [5]). Moreover, we will
see below that in addition to the static formulation of the nonlinear problem (2.4) where the
maximisation takes place relative to the initial point (t, x) which is given and fixed, one is
also naturally led to consider a dynamic formulation of the nonlinear problem (2.4) in which
each new position of the controlled process ((t, Xu

t ))t∈[0,T ] yields a new optimal control
problem to be solved upon overruling all the past problems. We believe that this dynamic
optimality is of general interest in the nonlinear problems of optimal control (as well as
nonlinear problems of optimal stopping as discussed in [13]).

The problem (2.4) seeks to maximise the investor’s return identified with the expectation
of Xu

T and minimise the investor’s risk identified with the variance of Xu
T upon applying the

control u. This identification is done in line with the mean-variance analysis of Markowitz
[11].Moreover, wewill see in the proof below that the problem (2.4) is obtained by optimising
the Lagrangian of the constrained problems

V1(t, x) = sup
u : Vart,x (Xu

T )≤α

Et,x (X
u
T ) (2.5)

V2(t, x) = inf
u : Et,x (Xu

T )≥β
Vart,x (Xu

T ) (2.6)

respectively, where u is any admissible control, and α ∈ (0,∞) and β ∈ R are given and
fixed constants. Solving (2.4) we will therefore be able to solve (2.5) and (2.6) as well. Note
that the constrained problems have transparent interpretations in terms of the investor’s return
and the investor’s risk as discussed above.

We now formalise definitions of the optimalities alluded to above. Recall that all controls
throughout refer to admissible controls as defined/discussed above.

Definition 1 (Static optimality).Acontrolu∗ is statically optimal in (2.4) for (t, x) ∈ [0, T ]×
R given and fixed, if there is no other control v such that

Et,x (X
v
T )−cVart,x (Xv

T ) > Et,x (X
u∗
T )−cVart,x (X

u∗
T ) . (2.7)

A control u∗ is statically optimal in (2.5) for (t, x) ∈ [0, T ] × R given and fixed, if
Var t,x (X

u∗
T ) ≤ α and there is no other control v satisfying Vart,x (Xv

T ) ≤ α such that

Et,x (X
v
T ) > Et,x (X

u∗
T ) . (2.8)

A control u∗ is statically optimal in (2.6) for (t, x) ∈ [0, T ] × R given and fixed, if
Et,x (X

u∗
T ) ≥ β and there is no other control v satisfying Et,x (Xv

T ) ≥ β such that

Vart,x (Xv
T ) < Vart,x (X

u∗
T ) . (2.9)

Note that the static optimality refers to the optimality relative to the initial point (t, x)
which is given and fixed. Changing the initial pointmay yield a different optimal control in the
nonlinear problems since the statically optimal controls may and generally will depend on the
initial point in an essential way (cf. [21]). This stands in sharp contrast with standard/linear
problems of optimal control where in view of dynamic programming (the HJB equation) the
optimal control does not depend on the initial point explicitly. This is a key difference between
the static optimality in nonlinear problems of optimal control and the standard optimality in
linear problems of optimal control (cf. [5]).
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Definition 2 (Dynamic optimality). A control u∗ is dynamically optimal in (2.4), if for every
given and fixed (t, x) ∈ [0, T ]×R and every control v such that v(t, x) �= u∗(t, x), there
exists a control w satisfying w(t, x) = u∗(t, x) such that

Et,x (X
w
T )−cVart,x (Xw

T ) > Et,x (X
v
T )−cVart,x (Xv

T ). (2.10)

A control u∗ is dynamically optimal in (2.5), if for every given and fixed (t, x) ∈ [0, T ]×R

and every control v such that v(t, x) �= u∗(t, x) with Vart,x (Xv
T ) ≤ α, there exists a control

w satisfying w(t, x) = u∗(t, x) with Vart,x (Xw
T ) ≤ α such that

Et,x (X
w
T ) > Et,x (X

v
T ) . (2.11)

A control u∗ is dynamically optimal in (2.6), if for every given and fixed (t, x) ∈ [0, T ]×R

and every control v such that v(t, x) �= u∗(t, x) with Et,x (Xv
T ) ≥ β, there exists a control

w satisfying w(t, x) = u∗(t, x) with Et,x (Xw
T ) ≥ β such that

Vart,x (Xw
T ) < Vart,x (Xv

T ). (2.12)

Dynamic optimality above is understood in the ‘strong’ sense. Replacing the strict inequalities
in (2.10)–(2.12) by inequalities would yield dynamic optimality in the ‘weak’ sense.

Note that the dynamic optimality corresponds to solving infinitely many optimal con-
trol problems dynamically in time where each new position of the controlled process
((t, Xu

t ))t∈[0,T ] yields a new optimal control problem to be solved upon overruling all the
past problems. The optimal decision at each time tells us to exert the best control among all
possible controls. While the static optimality remembers the past (through the initial point)
the dynamic optimality completely ignores it and only looks ahead. Nonetheless it is clear
that there is a strong link between the static and dynamic optimality (the latter being formed
through the beginnings of the former as shown below) and this will be exploited in the proof
below when searching for the dynamically optimal controls. In the case of standard/linear
optimal control problems for Markov processes it is evident that the static and dynamic opti-
mality coincide under mild regularity conditions due to the fact that dynamic programming
(the HJB equation) is applicable. This is not the case for the nonlinear problems of optimal
control considered in the present paper as it will be seen below.

3 Solution to the problem

In this section we present solutions to the problems formulated in the previous section. We
first focus on the unconstrained problem.

Theorem 3 Consider the optimal control problem (2.4)where Xu solves (2.3)with Xu
t0 = x0

under Pt0,x0 for (t0, x0) ∈ [0, T ]×R given and fixed. Recall that B solves (2.1), S solves
(2.2), and we set δ = (μ − r)/σ for μ ∈ R, r ∈ R and σ > 0. We assume throughout that
δ �= 0 and r �= 0 (the cases δ = 0 or r = 0 follow by passage to the limit when the non-zero
δ or r tends to 0).

(A) The statically optimal control is given by

us∗(t, x) = δ

σ

1

x

[
x0e

r(t−t0) − x + 1

2c
eδ2(T−t0)−r(T−t)

]
(3.1)
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for (t, x) ∈ [t0, T ]×R. The statically optimal controlled process is given by

Xs
t = x0e

r(t−t0) + 1

2c
e(δ2−r)(T−t)

[
eδ2(t−t0) − e−δ(Wt−Wt0 )− δ2

2 (t−t0)
]

= x0
Bt

Bt0
+ 1

2c

( Bt

BT

)1−δ2/r
[( Bt

Bt0

)δ2/r −
( Bt

Bt0

)δ(1/σ+(δ−σ)/2r)( St
St0

)−δ/σ
]

(3.2)

for t ∈ [t0, T ]. The static value function Vs := E(Xs
T )−cVar(Xs

T ) is given by

Vs(t0, x0) = x0e
r(T−t0) + 1

4c

[
eδ2(T−t0) − 1

]
(3.3)

for (t0, x0) ∈ [0, T ]×R.
(B) The dynamically optimal control is given by

ud∗(t, x) = δ

2cσ

1

x
e(δ2−r)(T−t) (3.4)

for (t, x)∈[t0, T ]×R. The dynamically optimal controlled process is given by

Xd
t = x0e

r(t−t0) + 1

2c
e(δ2−r)(T−t)

[
eδ2(t−t0) − 1 + δ

∫ t

t0
eδ2(t−s) dWs

]

= x0
Bt

Bt0
+ δ

2cσ

( Bt

BT

)1−δ2/r
[(σ 2−2r

2δ2

)[( Bt

Bt0

)δ2/r−1
]

+ log
( St
St0

)
+ δ2

∫ t

t0

( Bt

Bs

)δ2/r
log

( Ss
St0

)
ds

]
(3.5)

for t ∈ [t0, T ]. The dynamic value function Vd := E(Xd
T )−cVar(Xd

T ) is given by

Vd(t0, x0) = x0e
r(T−t0) + 1

2c

[
eδ2(T−t0) − 1

4 e
2δ2(T−t0) − 3

4

]
(3.6)

for (t0, x0) ∈ [0, T ]×R.

Proof We assume throughout that the process Xu solves the stochastic differential equation
(2.3) with Xu

t0 = x0 under Pt0,x0 for (t0, x0) ∈ [0, T ]×R given and fixed where u is any
admissible control as defined/discussed above. To simplify the notation we will drop the
subscript zero from t0 and x0 in the first part of the proof below.

(A): Note that the objective function in (2.4) reads

Et,x (X
u
T ) − cVart,x (Xu

T ) = Et,x (X
u
T ) + c

[
Et,x (X

u
T )

]2− cEt,x
[
(Xu

T )2
]

(3.7)

where the key difficulty is the quadratic nonlinearity of the middle term on the right-hand
side. To overcome this difficulty we will condition on the size of Et,x (Xu

T ). This yields

V (t, x) = sup
M∈R

sup
u : Et,x (Xu

T )=M

[
Et,x (X

u
T )−cVart,x (Xu

T )
]

= sup
M∈R

sup
u : Et,x (Xu

T )=M

[
Et,x (X

u
T ) + c

[
Et,x (X

u
T )

]2− cEt,x
[
(Xu

T )2
]]

= sup
M∈R

[
M + cM2 − c inf

u : Et,x (Xu
T )=M

Et,x
[
(Xu

T )2
]]

. (3.8)
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Hence to solve (3.8) and thus (2.4) we need to solve the constrained problem

VM (t, x) = inf
u : Et,x (Xu

T )=M
Et,x

[
(Xu

T )2
]

(3.9)

for M ∈ R given and fixed where u is any admissible control.
1. To tackle the problem (3.9) we will apply the method of Lagrange multipliers. For this,

define the Lagrangian as follows

Lt,x (u, λ) = Et,x
[
(Xu

T )2
] − λ

[
Et,x (X

u
T )−M

]
(3.10)

for λ ∈ R and let uλ∗ denote the optimal control in the unconstrained problem

Lt,x (u
λ∗, λ) := inf

u
Lt,x (u, λ) (3.11)

upon assuming that it exists. Suppose moreover that there is λ=λ(M, t, x) ∈ R such that

Et,x
(
X
uλ∗
T

) = M . (3.12)

It then follows from (3.10)–(3.12) that

Et,x
[(
X
uλ∗
T

)2] = Lt,x (u
λ∗, λ) ≤ Et,x

[
(Xu

T )2
]

(3.13)

for any admissible control u such that Et,x (Xu
T ) = M . This shows that uλ∗ satisfying (3.11)

and (3.12) is optimal in (3.9).
2. To tackle the problem (3.11) with (3.12) we consider the optimal control problem

V λ(t, x) = inf
u

Et,x
[
(Xu

T )2−λXu
T

]
(3.14)

where u is any admissible control. This is a standard/linear problem of optimal control (see
e.g. [5]) that can be solved using a classic HJB approach. For the sake of completeness we
present key steps in the derivation of the solution.

From (3.14) combined with (2.3) we see that the HJB system reads

inf
u∈R

[
V λ
t + (

r(1−u)+μu
)
x V λ

x + 1
2 σ 2u2x2V λ

xx

]
= 0 (3.15)

V λ(T, x) = x2−λx (3.16)

on [0, T ]×R. Making the ansatz that V λ
xx > 0 and minimising the quadratic function of u

over R in (3.15) we find that

u = − δ

σ

1

x

V λ
x

V λ
xx

. (3.17)

Inserting (3.17) back into (3.15) yields

V λ
t + r x V λ

x − δ2

2

(V λ
x )2

V λ
xx

= 0 . (3.18)

Seeking the solution to (3.18) of the form

V λ(t, x) = a(t)x2 + b(t)x + c(t) (3.19)

and making use of (3.16) we find that

a′(t) = (δ2−2r)a(t) & b′(t) = (δ2−r)b(t) & c′(t) = δ2

4

b2(t)

a(t)
(3.20)
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on [0, T ] with a(T ) = 1, b(T ) = −λ and c(T ) = 0. Solving (3.20) under these terminal
conditions we obtain

a(t) = e−(δ2−2r)(T−t) & b(t) = −λe−(δ2−r)(T−t) & c(t) = −λ2

4

[
1−e−δ2(T−t)

]
.

(3.21)

Inserting (3.21) into (3.19) and calculating (3.17) we find that

u(t, x) = − δ

σ

1

x

[
x− λ

2
e−r(T−t)

]
. (3.22)

Applying Itô’s formula to the process Z defined by

Zt = K − e−r(t−t0)Xu
t (3.23)

where we set K := (λ/2)e−r(T−t0) and making use of (2.3) we find that

dZt = −δ2Zt dt − δ Zt dWt (3.24)

with Zt0 = K −x0 under Pt0,x0 . Solving the linear equation (3.24) explicitly we obtain the
following closed form expression

Xu
t = er(t−t0)

[
K−(K−x0)e

−δ(Wt−Wt0 )− 3δ2
2 (t−t0)

]
(3.25)

for t ∈ [t0, T ]. The process Xu defined by (3.25) is a unique strong solution to the stochastic
differential equation (2.3) obtained by the control u from (3.22) and yielding the value
function V λ given in (3.19) combined with (3.21) above. It is then a matter of routine to
apply Itô’s formula to V λ composed with (t, Xv

t ) for any admissible control v and using
(3.15)+(3.16) verify that the candidate control u from (3.22) is optimal in (3.14) as envisaged
(these arguments are displayed more explicitly in (3.36)–(3.37) below).

3. Having solved the problem (3.14) we still need to meet the condition (3.12). For this,
we find from (3.25) that

Et0,x0

(
Xu
T

) = x0e
−(δ2−r)(T−t0) + λ

2

[
1−e−δ2(T−t0)

]
. (3.26)

To realise (3.12) we need to identify (3.26) with M . This yields

λ = 2
M−x0e−(δ2−r)(T−t0)

1−e−δ2(T−t0)
(3.27)

for δ �= 0. Note that the case δ = 0 is evident since in this case uλ∗ = 0 is optimal in (3.14)
for every λ ∈ R and hence the inequality in (3.13) holds for every admissible control u while
from (2.3) we also easily see that (3.26) (with δ = 0) holds for every admissible control u so
that we only have one M possible in (3.8) and that is the one given by (3.26) (with δ = 0).
This shows that (3.1)–(3.3) are valid when δ = 0 and we will therefore assume in the sequel
that δ �= 0. Moreover, from (3.25) we also find that

Et0,x0

[
(Xu

T )2
] = x20 e

−(δ2−2r)(T−t0) + λ2

4

[
1−e−δ2(T−t0)

]
. (3.28)

Note that this expression can also be obtained from (3.14) and (3.26) upon recalling (3.19)
with (3.21) above. Inserting (3.27) into (3.28) and recalling (3.13) we see that (3.9) is given
by

VM (t0, x0) = x20 e
−(δ2−2r)(T−t0) +

(
M−x0e−(δ2−r)(T−t0)

)2
1−e−δ2(T−t0)

(3.29)
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for δ �= 0. Inserting (3.29) into (3.8) we get

V (t0, x0) = sup
M∈R

[
M + cM2 − c

(
x20 e

−(δ2−2r)(T−t0) +
(
M−x0e−(δ2−r)(T−t0)

)2
1−e−δ2(T−t0)

)]

(3.30)

for δ �= 0. Note that the function of M to be maximised on the right-hand side is quadratic
with the coefficient in front of M2 strictly negative when δ �= 0. This shows that there exists
a unique maximum point in (3.30) that is easily found to be given by

M∗ = x0e
r(T−t0) + 1

2c

[
eδ2(T−t0)−1

]
. (3.31)

Inserting (3.31) into (3.27) we find that

λ∗ = 2x0e
r(T−t0) + 1

c
eδ2(T−t0) . (3.32)

Inserting (3.32) into (3.22) we establish the existence of the optimal control in (2.4) that is
given by (3.1) above. Moreover, inserting (3.32) into (3.25) we obtain the first identity in
(3.2). The second identity in (3.2) then follows upon recalling the closed form expressions
for B and S stated following (2.2) above. Finally, inserting (3.31) into (3.30) we obtain (3.3)
and this completes the first part of the proof.

(B): Identifying t0 with t and x0 with x in the statically optimal control us∗ from (3.1) we
obtain the control ud∗ from (3.4). We claim that this control is dynamically optimal in (2.4).
For this, take any other admissible control v such that v(t0, x0) �= ud∗(t0, x0) and set w = us∗.
Then w(t0, x0) = ud∗(t0, x0) and we claim that

Vw(t0, x0) := Et0,x0(X
w
T )−cVart0,x0(X

w
T ) > Et0,x0(X

v
T )−cVart0,x0(X

v
T ) =: Vv(t0, x0)

(3.33)
upon noting that Vw(t0, x0) equals V (t0, x0) since w is statically optimal in (2.4).

4. To verify (3.33) set Mv := Et0,x0(X
v
T ) and first consider the case when Mv �= M∗

where M∗ is given by (3.31) above. Using (3.9)+ (3.29) and (3.30)+ (3.31) we then find that

Vv(t0, x0) = Mv + cM2
v − cEt0,x0

[
(Xv

T )2
] ≤ Mv + cM2

v − c VMv (t0, x0)

≤ Mv + cM2
v − c

(
x20 e

−(δ2−2r)(T−t0) +
(
Mv−x0e−(δ2−r)(T−t0)

)2
1−e−δ2(T−t0)

)

< M∗ + cM2∗ − c

(
x20 e

−(δ2−2r)(T−t0) +
(
M∗−x0e−(δ2−r)(T−t0)

)2
1−e−δ2(T−t0)

)

= Vw(t0, x0) (3.34)

for δ �= 0 where the strict inequality follows since M∗ is the unique maximum point of the
quadratic function as pointed out following (3.30) above. The case δ = 0 is excluded since
then as pointed out following (3.27) above we only have M∗ possible in (3.8) so that Mv

would be equal to M∗. This shows that (3.33) is satisfied when Mv �= M∗ as claimed.
Next consider the case when Mv = M∗. We then claim that

V λ∗
v (t, x) := Et0,x0

[
(Xv

T )2−λ∗ Xv
T

]
> V λ∗(t0, x0) (3.35)
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where V λ∗ is defined in (3.14) and λ∗ is given by (3.32) above. For this, note that using (3.16)
and applying Itô’s formula we get

(Xv
T )2 − λ∗Xv

T = V λ∗(T, Xv
T ) = V λ∗(t0, x0)

+
∫ T

t0

[
V λ∗
t (s, Xv

s ) + [
r
(
1−v(s, Xv

s )
)+μv(s, Xv

s )
]
Xv
s V

λ∗
x (s, Xv

s )

+ 1

2
σ 2v2(s, Xv

s ) (Xv
s )

2 V λ∗
xx (s, Xv

s )
]
ds + MT (3.36)

where Mt := ∫ t
t0

σ v(s, Xv
s ) X

v
s V

λ∗
x (s, Xv

s ) dWs is a continuous local martingale under

Pt0,x0 for t ∈ [t0, T ]. Using that Et0,x0

[ ∫ T
t0

(1 + v2t ) (Xv
t )

2 dt
]

< ∞ it is easily
seen from (2.3) by means of Jensen’s and Burkholder–Davis–Gundy’s inequalities that
Et0,x0 [max t0≤t≤T (Xv

t )
2] < ∞ and hence upon recalling (3.19)+ (3.21) above (with λ∗ in

place of λ) it follows by Hölder’s inequality that Et0,x0
√〈M, M〉T < ∞ so that M is a

martingale. Taking Et0,x0 on both sides of (3.36) we therefore get

V λ∗
v (t, x) = V λ∗(t0, x0)

+Et0,x0

∫ T

t0

[
V λ∗
t (s, Xv

s ) + [
r
(
1−v(s, Xv

s )
)+μv(s, Xv

s )
]
Xv
s V

λ∗
x (s, Xv

s )

+ 1

2
σ 2v2(s, Xv

s ) (Xv
s )

2 V λ∗
xx (s, Xv

s )
]
ds (3.37)

where the integrand is non-negative due to (3.15) (with λ∗ in place of λ). Since ud∗(t0, x0) =
us∗(t0, x0) and v(t0, x0) �= ud∗(t0, x0) we see that v(t0, x0) �= w(t0, x0). Assuming x0 �= 0
by the continuity of v and w it then follows that v(s, x) �= w(s, x) for all (s, x) ∈ Rε :=
[t0, t0+ε]×[x0−ε, x0+ε] for some ε > 0 small enough such that t0+ε ≤ T as well. Moreover,
since w(t, x) is the unique minimum point of the continuous function on the left-hand side
of (3.15) (with λ∗ in place of λ) evaluated at (t, x) for every (t, x) ∈ [0, T ]×R, we see that
this ε > 0 can be chosen small enough so that

V λ∗
t + (

r(1−v)+μv
)
x V λ∗

x + 1
2 σ 2v2x2V λ∗

xx ≥ β > 0 (3.38)

on Rε for some β > 0 given and fixed. Setting τε := inf { s ∈ [t0, t0+ε] | (s, Xv
s ) /∈ Rε } we

see by (3.37) and (3.38) that

V λ∗
v (t, x) ≥ V λ∗(t0, x0) + β Et0,x0(τε−t0) > V λ∗(t0, x0) (3.39)

where in the first inequality we use that the integrand in (3.37) is non-negative as pointed out
above and in the final (strict) inequality we use that τε > t0 with Pt0,x0-probability one due
to the continuity of Xv . The arguments remain also valid when x0 = 0 upon recalling that
v(t0, 0) and w(t0, 0) are identified with v(t0, 0) · 0 and w(t0, 0) · 0 in this case. From (3.39)
we see that (3.35) holds as claimed.

Recalling from (3.10)–(3.13) that V λ∗(t0, x0) = VM∗(t0, x0)−λ∗ M∗ as well as that
Mv = M∗ by hypothesis we see from (3.35) that

Et0,x0

[
(Xv

T )2
]

> VM∗(t0, x0). (3.40)

It follows therefore from (3.8) that

Vw(t0, x0) = M∗ + cM2∗ − c VM∗(t0, x0) > M∗ + cM2∗ − cEt0,x0

[
(Xv

T )2
]

= Et0,x0(X
v
T )−cVart0,x0(X

v
T ) = Vv(t0, x0) . (3.41)
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This shows that (3.33) holds when Mv = M∗ as well and hence we can conclude that the
control ud∗ from (3.4) is dynamically optimal as claimed.

5. Applying Itô’s formula to er(T−t)Xd
t where we set Xd := Xud∗ and making use of (2.3)

we easily find that the first identity in (3.5) is satisfied. Integrating by parts and recalling the
closed form expressions for B and S stated following (2.2) above we then establish that the
second identity in (3.5) also holds. From the first identity in (3.5) we get

Et0,x0

(
Xd
T

) = x0e
r(T−t0) + 1

2c

[
eδ2(T−t0) − 1

]
(3.42)

Vart0,x0(X
d
T ) = 1

8c2

[
e2δ

2(T−t0) − 1
]
. (3.43)

From (3.42) and (3.43) we obtain (3.6) and this completes the proof. �

Remark 4 The dynamically optimal control ud∗ from (3.4) by its nature rejects any past point
(t0, x0) to measure its performance so that although the static value Vs(t0, x0) by its definition
dominates the dynamic value Vd(t0, x0) this comparison is meaningless from the standpoint
of the dynamic optimality. Another issue with a plain comparison of the values Vs(t, x) and
Vd(t, x) for (t, x) ∈ [t0, T ] × R is that the optimally controlled processes Xs and Xd may
never come to the same point x at the same time t so that the comparison itself may be
unreal. A more dynamic way that also makes more sense in general is to compare the value
functions composed with the controlled processes. This amounts to look at Vs(t, Xs

t ) and
Vd(t, Xd

t ) for t ∈ [t0, T ] and pay particular attention to t becoming the terminal value T .
Note that Vs(T, Xs

T ) = Xs
T and Vd(T, Xd

T ) = Xd
T so that to compare Et0,x0

[
Vs(T, Xs

T )
]
and

Et0,x0

[
Vd(T, Xd

T )
]
is the same as to compare Et0,x0(X

s
T ) and Et0,x0(X

d
T ). It is easily seen

from (3.2) and (3.5) that the latter two expectations coincide. We can therefore conclude that

Et0,x0

[
Vs(T, Xs

T )
] = Et0,x0(X

s
T ) = Et0,x0(X

d
T ) = Et0,x0

[
Vd(T, Xd

T )
]

(3.44)

for all (t0, x0) ∈ [0, T ]×R. This shows that the dynamically optimal control ud∗ is as good as
the statically optimal control us∗ from this static standpoint as well (with respect to any past
point (t0, x0) given and fixed). In addition to that however the dynamically optimal control
ud∗ is time consistent while the statically optimal control us∗ is not.

Note also from (3.4) that the amount of the dynamically optimal wealth ud∗(t, x) · x
held in the stock at time t does not depend on the amount of the total wealth x . This is
consistent with the fact that the risk/cost in (2.4) is measured by the variance (applied at a
constant rate c) which is a quadratic function of the terminal wealth while the return/gain is
measured by the expectation (applied at a constant rate too) which is a linear function of the
terminal wealth. The former therefore penalises stochastic movements of the large wealth
more severely than what the latter is able to compensate for and the investor is discouraged
to hold larger amounts of his wealth in the stock. Thus even if the total wealth is large (in
modulus) it is still dynamically optimal to hold the same amount of wealth ud∗(t, x) · x in the
stock at time t as when the total wealth is small (in modulus). The same optimality behaviour
has been also observed for the subgame-perfect Nash equilibrium controls (cf. Sect. 4).

We now turn to the constrained problems. Note in the proofs below that the unconstrained
problem above is obtained by optimising the Lagrangian of the constrained problems.

Corollary 5 Consider the optimal control problem (2.5)where Xu solves (2.3)with Xu
t0 = x0

under Pt0,x0 for (t0, x0) ∈ [0, T ]×R given and fixed. Recall that B solves (2.1), S solves
(2.2), and we set δ = (μ − r)/σ for μ ∈ R, r ∈ R and σ > 0. We assume throughout that
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δ �= 0 and r �= 0 (the cases δ = 0 or r = 0 follow by passage to the limit when the non-zero
δ or r tends to 0).

(A) The statically optimal control is given by

us∗(t, x) = δ

σ

1

x

[
x0e

r(t−t0) − x + √
α

eδ2(T−t0)−r(T−t)

√
eδ2(T−t0)−1

]
(3.45)

for (t, x) ∈ [t0, T ]×R. The statically optimal controlled process is given by

Xs
t = x0e

r(t−t0) + √
α

e(δ2−r)(T−t)

√
eδ2(T−t0)−1

[
eδ2(t−t0) − e−δ(Wt−Wt0 )− δ2

2 (t−t0)
]

= x0
Bt

Bt0
+

√
α√( BT

Bt0

)δ2/r −1

( Bt

BT

)1−δ2/r
[( Bt

Bt0

)δ2/r−
( Bt

Bt0

)δ(1/σ+(δ−σ)/2r)( St
St0

)−δ/σ
]

(3.46)

for t ∈ [t0, T ]. The static value function V 1
s := E(Xs

T ) is given by

V 1
s (t0, x0) = x0e

r(T−t0) + √
α

√
eδ2(T−t0) − 1 (3.47)

for (t0, x0) ∈ [0, T ]×R.
(B) The dynamically optimal control is given by

ud∗(t, x) = √
α

δ

σ

1

x

e(δ2−r)(T−t)

√
eδ2(T−t)−1

(3.48)

for (t, x)∈[t0, T ]×R. The dynamically optimal controlled process is given by

Xd
t = x0e

r(t−t0) + 2
√

α e−r(T−t)
[√

eδ2(T−t0)−1 −
√
eδ2(T−t)−1

+ δ

2

∫ t

t0

eδ2(T−s)

√
eδ2(T−s)−1

dWs

]

= x0
Bt

Bt0
+ δ

√
α

σ

Bt

BT

⎡
⎣ 2(r+δ(1−σ))−σ 2

δ2

⎛
⎝

√( BT

Bt

)δ2/r−1 −
√( BT

Bt0

)δ2/r−1

⎞
⎠

+
( BT
Bt

)δ2/r
√( BT

Bt

)δ2/r−1
log

( St
St0

)
+ δ2

2

∫ t

t0

( BT

Bs

)δ2/r (( BT
Bs

)δ2/r−2
)

(( BT
Bs

)δ2/r−1
)3/2 log

( Ss
St0

)
ds

⎤
⎦

(3.49)

for t ∈ [t0, T ). The dynamic value function V 1
d := lim t↑T E(Xd

t ) is given by

V 1
d (t0, x0) = x0e

r(T−t0) + 2
√

α

√
eδ2(T−t0) − 1 (3.50)

for (t0, x0) ∈ [0, T )×R.

Proof We assume throughout that the process Xu solves the stochastic differential equation
(2.3) with Xu

t0 = x0 under Pt0,x0 for (t0, x0) ∈ [0, T ]×R given and fixed where u is any
admissible control as defined/discussed above. To simplify the notation we will drop the
subscript zero from t0 and x0 in the first part of the proof below.
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(A): Note that we can think of (3.7) as (the essential part of) the Lagrangian for the
constrained problem (2.5) defined by

Lt,x (u, c) = Et,x (X
u
T ) − c

[
Vart,x (Xu

T )−α
]

(3.51)

for c > 0. By the result of Theorem 3 we know that the control us∗ given in (3.1) is optimal
in unconstrained problem

Lt,x (u
c∗, c) := sup

u
Lt,x (u, c) (3.52)

for c > 0. Suppose moreover that there exists c = c(α, t, x) > 0 such that

Vart,x
(
X
uc∗
T

) = α . (3.53)

It then follows that

Et,x (X
uc∗
T ) = Lt,x (u

c∗, c) ≥ Et,x (X
u
T )−c

[
Vart,x (Xu

T )−α
] ≥ Et,x (X

u
T ) (3.54)

for any admissible control u such that Vart,x (Xu
T ) ≤ α. This shows that the control uc∗ from

(3.1) with c = c(α, t, x) > 0 is statically optimal in (2.5).
To realise (3.53) note that taking Et0,x0 in (3.2) and making use of (3.3) we find that

Vart0,x0
(
X
uc∗
T

) = 1

4c2

[
eδ2(T−t0) − 1

]
. (3.55)

Setting this expression equal to α yields

c = 1

2
√

α

√
eδ2(T−t0) − 1 . (3.56)

By (3.53) and (3.54) we can then conclude that the control uc∗ is statically optimal in (2.5).
Inserting (3.56) into (3.1) and (3.2) we obtain (3.45) and (3.46) respectively. Taking Et0,x0
in (3.46) we obtain (3.47) and this completes the first part of the proof.

(B): Identifying t0 with t and x0 with x in the statically optimal control us∗ from (3.45)
we obtain the control ud∗ from (3.48). We claim that this control is dynamically optimal
in (2.5). For this, take any other admissible control v such that v(t0, x0) �= ud∗(t0, x0) and
set w = us∗. Then w(t0, x0) = ud∗(t0, x0) and (3.33) holds with c from (3.56). Using that
Vart0,x0(X

w
T ) = α by (3.55) and (3.56) we see that (3.33) yields

Et0,x0(X
w
T ) > Et0,x0(X

v
T ) + c

(
α−Vart0,x0(X

v
T )

) ≥ Et0,x0(X
v
T ) (3.57)

whenever Vart0,x0(X
v
T ) ≤ α. This shows that the control ud∗ from (3.48) is dynamically

optimal in (2.5) as claimed.
Applying Itô’s formula to er(T−t)Xd

t where we set Xd := Xud∗ and making use of (2.3)
we easily find that the first identity in (3.49) is satisfied. Integrating by parts and recalling
the closed form expressions for B and S stated following (2.2) above we then establish that
the second identity in (3.49) also holds. From the first identity in (3.49) we get

Et0,x0

(
Xd
t

)
= x0e

r(t−t0) + 2
√

α e−r(T−t)
[√

eδ2(T−t0)−1 −
√
eδ2(T−t)−1

]
(3.58)

for t ∈ [t0, T ). Letting t ↑ T in (3.58) we obtain (3.50) and this completes the proof. ��
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Remark 6 (A dynamic compliance effect). From (3.47) and (3.50) we see that the dynamic
value V 1

d (t0, x0) strictly dominates the static value V 1
s (t0, x0). To see why this is possible

note that using (3.49) we find that

Vart0,x0(X
d
t ) = α e−2r(T−t)

[
eδ2(T−t0)−eδ2(T−t)+log

(
eδ2(T−t0)−1

eδ2(T−t)−1

)]
(3.59)

for t ∈ [t0, T ) with δ �= 0. This shows that Var t0,x0(X
d
t ) → ∞ as t ↑ T so that the

static value V 1
s (t0, x0) can indeed be exceeded by the dynamic value V 1

d (t0, x0) since the
set of admissible controls is virtually larger in the dynamic case. It amounts to what we
refer to as a dynamic compliance effect where the investor follows a uniformly bounded
risk (variance) strategy at each time (and thus complies with the adopted regulation rule
imposed internally/externally) while the resulting static strategy exhibits an unbounded
risk (variance). Denoting the stochastic integral (martingale) in (3.49) by Mt we see that
〈M, M〉t = ∫ t

t0
e2δ

2(T−s)/(e2δ
2(T−s) −1) ds → ∞ as t ↑ T . It follows therefore that Mt

oscillates from −∞ to ∞ with Pt0,x0-probability one as t ↑ T and hence the same is true for
Xd
t whenever δ �= 0 (for similar behaviour arising from the continuous-time analogue of a

doubling strategy see [9, Example 2.3]). We also see from (3.46) and (3.49) that unlike in
(3.44) we have the strict inequality

lim
t↑T Et0,x0

[
V 1
s (t, Xs

t )
] = lim

t↑T Et0,x0(X
s
t ) < lim

t↑T Et0,x0(X
d
t ) = lim

t↑T Et0,x0

[
V 1
d (t, Xd

t )
]

(3.60)
satisfied for all (t0, x0) ∈ [0, T )×R. This shows that the dynamic control ud∗ from (3.48)
outperforms the static control us∗ from (3.45) in the constrained problem (2.5).

Corollary 7 Consider the optimal control problem (2.6)where Xu solves (2.3)with Xu
t0 = x0

under Pt0,x0 for (t0, x0) ∈ [0, T ]×R given and fixed. Recall that B solves (2.1), S solves
(2.2), and we set δ = (μ − r)/σ for μ ∈ R, r ∈ R and σ > 0. We assume throughout that
δ �= 0 and r �= 0 (the cases δ = 0 or r = 0 follow by passage to the limit when the non-zero
δ or r tends to 0).

(A) The statically optimal control is given by

us∗(t, x) = δ

σ

1

x

[
x0e

r(t−t0) − x + (
β−x0e

r(T−t0)
) eδ2(T−t0)−r(T−t)

eδ2(T−t0)−1

]
(3.61)

if x0er(T−t0) < β and us∗(t, x) = 0 if x0er(T−t0) ≥ β for (t, x) ∈ [t0, T ]×R. The statically
optimal controlled process is given by

Xs
t = x0e

r(t−t0) + (
β−x0e

r(T−t0)
) e(δ2−r)(T−t)

eδ2(T−t0)−1

[
eδ2(t−t0) − e−δ(Wt−Wt0 )− δ2

2 (t−t0)
]

= x0
Bt

Bt0
+

(
β−x0

BT

Bt0

) ( Bt
BT

)1−δ2/r

( BT
Bt0

)δ2/r−1

[(
Bt

Bt0

)δ2/r

−
(

Bt

Bt0

)δ(1/σ+(δ−σ)/2r)( St
St0

)−δ/σ ]

(3.62)

if x0er(T−t0) < β and Xs
t = x0er(t−t0) if x0er(T−t0) ≥ β for t ∈ [t0, T ] (see Fig. 1 below).

The static value function V 2
s := Var(Xs

T ) is given by

V 2
s (t0, x0) =

(
β−x0er(T−t0)

)2
eδ2(T−t0)−1

(3.63)
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Fig. 1 The dynamically optimal wealth t �→ Xd
t and the statically optimal wealth t �→ Xs

t in the constrained
problem (2.6) of Corollary 7 obtained from the stock price t �→ St when t0 = 0, x0 = 1, S0 = 1, β = 2,
r = 0.1,μ = 0.5, σ = 0.4 and T = 1. Note that the expected value of ST equals eμT ≈ 1.64 which is strictly
smaller than β

if x0er(T−t0) < β and V 2
s (t0, x0) = 0 if x0er(T−t0) ≥ β for (t0, x0) ∈ [0, T ]×R.

(B) The dynamically optimal control is given by

ud∗(t, x) = δ

σ

1

x

(
β−x er(T−t)) e(δ2−r)(T−t)

eδ2(T−t)−1
(3.64)

if x0er(T−t0) < β and ud∗(t, x) = 0 if x0er(T−t0) ≥ β for (t, x) ∈ [t0, T )×R. The dynamically
optimal controlled process is given by

Xd
t = e−r(T−t)

[
β − (

β−x0e
r(T−t0)

) eδ2(T−t)−1

eδ2(T−t0)−1

× exp

(
− δ

∫ t

t0

eδ2(T−s)

eδ2(T−s)−1
dWs − δ2

2

∫ t

t0

e2δ
2(T−s)

(eδ2(T−s)−1)2
ds

)]
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= Bt

BT

[
β −

(
β−x0

BT

Bt0

)( ( BT
Bt

)δ2/r −1
( BT
Bt0

)δ2/r −1

)1/2+σ/2δ−r/σδ

exp

(
− δ

σ

( BT
Bt

)δ2/r
( BT
Bt

)δ2/r −1
log

( St
St0

)

+ δ3

σ

∫ t

t0

( BT
Bs

)δ2/r
(( BT

Bs

)δ2/r −1
)2 log

( Ss
St0

)
ds − 1

2

( BT
Bt0

)δ2/r−( BT
Bt

)δ2/r
(( BT

Bt

)δ2/r−1
)(( BT

Bt0

)δ2/r−1
)

) ]
(3.65)

with Xd
t e

r(T−t) < β for t ∈ [t0, T ) and Xd
T := lim t↑T Xd

t = β with Pt0,x0-probability one
if x0er(T−t0) < β, and Xd

t = x0er(t−t0) for t ∈ [t0, T ] if x0er(T−t0) ≥ β (see Fig. 1 above).
The dynamic value function V 2

d := Var(Xd
T ) is given by

V 1
d (t0, x0) = 0 (3.66)

for (t0, x0) ∈ [0, T )×R.

Proof We assume throughout that the process Xu solves the stochastic differential equation
(2.3) with Xu

t0 = x0 under Pt0,x0 for (t0, x0) ∈ [0, T ]×R given and fixed where u is any
admissible control as defined/discussed above. To simplify the notation we will drop the
subscript zero from t0 and x0 in the first part of the proof below.

(A): Note that the Lagrangian for the constrained problem (2.6) is defined by

Lt,x (u, c) = Vart,x (Xu
T ) − c

[
Et,x (X

u
T )−β

]
(3.67)

for c > 0. To connect to the results of Theorem 3 observe that

inf
u

(
Vart,x (Xu

T ) − c
[
Et,x (X

u
T )−β

]) = −c sup
u

[
Et,x (X

u
T ) − 1

c
Vart,x (Xu

T )
]

+ cβ (3.68)

which shows that the control u1/c∗ given in (3.1) is optimal in the unconstrained problem

Lt,x (u
1/c∗ , c) := inf

u
Lt,x (u, c) (3.69)

for c > 0. Suppose moreover that there exists c = c(β, t, x) > 0 such that

Et,x
(
Xu1/c∗
T

) = β . (3.70)

It then follows that

Vart,x (Xu
T ) = Lt,x (u

1/c∗ , c) ≤ Vart,x (Xu
T ) − c

[
Et,x (X

u
T )−β

] ≤ Vart,x (Xu
T ) (3.71)

for any admissible control u such that Et,x (Xu
T ) ≥ β. This shows that the control u1/c∗ from

(3.1) with c = c(β, t, x) > 0 is statically optimal in (2.6).
To realise (3.70) note that taking Et0,x0 in (3.2) we find that

Et0,x0

(
Xu1/c∗
T

) = x0e
r(T−t0) + c

2

[
eδ2(T−t0) − 1

]
. (3.72)

Setting this expression equal to β yields

c = 2(β−x0er(T−t0))

eδ2(T−t0)−1
. (3.73)

From (3.73) we see that c > 0 if and only if x0er(T−t0) < β. If x0er(T−t0) ≥ β then clearly
we can invest all the wealth in B and receive zero variance at T . This shows that the control
us∗(t, x) = 0 for (t, x) ∈ [t0, T ]×R is statically optimal in this case with V 2

s (t0, x0) = 0
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as claimed. Let us therefore assume that x0 er(T−t0) < β in the sequel. Then by (3.70) and
(3.71) we can conclude that the control u1/c∗ is statically optimal in (2.6). Inserting (3.73)
into (3.1) and (3.2) we obtain (3.61) and (3.62) respectively. Inserting (3.73) into (3.55) we
obtain (3.63) and this completes the first part of the proof.

(B): Identifying t0 with t and x0 with x in the statically optimal control us∗ from (3.61) we
obtain the control ud∗ from (3.64). We claim that this control is dynamically optimal in (2.6)
when x0 er(T−t0) < β. For this, take any other admissible control v such that v(t0, x0) �=
ud∗(t0, x0) and set w = us∗. Then w(t0, x0) = ud∗(t0, x0) and (3.33) holds with c from (3.73).
Using that Et0,x0(X

w
T ) = β by (3.72) and (3.73) we see that (3.33) yields

Vart0,x0(X
w
T ) <

1

c

[
β − Et0,x0(X

v
T ) + cVart0,x0(X

v
T )

]
≤ Vart0,x0(X

v
T ) (3.74)

wheneverEt0,x0(X
v
T ) ≥ β. This shows that the control ud∗ from (3.64) is dynamically optimal

in (2.6) when x0 er(T−t0) < β as claimed. If x0 er(T−t0) ≥ β then both us∗(t, x) = 0 and

ud∗(t, x) = 0 so that by (2.3) we see that Xd
t := X

ud∗
t = x0er(t−t0) for t ∈ [t0, T ] as claimed.

Dynamic optimality then follows from the fact (singled out in Remark 9 below) that zero
control is the only possible admissible control that can move a given deterministic wealth
x0 at time t0 ∈ [0, T ) to another deterministic wealth (of zero variance) at time T . Let us
therefore assume that x0er(T−t0) < β in the sequel.

Applying Itô’s formula to the process Z defined by

Zt = β − er(T−t)Xd
t (3.75)

where we set Xd := Xud∗ and making use of (2.3) we easily find that

dZt = −δ2
Zt

1−e−δ2(T−t)
dt − δ

Zt

1−e−δ2(T−t)
dWt (3.76)

with Zt0 = β − er(T−t0)x0 under Pt0,x0 . Solving the linear equation (3.76) explicitly we
obtain the closed form expression

Zt = Zt0 exp

(
−

∫ t

t0

δ

1−e−δ2(T−s)
dWs −

∫ t

t0

[
δ2

1−e−δ2(T−s)
+ 1

2

δ2

(1−e−δ2(T−s))2

]
ds

)

(3.77)
for t ∈ [t0, T ) under Pt0,x0 . Inserting (3.77) into (3.75) we easily find that the first identity in
(3.65) is satisfied. Integrating by parts and recalling the closed form expressions for B and S
stated following (2.2) above we then establish that the second identity in (3.65) also holds.

From (3.75) and (3.77)we see that Zt = β−er(T−t)Xd
t > 0 so that Xd

t e
r(T−t) < β for t ∈

[t0, T ) as claimed. Moreover, by the Dambis-Dubins-Schwarz theorem (see e.g. [18, p. 181])
we know that the continuous martingale M defined by Mt = −δ

∫ t
t0
eδ2(T−s)/(eδ2(T−s) −

1) dWs for t ∈ [t0, T ) is a time-changed Brownianmotion W̄ in the sense thatMt = W̄〈M,M〉t
for t ∈ [t0, T ) where we note that 〈M, M〉t = δ2

∫ t
t0
e2δ

2(T−s)/(eδ2(T−s)−1)2 ds ↑ ∞ as t ↑
T . It follows therefore by thewell-known sample path properties of W̄ thatMt− 1

2 〈M, M〉t =
W̄〈M,M〉t − 1

2 〈M, M〉t → −∞ as t ↑ T with Pt0,x0-probability one. Making use of this fact
in (3.65) we see that Xd

t → β with Pt0,x0-probability one as t ↑ T if x0 er(T−t0) < β as
claimed. From the preceding facts we also see that (3.66) holds and the proof is complete. ��
Remark 8 Note from the proof above that Xd

t < β with Pt0,x0-probability one for all t ∈
[t0, T ) if x0 er(T−t0) < β so that Xd is not a bridge process but a time-reversed meander
process. The result of Corollary 7 shows that it is dynamically optimal to keep the wealth Xd

t
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strictly below β for t ∈ [t0, T ) with achieving Xd
T = β. This behaviour is different from the

statically optimalwealth Xs
t which can go aboveβ on [t0, T ) and end up either above or below

β at T (see Fig. 1 above). Moreover, it is easily seen from (3.62) that Pt0,x0(X
s
T < β) > 0

from where we find that

Et0,x0

[
V 2
s (T, Xs

T )
] = ∞ > 0 = Et0,x0

[
V 2
d (T, Xd

T )
]

(3.78)

if x0er(T−t0) < β using (3.63) and (3.66) respectively. This shows that the dynamic control
ud∗ from (3.64) outperforms the static control us∗ from (3.61) in the constrained problem (2.6).

Remark 9 Note that no admissible control u can move a given deterministic wealth x0 at
time t0 ∈ [0, T ) to any other deterministic wealth at time T apart from x0er(T−t0) in which
case u equals zero. This is important since otherwise the optimal control problem (2.6)
would not be well posed. Indeed, this can be seen by a standard martingale measure change
dP̃t0,x0 = exp(−δ(WT −Wt0)−(δ2/2)(t− t0)) dPt0,x0 making W̃t := Wt −Wt0 +δ(t− t0)
a standard Brownian motion for t ∈ [t0, T ]. It then follows from (2.3) using integration by
parts that

e−r(t−t0)Xu
t = x0 +

∫ t

t0
σ e−r(s−t0) us X

u
s dW̃s (3.79)

where Mt := ∫ t
t0

σ e−r(s−t0) us Xu
s dW̃s is a continuous local martingale under P̃t0,x0 for

t ∈ [t0, T ]. Moreover, by Hölder’s inequality we see that

Ẽt0,x0

√〈M, M〉T = Et0,x0

[
e−δ(WT −Wt0 )− δ2

2 (T−t0)
(∫ T

t0
σ 2 e−2r(t−t0) u2t (X

u
t )

2 dt

)1/2 ]

≤
(
Et0,x0

[
e−2δ(WT −Wt0 )−δ2(T−t0)

])1/2

×
(
Et0,x0

[ ∫ T

t0
σ 2 e−2r(t−t0) u2t (X

u
t )

2 dt

])1/2
< ∞ (3.80)

since Et0,x0

[ ∫ T
t0

(1+u2t ) (Xu
t )

2 dt
]

< ∞ by admissibility of u. This shows that M is a

martingale under P̃t0,x0 . Hence if XT is constant then it follows from (3.79) and themartingale
property of M that Mt = 0 for all t ∈ [t0, T ]. But this means that Xu

t = x0 er(T−t0) for
t ∈ [t0, T ] with u being equal to zero as claimed.

Remark 10 Note from (3.65) that Et0,x0(X
d
t ) → β as t ↑ T if x0er(T−t0) < β, however, this

convergence fails to extend to the variance. Indeed, using (3.65) it can be verified that

Vart0,x0(X
d
t ) = e−2r(T−t)

(
β−x0e

r(T−t0)
)2 (

eδ2(T−t)−1

eδ2(T−t0)−1

)2

×
[
eδ2(T−t0)−1

eδ2(T−t)−1
exp

(
eδ2(T−t0) − eδ2(T−t)

(eδ2(T−t) − 1)(eδ2(T−t0) − 1)

)
− 1

]
(3.81)

for t ∈ [t0, T ) from where we see that Vart0,x0(X
d
t ) → ∞ as t ↑ T if x0 er(T−t0) < β. To

connect to the comments on the sample path behaviour made in Remark 6 note that t �→ Xd
t

is not bounded from below on [t0, T ). Both of these consequences are due partly to the fact
that we allow the wealth process to take both positive and negative values of unlimited size
(recall the end of Sect. 1 above). Another reason is that the dynamic optimality by its nature
pushes the optimal controls to their limits so that breakdown points are possible.
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4 Static versus dynamic optimality

In this section we address the rationale for introducing the static and dynamic optimality in
the nonlinear optimal control problems under consideration and explain their relevance for
applications of both theoretical and practical interest. We also discuss relation of these results
with the existing approaches to similar problems in the literature.

1. To simplify the exposition we focus on the unconstrained problem (2.4) and similar
arguments apply to the constrained problems (2.5) and (2.6) as well. Recall that (2.4)
represents the optimal portfolio selection problem for an investorwhohas an initialwealth
x0 ∈ R which he wishes to exchange between a risky stock S and a riskless bond B in a
self-financing manner dynamically in time so as to maximise his return (identified with
the expectation of his wealth) and minimise his risk (identified with the variance of his
wealth) at the given terminal time T . Due to the quadratic nonlinearity of the variance (as
a function of the expectation) the optimal portfolio strategy (3.1) depends on the initial
wealth x0 in an essentialway. This spatial inconsistency (not present in the standard/linear
optimal control problems) introduces the time inconsistency in the problem because the
investor’s wealth process moves from the initial value x0 in t units of time to a new value
x1 (different from x0 with probability one) which in turn yields a new optimal portfolio
strategy that is different from the initial strategy. This time inconsistency repeats itself
between any two points in time and the investor may be in doubt which optimal portfolio
strategy to use unless already made up his mind. To tackle these inconsistencies we
are naturally led to consider two types of investors and consequently introduce the two
notions of optimality as stated in Definitions 1 and 2 respectively. The first investor is
a static investor who stays ‘pre-committed’ to the optimal portfolio strategy evaluated
initially and does not re-evaluate the optimality criterion (2.4) at later times. This investor
will determine the optimal portfolio strategy at time t0 and follow it blindly to the terminal
time T . The second investor is a dynamic investor who remains ‘non-committed’ to the
optimal portfolio strategy evaluated initially as well as subsequently and continuously
re-evaluates the optimality criterion (2.4) at each new time. This investor will determine
the optimal portfolio strategy at time t0 and continue doing so at each new time until the
terminal time T . Clearly both the static investor and the dynamic investor embody realistic
economic behaviour (see below for a more detailed account coming from economics)
and Theorem 3 discloses their optimal portfolio selection strategies in the unconstrained
problem (2.4). Similarly Corollary 5 and Corollary 7 disclose their optimal portfolio
selection strategies in the constrained problems (2.5) and (2.6). Given that the financial
interpretations of these results are easy to draw directly and somewhat lengthy to state
explicitly we will omit further details. It needs to be noted that although closely related
the three problems (2.4)–(2.6) are still different and hence it is to be expected that their
solutions are also different for some values of the parameters. Difference between the
static and dynamic optimality is best understood by analysing each problem on its own
first as in this case the complexity of the overall comparison is greatly reduced.

2. Apart from the paper [13] where the dynamic optimality was used in a nonlinear prob-
lem of optimal stopping, we are not aware of any other paper on optimal control where
nonlinear problems were studied using this methodology. The dynamic optimality (Def-
inition 2) appears therefore to be original to the present paper in the context of nonlinear
problems of optimal control. There are two streams of papers on optimal control however
where the static optimality (Definition 1) has been used. The first one belongs to the eco-
nomics literature and dates back to the paper by Strotz [21]. The second one belongs to
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the finance literature and dates back to the paper by Richardson [19]. We present a brief
review of these papers to highlight similarities/differences and indicate the applicability
of the present methodology in these settings.

3. The stream of papers in the economics literature starts with the paper by Strotz [21]
who points out a time inconsistency arising from the presence of the initial point in
the time domain when the exponential discounting in the utility model of Samuelson
[20] is replaced by a non-exponential discounting. For an illuminating exposition of the
problem of intertemporal choices (decisions involving tradeoffs among costs and benefits
occurring at different times) lasting over hundred years and leading to the Samuelson’s
simplifyingmodel containing a single parameter (discount rate) see [7] and the references
therein. To tackle the issue of the time inconsistency Strotz proposed two strategies in
his paper: (i) the strategy of ‘pre-commitment’ (where the individual commits to the
optimal strategy derived initially) and (ii) the strategy of ‘consistent planning’ (where
the individual rejects any strategy which he will not follow through and aims to find the
optimal strategy among those that he will actually follow). Note in particular that Strotz
coins the term ‘pre-committed’ strategy in his paper and this term has since been used
in the literature including most recent papers too. Although his setting is deterministic
and his time is discrete on closer look one sees that our financial analysis of the static
investor above is fully consistent with his economic reasoning andmoreover the statically
optimal portfolio strategy derived in the present paper may be viewed as the strategy of
‘pre-commitment’ in Strotz’s sense as already indicated above. The dynamically optimal
portfolio strategy derived in the present paper is different however from the strategy of
‘consistent planning’ in Strotz’s sense. The difference is subtle still substantial and it will
become clearer through the exposition of the subsequent development that continues to
the present time. The next to point out is the paper by Pollak [16] who showed that the
derivation of the strategy of ‘consistent planning’ in the Strotz paper [21] was incorrect
(one cannot replace the individual’s non-exponential discount function by the exponential
discount function having the same slope as the non-exponential discount function at
zero). Peleg and Yaari [14] then attempted to find the strategy of ‘consistent planning’ by
backward recursion and concluded that the strategy could exist only under too restrictive
hypotheses to be useful. They suggested to look at what we now refer to as a subgame-
perfect Nash equilibrium (the optimality concept refining Nash equilibrium proposed by
Selten in 1965). Goldman [8] then pointed out that the failure of backward recursion does
not disprove the existence as suggested in [14] and showed that the strategy of ‘consistent
planning’ does exist under quite general conditions. All these papers deal with problems
in discrete time. A continuous-time extension of these results appear more recently in
the paper by Ekeland and Pirvu [6] and the paper by Björk and Murgoci [3] (see also
the references therein for other unpublished work). The Strotz’s strategy of ‘consistent
planning’ is being understood as a subgame-perfect Nash equilibrium in this context
(satisfying the natural consumption constraint at present time).

4. The stream of papers in the finance literature starting with the paper by Richardson
[19] deals with optimal portfolio selection problems under mean-variance criteria simi-
lar/analogous to (2.4)–(2.6) above. Richardson’s paper [19] derives a statically optimal
control in the constrained problem (2.6) using themartingale method suggested by Pliska
[15] whomakes use of the Legendre transform (convex analysis) rather than the Lagrange
multipliers. For an overview of the martingale method based on Lagrange multipliers see
e.g. [2, Sect. 20]. This martingale method can be used to solve the auxiliary optimal
control problem (3.14) in the proof of Theorem 3 above. Moreover on closer look it is
possible to see that the dynamically optimal control is obtained by setting the Radon-
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Nikodym derivative of the equivalent martingale measure with respect to the original
measure equal to one. Given that the martingale method is applicable to more general
problems of optimal control including those in non-Markovian settings as well this obser-
vation provides a lead for finding the dynamically optimal controls when a classic HJB
approach may not be directly applicable.

Returning to the stream of papers in the finance literature, the paper by Li and Ng
[10, Theorems 1&2] in discrete time and the paper by Zhou and Li [24, Theorem 3.1]
in continuous time show that if there is statically optimal control in the unconstrained
problem (2.4) then this control can be found by solving a linear-quadratic optimal control
problem (which in turn also yields statically optimal controls in the constrained problems
(2.5) and (2.6)). The methodology in these papers relies upon the results on multi-index
optimisation problems from the paper by Reid and Citron [17] and is more involved
(in comparison with the simple conditioning combined with a double application of
Lagrange multipliers as done in the present paper). In particular, the results of [10] and
[24] do not establish the existence of statically optimal controls in the problems (2.4)–
(2.6) although they do derive their closed form expressions in discrete and continuous
time respectively. In this context it may be useful to recall that the first to point out that
nonlinear dynamic programming problems may be tackled using the ideas of Lagrange
multipliers wasWhite in his paper [23]. He also considered the constrained problem (2.6)
in discrete time (his Sect. 3) and using Lagrange multipliers derived some conclusions
on the statically optimal control (without realising its time inconsistency). In his setting
the conditioning on the size of the expected value is automatic since he assumed that the
expected value in (2.6) equals β. For this reason his first Lagrangian associated with (2.6)
was a linear problem and hence there was no need to untangle the resulting nonlinearity
by yet another application of Lagrange multipliers as done in the present paper.

All papers in the finance literature reviewed above (including others not mentioned)
study statically optimal controls which in turn are time inconsistent. Thus all of them deal
with ‘pre-committed’ strategies in the sense of Strotz. This was pointed out by Basak and
Chabakauri in their paper [1] where they return to the Strotz’s approach of ‘consistent
planning’ and study the subgame-perfect Nash equilibrium in continuous time. The paper
by Björk and Murgoci [3] merges this with the stream of papers from the economics
literature (as already stated above) and studies general formulations of time inconsistent
problems based on the Strotz’s approach of ‘pre-commitment’ vs ‘consistent planning’
in the sense of the subgame-perfect Nash equilibrium. A recent paper by Czichowsky
[4] studies analogous formulations and further refinements in a general semimartingale
setting. For applications of statically optimal controls to pension schemes see the paper
by Vigna [22].

5. We now return to the question of comparison between the Strotz’s definition of ‘consistent
planning’ which is interpreted as the subgame-perfect Nash equilibrium in the literature
and the ‘dynamic optimality’ as defined in the present paper. The key conceptual differ-
ence is that the Strotz’s definition of ‘consistent planning’ is relative (constrained) in the
sense that the ‘optimal’ control at time t is best among all ‘available’ controls (the ones
which will be actually followed) while the present definition of the ‘dynamic optimality’
is absolute (unconstrained) in the sense that the optimal control at time t is best among
all ‘possible’ controls afterwards. To illustrate this distinction recall that the subgame-
perfect Nash equilibrium formulation of the Strotz ‘consistent planning’ optimality can
be informally described as follows. Given the present time t and all future times s > t
one identifies the control cs applied at time s ≥ t with an action of the s-th player. The
Strotz ‘consistent planning’ optimality is then obtained through the subgame-perfect
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Nash equilibrium at a given control (cr )r≥0 if the action ct is best when the actions cs
for s > t are given and fixed, i.e. no other action c̃t in place ct would do better when
the actions cs for s > t are given and fixed (the requirement is clear in discrete time and
requires some right-hand limiting argument in continuous time). Clearly this optimality
is different from the ‘dynamic optimality’ where the optimal control at time t is best
among all ‘possible’ controls afterwards.

To make a more explicit comparison between the two concepts of optimality, recall
from [1] (see also [3]) that a subgame-perfect Nash optimal control in the problem (2.4)
is given by

un∗(t, x) = δ

2cσ

1

x
e−r(T−t) (4.1)

for (t, x)∈[t0, T ]×R, the subgame-perfect Nash optimal controlled process is given by

Xn
t = x0e

r(t−t0) + δ

2c
e−r(T−t)

[
δ(t−t0) + Wt−Wt0

]
(4.2)

for t ∈ [t0, T ], and the subgame-perfect Nash value function is given by

Vn(t0, x0) = x0e
r(T−t0) + δ2

4c
(T−t0) (4.3)

for (t0, x0) ∈ [t0, T ]×R (compare these expressions with those given in (3.4)–(3.6)
above). Returning to the analysis from the first paragraph of Remark 4 above, one can
easily see by direct comparison that the subgame-perfectNash value Vn(t0, x0) dominates
the dynamic value Vd(t0, x0) (and is dominated by the static value Vs(t0, x0) due to its
definition). Given that the optimally controlled processes Xn and Xd may never come
to the same point x at the same time t we see (as pointed out in Remark 4) that this
comparison may be unreal and a better way is to compare the value functions composed
with the controlled processes. Noting that Vn(T, Xn

T ) = Xn
T and Vd(T, Xd

T ) = Xd
T it is

easy to verify using (3.5) and (4.2) that

Et0,x0

[
Vn(T, Xn

T )
] = Et0,x0(X

n
T ) < Et0,x0(X

d
T ) = Et0,x0

[
Vd(T, Xd

T )
]

(4.4)

for all (t0, x0) ∈ [0, T )×R. This shows that the dynamically optimal control ud∗ from (3.4)
outperforms the subgame-perfectNash optimal control un∗ from (4.1) in the unconstrained
problem (2.4). A similar comparison in the constrained problems (2.5) and (2.6) is not
possible since subgame-perfect Nash optimal controls are not available in these problems
at present.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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