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Abstract Although research including biological concepts and variables has gained
more prominence in sociology, progress assimilating the organ of experience, the
brain, has been theoretically and technically challenging. Formal uptake and assim-
ilation have thus been slow. Within psychology and neuroscience, the traditional
brain, which has made brief appearances in sociological research, is a “bottom—up”
processor in which sensory signals are passed up the neural hierarchy where they are
eventually cognitively and emotionally processed, after which actions and responses
are generated. In this paper, we introduce the Active Inference Framework (AIF),
which casts the brain as a Bayesian “inference engine” that tests its “top—down” pre-
dictive models against “bottom—up” sensory error streams in its attempts to resolve
uncertainty and make the world more predictable. After assembling and present-
ing key concepts in the AIF, we describe an integrated neuro-bio-social model that
prioritizes the microsociological assertion that the scene of action is the situation,
wherein brains enculturate. Through such social dynamics, enculturated brains share
models of the world with one another, enabling collective realities that disclose the
actions afforded in those times and places. We conclude by discussing this neuro-bio-
social model within the context of exemplar sociological research areas, including
the sociology of stress and health, the sociology of emotions, and cognitive cultural
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sociology, all areas where the brain has received some degree of recognition and
incorporation. In each case, sociological insights that do not fit naturally with the
traditional brain model emerge intuitively from the predictive AIF model, further
underscoring the interconnections and interdependencies between these areas, while
also providing a foundation for a probabilistic sociology.

Keywords Neurosociology - Biosociology - Brain - Predictive coding - Active
inference

Active Inference und soziale Akteure: Auf dem Weg zu einer neuro-bio-
sozialen Theorie von Gehirnen und Korpern in ihren Welten

Zusammenfassung Trotz der zunehmenden Prominenz einer biologische Konzep-
te und Variablen einbeziehenden Forschung in der Soziologie steht ein dhnlicher
Fortschritt bei der Beriicksichtigung unseres Erfahrungsorgans, des Gehirns, in die
soziologische Forschung vor theoretischen und technischen Herausforderungen. Ei-
ne formale Umsetzung und Integration ging daher bisher nur langsam voran. In der
Psychologie und in den Neurowissenschaften wurde das Gehirn traditionell als ein
.Bottom-up“-Prozessor angesehen, bei dem sensorische Signale entlang der neuro-
nalen Hierarchie in hohere Hirnregionen weitergeleitet werden, wo sie schliellich
kognitiv und emotional verarbeitet und woraufhin Aktionen und Reaktionen gene-
riert werden. Diese traditionelle Sicht auf das Gehirn wurde in der soziologischen
Forschung vereinzelt aufgegriffen. In diesem Beitrag stellen wir das Active Infe-
rence Framework (AIF) vor, demzufolge das Gehirn eine Bayesianische ,,Inferenz-
maschine* ist, die ihre ,,Top-down*-Vorhersagemodelle anhand von ,,Bottom-up*-
Wahrnehmungen von Vorhersagefehlern priift, um Unsicherheiten zu beseitigen und
die Welt berechenbarer zu machen. Nach einer Zusammenstellung und Einfiihrung
von Schliisselkonzepten des AIF beschreiben wir ein integriertes neuro-bio-soziales
Modell, das der mikrosoziologischen These folgt, dass die Situation der Schauplatz
des Handelns ist, in der Gehirne sich enkulturieren. Durch solche sozialen Dyna-
miken teilen enkulturierte Hirne Modelle der Welt miteinander und ermdglichen
so kollektive Realititen, die fiir die Zeit und den Ort angemessene Handlungen
nahelegen. AbschlieBend wird dieses neuro-bio-soziale Modell im Kontext exem-
plarischer soziologischer Forschungsfelder diskutiert, darunter die Stress- und Ge-
sundheitssoziologie, die Emotionssoziologie und die kognitive Kultursoziologie —
alles Bereiche, in denen die Rolle des Gehirns in gewissem Mafe beachtet und
einbezogen wurde. In jedem Fall ergeben sich soziologische Erkenntnisse, die nicht
in das traditionelle Hirnmodell passen, intuitiv aus dem pridiktiven AIF-Modell. Es
verweist auf Verbindungen und Abhéngigkeiten zwischen diesen Forschungsfeldern
und bietet gleichzeitig eine Grundlage fiir eine probabilistische Soziologie.

Schliisselworter Neurosoziologie - Biosoziologie - Gehirn - Predictive Coding -
Active Inference
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1 Introduction

This article proposes that incorporating insights from the cognitive and affective
neurosciences will help to move sociology’s developing bio-social frameworks for-
ward (e.g., Harris and McDade 2018; Ignatow 2021; Goosby et al. 2018), unlocking
fresh avenues for producing comprehensive and impactful research across various
subdomains within the social and human sciences. Additionally, by grounding its un-
derstanding of human actors with well-defined assumptions and principles (Friston
2009, 2010; Clark 2013), adopting a neurosociological perspective has the potential
to foster more insightful and generative social analysis (Franks 2010, 2019; Kalkhoff
et al. 2016). To the limited extent that “brains” make appearances within sociolog-
ical research, we suggest that they tend to come along as hidden variables stowed
away within assumptions about actors, their traces scattered across substantive areas
to varying degrees according to the perceived theoretical needs of each area. The
neural foundations of sociological actors thus incline toward the implicit and run
the risk of being opaque, misleading, outdated, and/or wrong if not properly in-
formed by some degree of interdisciplinary—if not transdisciplinary—engagement
with contemporary neuroscience (Lizardo et al. 2020; Ignatow 2021). Because the
neurosciences are currently engaged in their own theoretical audits and overhauls
(Clark 2023), it is an opportune time to reevaluate both the neural principles of
social actors and to consider where such understandings might fit within, contribute
to, and reciprocally benefit from, sociological research.

Seen from this vantage point, the neurosociological endeavor holds the promise
of advancing both biosocial theory and those facets of sociological theory in which
actors are the central subjects or constituents. To these ends, we present an introduc-
tion to the active inference framework (AIF) from theoretical neuroscience (Friston
2013; Friston et al. 2017a), in which the brain is presented as a Bayesian “inference
engine” whose computations comprise probabilistic models of its body in its world
(Parr et al. 2022; Clark 2015; Barrett 2017a). This Bayesian perspective clarifies
assumptions about brain dynamics and mechanisms within a principled normative
account, elucidating how action and perception collaboratively minimize prediction
errors through active engagement with the environment, thereby reciprocally opti-
mizing its predictive models and guiding action (Parr et al. 2022). Importantly, the
AIF view differs foundationally from traditional models of the brain within psy-
chology and neuroscience, which have developed largely from “bottom—up”, stim-
ulus response-driven conceptualizations (Barrett 2020; Barrett and Simmons 2015;
Hutchinson and Barrett 2019). Where the traditional view emphasizes how actors
respond, react, are triggered, or activated as experience is “processed,” the new
paradigm accentuates simulation, prediction, preparation, anticipation, prospection,
and expectation (Bubic et al. 2010).

Because this paper is programmatic and introductory, it emphasizes neuroscien-
tific concepts that must be understood prior to rigorous sociological application.
The goal here is thus to provide a basic understanding of the AIF from which the
inclined can embark upon their own neurosociological investigations and biosocial
research applications. To provide a degree of sociological orientation, we furnish
thematic “breadcrumb trails” to example areas that we see benefitting from an up-
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dated and modernized AIF-informed understanding of the brain: stress and health,
emotions, cognitive cultural sociology, and the notion of a probabilistic sociology
(Strand and Lizardo 2022b). The paper is organized to converge upon these socio-
logical themes within a unifying neuro-bio-social model. To these ends, we begin
briefly with the traditional bottom—up model of the brain, followed by some (at least
insinuated brains) in the sociological illustration areas. Next, we introduce predictive
coding and the Bayesian brain concepts. Once established, we introduce the AIF,
which adds a principled normative description of the roles of perception, action,
decision making and planning, and learning within a socioenvironmental context.
In the final section, once all the key concepts have been described, we present the
conceptual model of a probabilistic sociological actor in terms of the neuro-bio-
social interdependencies among the exemplar sociological topic areas.

2 Opverview of the Traditional Brain

Our goal is to present the predictive Bayesian brain and some of its implications via
the AIF at a level of abstraction that provides some guidance to how a social scientist
may think of social actors theoretically, but that does not necessitate use of the
methods (e.g., fMRI) and materials (i.e., experimental paradigms) of neuroscientific
research per se'. The physicalist perspective we emphasize considers “whole-brain”
activity to be like an orchestra and the symphony it produces to be the conscious
mind (see, for example, Seth 2021; Clark 2023; Hawkins and Dawkins 2021). Thus,
it is important to recognize that by “the brain” we mean the organ, and by “the
mind” we mean the consciousness that arises from its collective and integrated
computational activity (Sandved-Smith et al. 2021; Seth 2021; Barrett and Satpute
2013; Barrett 2014). Because most neuroscience has sought knowledge generation
at levels whose sociological relevance is usually not obvious (e.g., regional BOLD
activation during an experimental task), the brain has been an indirect and peripheral
informant in sociological inquiry?, especially when compared with the accessibility
of the conscious mind to social science measurement modalities and the direct
sentient experiences that foster social scientists’ intuitions and insights.

The brain, as traditionally conceived since at least Sherrington (1900; in Keller
and Mrsic-Flogel 2018, p. 424), is a “bottom—up” information filter and processor
(Barbas 2015; Bubic et al. 2010), as depicted in Fig. l1a. Central to this model is
the assumption that sensory information ascends “bottom—up” through the cortical
hierarchy. During this journey, signals are thought to be processed via a series of
filters and feature extractors, the results of which are compared with stored patterns
acquired from prior experiences to facilitate understanding the environment and to

! For examples of neuroscience work by sociologists, see Kalkhoff et al. (2020); Kiat et al. (2018c); Kiat
and Cheadle (2017, 2018); Kiat et al. (2018a, b); Kiat et al. (2016, 2017); Melamed et al. (2017) and
Schauenburg et al. (2019).

2 Like others who have sought incorporation of brains—or at least key dynamics subserving minds—
theoretically into sociological inquiry (e.g., Boutyline and Soter 2021; Massey 2002; Turner 2007, 2020;
Vaisey 2009), we recognize that how the products and consequences of such dynamics are conceived vary
across levels of abstraction (Bericat 2016; Ma-Kellams 2014; Turner 2009).
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Fig. 1 The “bottom—up” brain model. a Internal representations are generated by bottom—up input and
top—down signals act as modulatory signals. Adapted from (Keller and Mrsic-Flogel 2018). b A mind-level
depiction of the representational framework. ¢ A brain-level representation of this framework. The colors
characterize the mapping of mental faculties to their mapping in the brain (green: sensation and perception;
blue: cognition; red: emotion; yellow: action). Adapted from Hutchinson and Barrett (2019)

guide behavior. This dynamic process supports perception, learning, and decision
making, ultimately enabling more advanced cognitive and emotional processing,
including the implementation of top—down control mechanisms. More detailed rep-
resentations of the mind and brain are shown in Fig. 1b, c. The traditional brain
is commonly conceived as being composed of specific and evolved (and possibly
highly specialized) neural circuits, increasingly recognized as being webbed together
into complex structural and function networks (Bassett and Sporns 2017; Farahani
et al. 2019), where information is stored in the memory so that it can be retrieved
for future deployment and modulation of bottom—up processes (Keller and Mrsic-
Flogel 2018).

The Fig. 1 depictions express the common understanding about how stimuli are
represented in the mind, a precondition for learning and internalizing social expe-
riences. The “bottom—up” cascades are retrospective in the sense that the compu-
tational activity is triggered or instantiated by the stimulus. Neural activity is thus
often described in the language of response/reaction/triggering/activating, terms that
are unsurprisingly ubiquitous in research across disciplines that either implicitly or
explicitly draw upon this or a relatedly hypothesized model of brain and mind. No-
tably, this view of the brain has been criticized for failing to develop an integrated
theory (Hawkins and Dawkins 2021), relying instead upon processing strategies
and computational heuristics that are often bespoke and tailor-made for particular
sensory or cognitive contexts (Walsh et al. 2020). However, we propose that this
traditional understanding of the brain has implications for several areas of socio-
logical research, even though the natural tendency is to emphasize capacities and
conscious experiences of the mind, rather than the underlying physical mechanisms
and dynamics.
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2.1 A Sketch of Three Brains in Sociology

Prior to presenting the AIF model, we provide brief introductions to brains, or at
least the suggestive outlines, in a trio of example areas in sociology. We do not
have room to explore these examples in depth; rather, our goal is to provide brief
overviews and to give some analytic targets that we will return to after motivating
an integrated neuro-bio-social model. We present research in health, emotions, and
cognitive cultural sociology, all areas that have either implied or implicit brains
within their frameworks. The AIF model, in our view, naturally lends itself to these
areas as they each speak to different aspects of the model we present later, once all
the pieces are in place.

For example, the brain in sociological stress process research (Pearlin 1989;
Pearlin et al. 1981) echoes a biopsychosocial framework to capture the ways in
which social structures organize psychological and physical health processes (Anesh-
ensel and Mitchell 2014). The physiological stress response (Sapolsky 2004) (i.e.,
limbic regions and motor preparation in Fig. 1) is proposed as the translational
mechanism by which stress-related patterns of physiological regulation accumulate
to undermine health (for a review see Guidi et al. 2021; see also McEwen 1998a,
b; McEwen and Seeman 1999). This model commonly draws upon the hypothala-
mus—pituitary—adrenal (HPA) axis to “kickstart” physiological cascades following
perception of a stressor (McEwen and Akil 2020 and Goosby et al. 2018 also
discuss the Sympathetic—Adrenal-Medullary [SAM] axis), including responses to
mental events, as with anticipatory stress (Sapolsky 2004; McEwen and Gianaros
2010). The notion of anticipatory stress is key to understanding how social condi-
tions undermine health, yet the theoretical fit of this concept is awkwardly situated
as a response to mental events. Below, we provide two examples of how the model
we describe provides reconsideration of the stress response. First, by grounding the
“stress response” as a special case within the broader purview of what the brain, as
the primary control center and regulator of its body, does. Second, we re-evaluate an-
ticipatory stress in a more natural, predictive framework in which stress regulation is
a type of action that is structured and organized by social conditions (Pearlin 1989),
providing a deeper integration of the central contribution sociologists have made to
mental and physical health research: characterization of how social structures and
concomitant patterns of social (i.e., statistical; see Link and Phelan 1995; Glass and
McAtee 20006) regularities shape the distributions and temporal patterns of stressors,
symptoms, and ameliorative factors (e.g., personal resources, social support).

The sociology of emotions is another area that incorporates biosocial and neu-
rosociological ideas about brains, bodies, and social contexts (Turner 2007, 2020). In
what follows, we consider a foundational issue that we believe remains unresolved
in the sociology of emotions; namely, how to define them. Emotion research lacks
a convergent definition of emotions as well as a cohesive and organizing framework
bringing its insights together (for reviews, see Bericat 2016; Stets 2010, 2012; Thoits
1989; Turner 2009; Turner and Stets 2006, 2006). We suggest that any definition
might need to integrate body, cognition, culture, and the social situations and set-
tings in which experiences unfold (i.e., Collins 1981, 1993, 2005). Turner (2007,
2020) has gone the farthest (in all of sociology, in our view) in grappling with the
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complexities and general sociological relevance of the brain, with respect to both
emotions and evolution. His work also emphasizes the brain’s bottom—up and re-
sponsive nature, positing the evolution of dedicated neural circuitry?® for a basic set
of emotions and their higher-order elaborations*. Although this work makes a strong
case for the importance of the evolutionary expansion of emotional capacities for the
development of sociality, social coordination, and cognition, a predictive view will
reframe and, in some ways, complicate, and in other ways simplify, how emotions
are understood. To a certain extent, our divergence from Turner mirrors longstand-
ing concerns about how biological versus social emotions are (see Turner 2009).
We argue that such distinctions resolve in the model we present in the same way in
which a coin is made up of two inseparable sides.

Cognitive cultural sociologists have incorporated a broad-scope model of the dy-
namics of a brain inspired by the idea of “thinking fast and slow” from behavioral
cognitive psychology’ (Kahneman 2011). Such “dual processing” frameworks pro-
pose that cognition is batched into two broad processing streams, “Type 17 (slow
learning, associative, automatic, effortless), and “Type 2” (fast learning, proposi-
tional, slow, deliberate, effortful) (Lizardo et al. 2016). In terms of Fig. 1, this
amounts to how pathways are “activated” by whatever is taking place such that
a stimulus might bypass cognitive/association cortices directly through limbic struc-
tures (Leschziner 2019), perhaps activating fast cognitions or schema (Boutyline
and Soter 2021) by failing to trigger the bidirectional association-limbic pathways
in Fig. 1. Enculturation within dual-process frameworks can be conceived in terms
of learning, remembering, thinking, and acting phases for each of the Type 1 and
Type 2 cognitive processes (Lizardo et al. 2016). The model we present below pro-
vides an integrated approach to these different factors, including proposing a model
of action tied to learning, remembering, and thinking via the neural dynamics of
action and perception. Cultural sociologists have also recognized that a human brain
has capacities that do not fit well within the dynamics of the traditional brain, such

3 The trend in neuroscience is generally away from circuit-based renditions and toward complex and in-
tegrated system representations (Avena-Koenigsberger et al. 2018; Barrett and Satpute 2013; Bilek et al.
2022; Farahani et al. 2019; Ficco et al. 2021; Hilgetag and Goulas 2020; Sporns and Betzel 2016). Even
regions considered critical for basic capacities are in communication with huge swathes of the brain and
so may enable by integration rather than producing by local calculations (Aliko et al. 2023; Cooper et al.
2023). If this is true, then in the coming years many circuits so far presumed to produce specific outcomes
will be revised and recognized instead to integrate multimodal information from widely throughout the
brain (Barrett and Simmons 2015; Hutchinson and Barrett 2019; Pessoa and Adolphs 2010).

4 There do not appear to be actual neural “fingerprints” in the brain for even the so-called basic emotions
(Lindquist et al. 2012; Siegel et al. 2018; Wager et al. 2015), with the same outcomes produced over differ-
ent configurations of network mechanisms (i.e., neural degeneracy and multiple realizability; Kamaleddin
2022; Strappini et al. 2020). In fact, a large-scale cross-cultural test of emotion models accentuated the uni-
versality of a three-dimensional model that evokes affect (Smith and Schneider 2009) rather than Kemper’s
(1978), Turner’s (2007, 2020), or other traditional emotion models.

5 Although dual process model proponents in cognitive cultural sociology suggest that such models might
not be controversial, Ignatow (2021) argues to the contrary in terms of neuroanatomy (Barrett and Simmons
2015; Hutchinson and Barrett 2019; Pessoa and Adolphs 2010) and following Melnikoff and Bargh (2018),
who maintain that most dual-process model assumptions remain untested and that the framework lacks
general support, contradicts well-established findings (see also Barrett et al. 2004), and is not internally
coherent (for other criticisms in the behavioral economics literature see Grayot 2020).
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as simulating the future (Tavory and Eliasoph 2013), or uncertainties about how fast
and slow processes interact (Lizardo et al. 2020).

In what follows, we introduce a model of the brain that provides a more natural
and coherent framework for these kinds of issues. This brain is grounded in its
cytoarchitectural composition and modulatory dynamics, as well as its informational
flows and organization via its structural and functional networks (e.g., Chanes and
Barrett 2016; Ficco et al. 2021; Hutchinson and Barrett 2019; Kleckner et al. 2017,
Walsh et al. 2020). The AIF also provides a structured normative framework for
understanding biological and cognitive processes (Parr et al. 2022), which is likely
to be of broader sociological interest than specific neuroscientific findings centered
primarily on the brain itself.

3 The Predictive Brain

In this section we present an alternative model of the brain, the hierarchical pre-
dictive coding model (Rao and Ballard 1999), which, as shown in Fig. 2, recon-
ceptualizes the traditional brain in Fig. 1 as functions of bidirectional informational
streams, E(rrors) and P(redictions). In this model, shown in terms of local state
dynamics in Fig. 2a, brains simulate their sensory signals with top—down prediction

Mental States

New State ¢+1  Mental Event

H Top-Down Sensory Model
H Memorys Perceptual Inference Sensory |1
i | Internal Model | > imulati H
i Bottom-Up Model [ H

Sensory Errors/Corrections y

H . Action
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P (Top-Down)

Q
o
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= Body World
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Somatosensory Prediction Errors
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o

Fig. 2 Predictive coding (i.e., “Bayesian Brain”) model. a In a hierarchical predictive processing frame-
work, predictions cascade “top down” the hierarchy and are compared with errors ascending the hierarchy
from the “bottom up”. Adapted from (Keller and Mrsic-Flogel 2018). The cutout for the neural dynamics
is adapted from Seth (2013) and Friston and Kiebel (2009). b A mind-level depiction of the predictive
processing framework with “top—down” and “bottom—up” informational flows. ¢ A brain-level represen-
tation of this framework. Blue arrows represent predictions or hypotheses descending the computational
hierarchy, whereas green arrows represent the sensory data that those predictions are compared against.
Adapted from Hutchinson and Barrett (2019)
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(P) cascades®, which are compared with sensory information, providing a “bot-
tom—up” error signal stream (E; compare with Fig. 1a) that rises up the hierarchy
until it is explained (i.e., error signals do not need to propagate once explained by
top—down signals). This (loosely) hierarchical’ predictive processing framework pro-
poses a neural architecture that places inference as fundamental to information flow
and integration throughout the brain. The supporting dynamics cover many scales of
neuronal organization, interconnection, structure, and modulatory mechanisms (i.e.,
neurotransmitters, neuropeptides, and other molecules) (e.g., Barrett and Simmons
2015; Friston et al. 2017a; Hutchinson and Barrett 2019; Kleckner et al. 2017; Seth
and Friston 2016).

An example neuronal architecture for a “state unit” is shown in the cutout in
Fig. 2b, color coded for error (green) and prediction (blue) neurons, with projection
neurons indicated as triangles and inhibitory interneurons indicated as circles (Fris-
ton and Kiebel 2009; Seth 2013). Top—down predictions flow from level £ +1 to .Z,
whereas errors ascend from £ —1 to .Z so that prediction error within a state unit is
a linear mixture of bottom—up and top—down connections. The upward flow of errors
is precision (i.e., inverse variance) modulated by the dashed downward purple arrow
(e.g., dopaminergic and oxytocin modulation; Seth and Friston 2016) so that errors
viewed as imprecise can be downweighed and perhaps fail to propagate, signaling
a need for enhanced attention to increase the precision of new sensory data (Friston
2009).

The idea is that brains attempt to encode and refine models that generate predic-
tions by minimizing sensory errors and changing models (i.e., Hebbian plasticity,
“neurons that fire together, wire together”) to better account for those errors that
cannot be explained by experience under the current set of potential hypotheses or
beliefs about the causes of sensory signals. When errors are adequately explained
and predictions suffice, the top—down prediction is the signal. Top—down predic-
tion streams are proposed to descend the computational hierarchy from areas of
great compression and abstraction (i.e., the concept of a chair) and are decom-
pressed in more granular representational areas whose collective activity assembles
various features and details (e.g., the lines, edges, color, etc., of the chair). A key
component of these dynamics is that neural circuits play dual roles, running predic-
tions and processing sensory information about the states of its body and its world,
including comparisons among different, competing models (i.e., Bayesian model
averaging; see for example, Friston et al. 2017a; Hawkins and Dawkins 2021). Pre-
dictive processing thus reveals a unifying thread between perception, cognition, and
imagination, pivotal elements of creativity, prospection, cognitive control, as well as
psychopathological phenomena such as hallucinations (i.e., uncorrected prediction
errors; Seth 2021; Barrett 2017a).

6 Sociologists have shown an interest in “mirror neurons” (e.g., Summers-Effler et al. 2015), which fit
naturally within the predictive coding framework (Kilner et al. 2007; Shipp et al. 2013).

7 The concept of hierarchy in the brain is actually interpreted in multiple ways that integrate through the
embedding of connections in the spatial and topological architecture of the brain, interweaving into the
structural and functional features of intricate activity patterns (Hilgetag and Goulas 2020).
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As shown in Fig. 2a for the mind and Fig. 2b for the brain, these inverse sensory
streams include a combination of exteroceptive signals received from the environ-
ment and external to the body via the five senses, internal interoceptive signals
received from the body about its large catalog of states (e.g., heart rate, glucose
levels, hydration, sites of inflammation, etc.; Sterling 2012, 2015, 2020), and so-
matosensory signals of body dynamics (e.g., body position and orientation [pro-
prioception], touch). Figure 2 also emphasizes the ongoing and near-simultaneous
interplay among multiple systems. For example, allostasis refers to the top—down
predictive regulation of the internal milieu of the body (Sterling 2012), a systems
concept that captures many signaling dynamics and physiological actions of the body
on itself, situating body regulation as a set of coordinated activities across systems,
organs, tissues, and so on. This concept extends well beyond the more traditional
notion of reactive and system-specific homeostatic error-correcting feedback (Bill-
man 2020), and has been conceptualized as comprising the processes that coordinate
the contextual adjustments of expected homeostatic set-points (Pezzulo et al. 2015;
Arnaldo et al. 2022). Brains anticipate all kinds of needs before they arise, whether
it is raising blood pressure before standing, preparing the digestive system for an
impending meal, signaling thirst before liquids are needed, or increasing available
energy (i.e., adrenaline and cortisol secretion) when threatened (see Sterling 2012,
2015; Theriault et al. 2021).

Allostasis can therefore be understood as predictions about whether and how
physiological states need to be coordinated or adjusted, including regulatory adap-
tations that seek to resolve prediction errors toward anticipated future states through
(in)action. For example, low-energy states when sick (i.e., sickness behaviors; Shat-
tuck and Muehlenbein 2015) and the metabolically costly “stress-response” states
that energize “fight or flight” motor actions (Sterling 2012). A clear implication of
allostatic thinking is that the accumulated “allostatic load” (McEwen 1998b) is not
simply the result of the repeated activation of the physiological stress response or
a pathologically locked-in response. It can also reflect the anticipatory preparation
of the body for vicissitudes by making energy available (i.e., cortisol) and preparing
the body for potential harm (e.g., wounds; Sapolsky 2004). Because social structure
implies a degree of predictability and consistency (i.e., systemic racism; Bonilla-
Silva 2015), Sterling (2012; see also Sterling and Platt 2022) advocates for system-
level (i.e., sociological) changes to social and environmental conditions that alter
the predictive landscape so that healthy regulatory patterns can be restored.

The “data” needed to regulate a body involve its various states, which are obtained
via interoception, the catalog of signals ascending from throughout the body to the
brain, including their interpretation and integration (Barrett and Simmons 2015;
Chen et al. 2021; Kleckner et al. 2017). Interestingly for research on the sociology
of emotions, interoception is proposed to be critical for emotional processes via the
registration of affect in consciousness, which is thought to be an index, barometer,
or summarizing filter for interoceptive signals (Barrett 2017a, 2020; Theriault et al.
2021), perhaps reflecting prediction error rates and their changes (Joffily and Cori-
celli 2013; Van de Cruys 2017). Motor control and other signaling pathways key
to bodily action upon the world are also included in Fig. 2 in terms of predictions
about the body’s physical dynamics (i.e., movement, action, and location), which
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are monitored via proprioception, a key part of the somatosensory system (e.g.,
touch). Here, it is worth recognizing that motor signal pathways support all physical
action. For example, a highly social activity such as participating in a conversa-
tion is accomplished through sequences of precise motor commands that generate
vocalizations, as well as all the other subtleties of facial, postural, and gestural ex-
pression. It is proprioception that makes individuals into actors who seek to exert
control over their exteroceptive and interoceptive sensations through motor actions
that affect the world, facilitating some control over regulatory allostatic demands
and consequent cardiometabolic and immunological costs, and thus the body state
feedbacks represented in consciousness as affect.

4 The Active Inference Framework

One of the key challenges for the brain—if not the key challenge—is that it is
in fact a brain in the var® (Gere 2004); it is hidden away inside the “black box”
of the skull (Rieke et al. 1999, cited in Clark 2013). From this enclosed space,
a brain makes inferences about the causes of the electrochemical and other signals
it receives from inside (i.e., interoceptive), about (i.e., somatosensory), and outside
of (i.e., exteroception) its body. Brains do not see, for example, they attempt to
explain signals received from the eyes via the optic nerve, continuously correcting
prediction errors and updating their representation of the environment, which is ex-
perienced as if seeing the world veridically®. Within the framework of the predictive
brain, the prevailing context is uncertainty about body states, other conspecifics, and
environmental features outward through the increasingly abstracted axis of nested
hierarchies of social organization from the micro to the global (Bronfenbrenner
1977; Glass and McAtee 2006). What the inherent uncertainty outside of the brain’s
vat entails of a predictive Bayesian brain is the core challenge that has been taken up
within the active inference framework (AIF) (Friston 2009, 2010, 2013). Each brain
in the AIF seeks to encode the statistical regularities of the generative processes of
its embedding environments (i.e., culture, social structure) and body (i.e., its own
capacities) in the generative models of its brain (i.e., models that generate proba-
bilistic predictions defined as the joint probability distribution of observations and
hypotheses/beliefs) (Bruineberg et al. 2018; Friston et al. 2017a; Parr et al. 2022;
Ramstead et al. 2020; Smith et al. 2022).

It is worth pausing here on those two terms, generative processes, and generative
models: much sociological research is explicitly dedicated to mapping the statistical
regularities of the social world in terms of (for example) race, class, and gender,

8 The “brain in a vat” is a hypothetical scenario where a brain is isolated in a vat and fed artificial sensory
information, raising philosophical questions about the reliability of sensory perceptions and the nature of
reality. This scenario, which intends to challenge our ability to distinguish between genuine experiences
and simulations, is a contemporary version of Descartes’s evil demon. Of course, it seems to us, the sce-
nario is best viewed as a restatement of the actual state of affairs.

9 When it comes to perception, it is perhaps better to think in terms of fitness rather than veridicality.
Evolution does not appear to select on veridical perception but rather on perceptions that optimize fitness
(Hoffman 2019; Prakash et al. 2021).
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as well as their intersections (Grusky 2014; Grusky and Hill 2017). At the same
time, core sociological interests in socialization and enculturation are fundamentally
concerned with the beliefs about the world and the potential actions afforded!® by
the sociocultural structures in which actors are embedded, and which are embodied
in adaptive neural structures as predictive generative models. Indeed, the stress pro-
cess, emotion, and cultural sociology each attend to different facets of the way that
social structure “parameterizes” health, feeling, and different aspects of cognition
in support of enculturation and action. The AIF provides a principled, normative
framework for how it is that a predictive brain can become what it is and do what it
can, namely be an organ of action in, and inference about, the generative processes
comprising its embedding environments and structuring its experiences (Clark 2023;
Parr et al. 2022).

4.1 The Bayesian Brain

Our description of hierarchical predictive processing above and in Fig. 2 only tells
part of the story of the predictive brain. In order to appreciate it more fully, it is
important to understand why it is also sometimes referred to as a Bayesian brain
(Friston 2010; Knill and Pouget 2004; Parr et al. 2022; Seth and Friston 2016).
Many readers are probably at least somewhat familiar with Bayesianism by route
of probability theory and Bayes’ Theorem!'!, and perhaps as an alternative to the
“frequentism” that characterizes most contemporary statistical research (Clayton
2021). Of course, many others have likely spent their careers primarily within the
frequentism that guides most contemporary quantitative research, or perhaps outside
that framework almost entirely and with different epistemological commitments.
One common distinction is that frequentism is based on “objective” probabilities
estimated from data (i.e., a frequency divided by the number of samples), whereas
Bayesian probability admits both objective and subjective probabilities (i.e., personal
beliefs, judgments, or opinions about the likelihood of events occurring—or, for our
purposes here, a brain’s beliefs about the causes of sensory events, such as the next
word you will ...). The distinctions generally do not matter for most contemporary
statistical modeling, particularly those reliant on large samples assumed to have
been collected at an approximately single point in time (i.e., wave). To an organism
sampling a diverse array of experiences sequentially one after another through time,
however, the distinction between these two approaches to probability is crucial.

10 Our use of the affordance concept follows Veissiere et al. (2020). See also Linson et al. (2018) and
Ramstead et al. (2016), who also follow-up on Gibson (1979).

11 Bayes’ Theorem relates conditional probabilities, defined here in terms of hypotheses or beliefs & and
data or observations o. This theorem shows how to calculate the inferential probability of hypotheses,
P(hlo), given evidence as: P (ho) = P}Z{)())) = P(h)

P(h) is the prior distribution hypotheses, P(olh) prov1des the sampling of the probabilities of observa-
tions given these hypotheses and is also called the likelihood. P(h,0) is joint distribution of observations and
hypotheses, sometimes referred to as the generative model. The final term, P(0), is the marginal probability
distributions of all potential observations over hypotheses, which cannot always be calculated. Bayesian
updating allows P (h) — P (ho) — P (h) — ... over time, experience by experience. For a technical
introduction to Bayesian statistics from a social scientist’s perspective, see Gill (2002).
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Because we are all entrained in the unidirectional flow of time, the notion of
model updating toward improved prediction error minimization is essential, and
Bayes’ Theorem provides the optimal way to update conditional probabilities. The
idea is that we have prior beliefs about the causes of sensations based upon previous
experiences, which can be expressed as the probability distributions of hypotheses/
beliefs about the states or causes of sensory experiences. These expectations are
embodied across scales, in the state units of our neural circuits through neural hi-
erarchies, in the collective dynamics that support our cognitions and memories,
and throughout the evolutionary heritages of cells, organs, and other bodily mech-
anisms and systems (Kirchhoff et al. 2018; Ramstead et al. 2021; Sterling 2015,
2020). These priors also relate to sampling probabilities, termed the likelihood"
more generally, reflecting the probability distributions of obtaining certain sensory
observations given our hypotheses/beliefs. Sampling probabilities thus quantify how
well sensory inputs align with predictions, analogous to the frequentist notion of the
parameters (i.e., hypotheses) that maximize the likelihood of observing some data.

What the predictive brain seeks to do is update prior beliefs into new posterior
beliefs (i.e., inferential probabilities) that account for new observations so that pre-
dictions can be confirmed or improved going forward. Posterior beliefs are expressed
as a probability distribution of hypotheses given observations (i.e., given what has
now been observed, which hypothesis/belief is most probable?). This update in-
volves a model inversion of the generative model, which is the joint distribution
of hypotheses and observations. Via the multiplication rule'®, the generative model
can be expressed as the sampling probabilities (or likelihood) multiplied by the pri-
ors. This product is normalized over the marginal probability of the observations to
produce the posterior inferential probabilities, which represent the beliefs about the
causes of sensory experiences given what has been observed (Smith et al. 2022). The
challenge is that the underlying causes of sensory experience are hidden behind the
sensory veil enshrouding the brain'4, so that inference is a model inversion of prior
beliefs and observations given those beliefs, into beliefs given observations. That is,
the translation goes from observed consequences given hypotheses (or beliefs) to
inferring causes from their perceptual consequences (observations).

The model inversion provided by Bayes’ Theorem supplies the guide for how to
update predictive generative models in a sequential way, experience by experience,
over time, at various levels of the computational hierarchy. Predictions are thus
priors and sensory experiences provide the observations. A high posterior proba-

12 Note that the maximum likelihood function L(6 = h;y = o) familiar to quantitative sociologists is
proportional to the Bayesian posterior P (ho) o< L (h;0) when the priors are uniform (see Gill 2002,
p- 33), reflecting an emphasis on hypotheses that make the observed data more plausible (i.e., sampling
probabilities; see Clayton 2021). In contrast, P(hlo) provides an inference on how probable hypotheses are
given what has been observed (i.e., posterior inferential probabilities), the quantity most relevant to actors
going about the business of life, and the quantity we expect that most researchers would prefer to have on
hand as well.

3 Ie., P (0) P (ho) = P (h,0) = P (h) P (oh).

14 Technically, a Markov Blanket, a conditional independence structure proposed by Pearl (1998) with
an essential role in many theoretical treatments of active inference in biology and complex systems (e.g.,
Bruineberg et al. 2018; Kirchhoff et al. 2018; Ramstead et al. 2018; Rubin et al. 2020).
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bility of a hypothesis/belief in terms of a state computational unit (per Fig. 2b) is
evidence supporting a model, in which case errors are not propagated back up the
hierarchy (assuming that the prediction is also precise). Error propagation is thus
a consequence of hypotheses or predictions at each step in the computational chain
that are unlikely given what has been observed (possibly modulated by the precision
of the belief). Such errors might have only local effects, such as updating a visual
representation, or may have larger effects on generative models and thus subsequent
cognitions and memory via long-term neuronal updating mechanisms (Friston et al.
2016; Parr et al. 2022). The idea is therefore that the brain models its exteroceptive,
interoceptive, and somatosensory signals with generative models of the joint distri-
butions of observations and hypotheses/beliefs about the causes of sensory signals,
but which are hidden and cannot be known directly because all the brain has access
to is noisy signals received from its various sensors of the worlds inside and outside
its body.

4.2 Variational Free Energy

Brains seek to infer the most probable explanations for the states of their internal
and external environments, which the AIF proposes is accomplished by Bayesian
updating to optimize error minimizing generative models through temporal ac-
tion—perception cycle sequences (Badcock et al. 2019; Parr et al. 2022). The idea is
that action is the means by which actors “probe” the statistical regularities of the
generative processes of their embedding environments, changing perspectives and
perception, and it is perception that provides the observations by which generative
models are tuned through the state dynamics of top—down prediction and bottom—up
error cascades. Action facilitates learning (posterior update) or validates what has
been learned (affirming priors; self-evidencing Hohwy 2016), whether by directly
altering the external environment or by repositioning the actor within it to shift
their perspective, thereby confirming or potentially altering beliefs. Inference is thus
posed as a process of active engagement with the environment (see Ramstead et al.
2020). One way of depicting this model of action—perception cycles is shown in
Fig. 3.

However, there is a subtle problem with the Bayesian model inversion as told so
far. Bayesian inversion from sampling probabilities (i.e., likelihood) to posterior in-
ferential probabilities often cannot be calculated because the probability distribution
of observations (in the denominator), which is defined over the marginal probabili-
ties of all possible observations over all possible hypotheses or states in the gener-
ative model, is unknown (Smith et al. 2022). Rather than a full Bayesian inversion,
the AIF proposes converting the difficult challenge of model inversion into a much
simpler optimization problem (Friston 2009, 2010, 2013) via variational (or approx-
imate) Bayesian inference, drawing upon statistical models of predicted observations
(Ramstead et al. 2020). To achieve this, a tractable variational approximation of the
posterior is introduced as a distribution of states that is iteratively updated (i.e., gra-
dient descent) to match the true posterior distribution achieved by exact inference as
closely as possible, reflecting a neural implementation (i.e., Hebbian embodiment).
This recognition or variational density is a “best-guess” Bayesian belief about the
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Fig. 3 Action—perception cycles minimizing prediction—observation discrepancies in terms of current-
state free energy and expected free energy minimization over time. Perception is used to test models
through sensory observations whereas actions change the world, both by changing observations (i.e.,
a change in perspective) and by changing the world when it is directly acted upon. Adapted from Parr
et al. (2022)

most likely causes of sensory observations. This best guess is optimized by min-
imizing a quantity called variational free energy, defined as a (Kullback-Liebler)
divergence between this density and the true generative mode'.

With these changes, the difficult problem of Bayesian inverse inference becomes
the more tractable optimization problem of variational free-energy minimization.
One way to express this approach to free-energy minimization is shown in Fig. 3.
The first term denotes the divergence between the approximate recognition and
exact posterior distributions. This divergence term speaks to the role of perceptual
inference, which is minimized as the recognition density better approximates the ex-
act (unknown) posterior. In other words, perceptual inference minimizes free energy
when the approximate posterior recognition density matches the posterior that would
be obtained if it was possible to perform exact rather than variational Bayesian in-
ference. In other words, perception optimizes free energy by confirming or changing
generative models, and therefore predictions to minimize the divergence by revising
beliefs or holding to those that are accurate. Importantly, this can amount to learning,
and it is critical to the processes and dynamics by which individuals come to know
what they know and expect what they do, speaking directly to cognition, emotion,
socialization, and enculturation more broadly.

The second term is the negative logarithm of the probability of the observations
(the value is large when the probability is small and approaches 0 as the probability
goes to 1), an information theoretic quantity known as surprisal (Smith et al. 2022).
When the divergence between the variational recognition density and the true poste-

15 The Kullback-Leibler [KL] divergence expresses the average differences between two distributions, an
approximating variational density Q(x) and the true or exact distribution P(x): Dxr [Q (x) |P (x)] =

Y vex P (x)[InQ (x) — InP (x)] (Smith et al. 2022; Parr et al. 2022), where X = Y P(x)x.
xeX
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rior is minimized so that the model approximates the true posterior in the first model,
free energy becomes an approximation to surprisal. Consequently, free energy is an
upper bound on this quantity (Friston 2009, 2010), which Bayesian analysists know
as negative log model evidence. What this means is that surprisal can be optimized
by changing sensory data so that observations more closely resemble the model ev-
idence (or marginal probability of the observations) to minimize surprisal. This is
achieved by engaging in actions that change observations to minimize prediction er-
rors. Because variational free energy quantifies the differences between expectations
given prior beliefs and the observations our actions solicit, it represents prediction
errors, providing predictive processing with the look and feel of Bayesian inference
(Ramstead et al. 2020; Parr et al. 2022).

Consequently, the AIF motivates both perception and embodied action as two
sides of inference that, when accomplished, minimize prediction errors to avoid
surprising states, such as an unfortunate fish out of water—or as individuals of stig-
matized social groups may feel when experiencing the threatening social exclusion
of discriminatory experiences (Goosby et al. 2018), for example. There is a subtlety
to this notion of surprisal because it may be tempting to think it of primarily in
cognitive terms. We may predict an experience in advance so that surprisal at ab-
stract cognitive levels is low, but may not intrinsically expect it at other levels of
physical organization (Joffily and Coricelli 2013). A person riding a bike may recog-
nize that a crash is imminent, avoiding a degree of surprise at an abstract cognitive
level, whereas the rest of the body will soon be awash in surprisal at the physi-
cal trauma (which will consume the mind next through nociceptive somatosensory
inference [i.e., pain]). Surprisal can thus index both cognitive expectations of the
kinds with which cognitive cultural sociology is concerned, and inimical states that
are profoundly unexpected at “lower” levels of computational hierarchies and phys-
iological organization consistent with many concerns in health research. A person
of color may thus be able to anticipate both potential discriminatory acts reflecting
the racialized culture of their embedding environment and the way in which this
environment directs the behavior of their conspecifics (Williams 2020), and still
suffer the physiological allostatic consequences of “fight or flight” regulation that
are naturally martialed given the social threats such exclusions imply (Cheadle et al.
2020; Jelsma et al. 2021).

4.3 Expected Free Energy

Although variational free energy is a function of both the past and the present
through the shaping of generative models, it is not deeply prospective in that it does
not capture simulations about future observations and causes beyond current and
next states (i.e., it is limited to present and past in predicting what is now and next;
Friston et al. 2017a). In this sense, it is allostatic and anticipatory, but limited in that
it only asks what is needed now to understand and/or change states to those that are
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anticipated next in a Markovian sequence'® (Friston et al. 2018). Indeed, although
these are the very dynamics that are critical for understanding momentary acute
stress regulation and concurrent affective dynamics, thus supporting the biological
side of emotion states (Barrett 2017b, a; Joffily and Coricelli 2013; Van de Cruys
2017), this temporal bounding does not reflect the broader range of human capacities.
Stress is not only acute, and chronic anticipatory stress is not merely a repetitive time
series of acute stress responses to mental events, but rather stress can be predictive
of both inevitability and uncertainty—(un)certainties—over different time scales. In
other words, the future can happen now in our bodies, so we are prepared for it as it
comes, even if we must wait for it. Beyond this, our inner worlds are often deeply
cognitively engaged in our predictive capacities, simulating future and past events
and encounters, forecasting contingences, and making plans for what we should do
and how we should go about it (e.g., Schacter et al. 2012, 2007; Suddendorf 2013;
Tavory and Eliasoph 2013).

Expected free energy, also depicted in Fig. 3, extends the AIF prospectively and
arbitrarily forward in time (Friston et al. 2017a; Parr et al. 2022). To expand the time
domain, action policies'” are introduced to include the kinds of thinking and planning
(i.e., cognition) that are of broad sociological concern. In this case, expected free
energy is managed over a sequence or trajectory of hidden states or hypotheses
arbitrarily into the future, reframing variational free energy in terms of expected
states and expected observations given action policies. An action policy is a set of
hypotheses/beliefs about ways of acting and regulating the body, with the implication
that actors capable of minimizing expected free energy treat planning and decision-
making as a process of inferring what to do to achieve valued ends. Generative
models parameterize these simulations and imaginings of potential futures, by which
actors consider what results they hope to achieve, to consider what more they might
need to know to realize these goals, and what action sequences may be enacted to
those ends. Action plans are of course dynamic and are updated as new data are
acquired, new opportunities emerge, priorities change, and so on, so expected free
energy is scored for each potential action sequence to enable decision making and
facilitate goal-directed action.

One way of expressing expected free energy, also notated in Fig. 3, is in terms of
the sum of the epistemic value (or information gain) and pragmatic value (expected
utility or preference for specific observations) of (in)action sequences's. Epistemic
value is a negative expected divergence between the posterior and prior recognition
densities. Because the term is negative, maximizing the difference of these two
distributions minimizes expected free energy. The first distribution conditions on
projected observations whereas the other does not, unlocking the value of actions
that facilitate the acquisition of new information about the world useful for one’s

16- A Markov process describes a sequence of states where the probability of each state depends only on
the immediately preceding one. In this case, the past is reflected in current and changing neural structure
(e.g., models and memories) and body states (e.g., health).

17 In Fig. 3, action policies are denoted with 7 and preferences with C.

18 These concepts are sometimes referred to as the exploration and exploitation dilemma (Berger-Tal et al.
2014), which this expected free-energy formulation resolves (see Parr et al. 2022).
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own ends (which may, of course, prioritize others). The second term, pragmatic
value (i.e., expected utility; Parr et al. 2022), captures preferences for particular
observations, representing actions toward achieving the experiences one would like
to have, over scales from what our cells want (e.g., glucose) to what our minds desire
(e.g., acclaim). Action policies are thus sequences of epistemic and pragmatic actions
that work to gather information about how to achieve desired goals and ends and
then to go about realizing them.

Expected free energy therefore represents best guesses based upon hypothesized
sequences of simulated outcomes from models entrained in prior experiences. There
is no guarantee that an action plan is good and likely to succeed or that a good
plan that is likely to succeed will be successful. Expected free energy also allows
for risk-taking as it is a projected time-average variational free-energy minimiza-
tion that may necessitate a willingness to tolerate short-run free-energy risk (i.e.,
gambling). Note too that expected free-energy minimization is fundamentally about
conceiving actions that facilitate novelty and preferences. Expected free-energy min-
imization spotlights humans’ cognitive and emotional capabilities, including think-
ing, planning, coordinating with others, and enculturating these capacities so that
individuals can participate in social systems with both distributed and shared re-
sources. Consequently, the capacities supporting expected free-energy minimization
within embedding social situational contexts enables some degree of control over
variational free energy and thus metabolic and other resources. Those action poli-
cies that fail or cannot be realized are likely to increase free energy (i.e., prediction
errors), requiring costly metabolic allostatic regulation patterns (Bobba-Alves et al.
2022; Arnaldo et al. 2022; Hutchinson and Barrett 2019; Theriault et al. 2021),
pointing to the critical role of social and cultural structures in shaping opportunities
and constraints (Pearlin 1989; Pearlin et al. 1981; Wheaton 2010), and by route of
these, health and happiness (Sterling 2012, 2020). Because expected free energy
accounts for both cognitive and physiological preferences for certain observations
or outcomes, it clarifies the importance of social conditions in the link between what
we actually experience versus what we hope to experience.

So much sociology is dedicated to how social conditions limit, block, undermine,
and disenfranchise some groups relative to others that it is in many ways the science
of barriers, impediments, restrictions, and constraints on potential action policies
and thus on expected free-energy minimization. What happens in the flow of real
life when expected free-energy minimization is undermined, moment by moment, is
represented by variational free energy and its constituent metabolic and other costs.
Here it may be useful to consider Maslow’s “Hierarchy of Needs” (Maslow 1964).
This hierarchy begins with the evolved physiological requirement of a human body,
followed by safety, love and belonging, esteem, cognitive needs, self-actualization,
and transcendence. When viewed through the lens of the AIF, Maslow’s Hierarchy
can be reinterpreted as a hierarchy of prediction error minimization and regulation,
and so of free energy and expected free energy. Maslow’s lower physical needs
are met when variational free energy is consistently well-optimized, and higher
needs are met when action policies successfully regulate expected free energy and
the realization of desired personally relevant and socially interdependent outcomes.
Viewed in this way, the regulation and management of prediction errors speaks to
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Fig. 4 The combined Neuro-Bio-Social Model with select sociologically relevant annotations. The view
presented is in reference to brain-mediated action-perception cycle time-dynamics both inside and outside
of the body. Direct connections from the world to the brain/body (e.g., environmental toxins, viruses, etc.)
are omitted (Goosby and Cheadle, this issue). Adapted from Parr et al. (2022)

canonical sociological questions about the costs and consequences that accrue for
social groups who are statistically less likely to have their needs met when compared
with those for whom such achievements are more likely. In other words, sociological
insights about power, wealth, and privilege are recovered in the AIF in terms of basic
biological and psychosocial imperatives (Parr et al. 2022).

4.4 A Combined Neuro-Bio-Social Model

With the pieces of the AIF now on the board, Fig. 4 arranges them. This figure
explicitly represents the neuro-bio-social-ness of becoming—of being—a person of
a particular time and place. What Fig. 4 emphasizes are the temporally interdepen-
dent dynamics among levels of social and biological organization from the actor’s
perspective. This representation shifts from explicitly level-oriented arrangements
of nested hierarchies of social and biological organization while allowing for the
preservation of such distinctions as both causal and constitutive (e.g., Ylikoski 2013;
see also Kirchhoff and Kiverstein 2019 for a diachronic perspective). For a human
organism, Fig. 4 safeguards the microsociological assertion that the scene of action
is the situation (Collins 1981, 1993, 2005; see also Boyns and Luery 2015) wherein
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actors learn about generative processes and develop their own generative models of
them (Veissiere et al. 2020). The generative process—model interplay is thus a fun-
damentally social project. This project, at least with regard to human actors, is
intrinsically sociological, which provides the culturally situated and socially struc-
tured settings organizing the experiential histories that entrain generative models,
laying down the paths that minds traverse on their situated journeys through time.

An important consequence is that actors’ intrasubjective brains come to embody
states learned through the situated experiences shared both directly and indirectly
with other brains, becoming infersubjective by virtue of this and other culturally
scripted experiential autocorrelations (e.g., Atzil et al. 2018; Bolis and Schilbach
2020; Fotopoulou and Tsakiris 2017; Misaki et al. 2021; Saxbe et al. 2020; Stephens
et al. 2010). Through these intercorrelating social dynamics, actors learn by, and
learn to, “think through other minds” by participating in collective regimes of atten-
tion (Veissiere et al. 2020), enabling shared realities, expectations, communication,
and cognitions as key features of generative models that are reproduced in each brain.
Because actors actively contribute to one another’s generative models, this process of
intersubjective autocorrelation becomes a catalyst for the social cohesions, identities,
and solidarities that emerge from patterns of social situations, concatenating into,
transforming, challenging, and dismantling social structures (Collins 1981, 1993,
2005). The collectivity of this activity makes the world more predictable in many
ways, speaking to the inherent challenge of the epistemic uncertainty about the true
but hidden states of, and their underlying causes in, the world. Along these lines,
selected annotations are shown at the top of Fig. 4 to draw attention to important
sociological conceptualizations that anticipated key features of uncertainty reducing
generative process-model dynamics.

According to a pair of recent papers by Strand and Lizardo (2022a, b), Weber’s
later works, which were not included in the original canon!® (Weber 1913, 2019),
theorized distinctions between the subjective probabilities that individuals develop
through experience to approximate the real and ultimately unknowable objective
probabilistic states and chances of events in the world® (i.e., Chance). This subjec-
tive—objective conceptualization, they suggest, influenced Bourdieu’s (e.g., Bourdieu
1973) later work where field came to capture distributions of objective Chance with
its subjective approximation in the habitus. In fact, Strand and Lizardo (2022b) were
inspired to call for a “probabilistic sociology” based on this reading of Weber and
Bourdieu. We concur and propose a probabilistic sociology firmly rooted in well-
established Bayesian principles in terms of generative processes and generative mod-
els, mirroring the Chance/field and subjective probability/habitus conceptualizations,
with active inference providing the reconciling synthesis. Certainly, much sociolog-

19 Strand and Lizardo (2022b) describe how Weber’s later works were omitted from important English-
language translations, while also providing additional references on the origins and implications of Weber’s
probabilism.

20 There was great interest in probability and other leading intellectuals such as Kant (Swanson 2016) and
Helmbholtz (Friston and Kiebel 2009; see also the Appendix discussion in Hutchinson and Barrett 2019)
advocated for predictive formulations. Debates about the definitions of probability have largely settled into
“frequentist” (objective) and “Bayesian” (objective and subjective) camps (Clayton 2021), but were much
more variable during Weber’s time.
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ical research is dedicated to identifying, parameterizing, and theorizing many such
statistical, structural, and organizing features (e.g., Grusky 2014; Grusky and Hill
2017), represented as the hidden states (h}) of the generative processes of the world
in Fig. 4. Not all hidden states are relevant to all actors and each brain attempts to
learn about those statistically relevant as inferred from the signal patterns received
through its sensorium (o.) (i.e., Hoffman 2019; Prakash et al. 2021). Each actor
is thus constituted by the subsets of hidden states realized in the internal states
(h.) of the brain’s generative models?! via neuronal updating and other modulatory
mechanisms (i.e., predictive coding).

Actors seek to resolve or at least manage the inherent probabilistic uncertain-
ties of the world outside through the local temporal dynamics of action—perception
cycles, and over longer timespans via action policies entrained to the cultural affor-
dances available to entities like them. Following Fig. 3, the arrows in Fig. 4 provide
the dynamics of perception (o.) and action (u.) cycles. Action alters perceptions
by directly modifying the world in some way??, and/or by providing an alterna-
tive perspective from which new observations can be acquired. The consequences
of action subserve the mechanisms of error (or surprisal) minimization via joint
action-perception dynamics, by which it is proposed that actors (attempt to) main-
tain their preferred states over physiological<>psychological levels from the bodily
and subconscious to the conscious (e.g., Maslow’s Hierarchy of Needs). Experience
unfolds within the multifaceted sociological and environmental realities that shape
how actors understand the distributions of their potential actions, the potential out-
comes, and ultimately to explain the realized consequences. Figure 4 thus contains
the implication, in the direct link between internal states and observed consequences
(he — 0), that what is observed is dependent upon priors (i.e., generative models),
and thus on the previous perceptual experiences in (or vicariously about) statistically
similar settings, by which those prior internal states came to be embodied.

5 Discussion

The embodied view of the predictive brain invites a return to sociological insights
into the inherent uncertainty in the world and the need for humans to act in order
to learn and make accurate inferences about it. Earlier, we suggested that brains
have made some degree of appearance in sociological research, based largely on
the traditional “bottom—up” model that is inherently retrospective. We propose that
one consequence of this model is a reliance on a limited conception of the stress
“response,” which is asked to do a lot of heavy lifting theoretically; that emotion

21 It may be tempting to think about this as limited to basic perceptual experiences, but we should be
careful to not overly constrain the abstraction. The intended meanings of this text are hidden states that
you are attempting to infer. The chances that your inferences are accurate are undoubtedly a function of the
clarity of writing, as well as what you bring to the table by virtue of your prior knowledge and capacities.

22 The paramount challenges of our era and into the foreseeable future include the escalating threats of
global warming and the interdependent precarious erosion of biodiversity. Both reflect the consequences
of actions that have changed the world to suit a broader range of our intrinsic and enculturated preferences
and goals.

@ Springer



J. E. Cheadle et al.

research lacks a common definition of emotions while underappreciating affect; and
that the model proposed here may provide the foundation for a theory of encultura-
tion that ties together learning, remembering, and thinking via the neural dynamics
of action and perception. Returning to these themes, Fig. 4 includes some clues into
how the AIF informs and is informed by these three thematic “bread-crumb trails”
by route of the centrality of the brain’s core predictive capacities and mechanisms.
Moreover, Fig. 4 also gives rise to a kind of holism that emerges from the inter-
dependencies among the dynamics of prediction, action, and perception, suggesting
that to talk about one of these areas of sociological inquiry might often implicitly
invoke the others.

Regarding mental and physical health and the concern for “how stress gets under
the skin,” the core dynamic falls under the auspices of allostasis in this model and
involves the coordinated resource allocation and consequent adjustment of home-
ostatic priors. The brain continuously monitors the states of the body and then
attempts to adjust and regulate states for predicted situational demands. Successful
prediction of the environment and successful physiological regulation together mini-
mize variational free energy at lower levels of physiological mechanisms, processes,
and needs, so that metabolic and other resources can be deployed efficiently. Of
course, exteroceptive environmental prediction errors are frequently made and are
sometimes threatening, posing risks to body (i.e., violence) and/or body—mind (i.e.,
interpersonal discrimination), giving rise to the concept of acute stress. Usually con-
ceived of as responses to the (i.e., stimulus-response) recognition of threat or danger,
such regulatory dynamics can also be viewed as (possibly evolutionarily selected,
genetically encoded, and bodily realized) predictions about how to get ahead of
the situation now by attempting to exert some degree of control over what happens
next. Human actors accomplish next by releasing energic resources—writing a blank
check to the body budget account as it were—to enable immediate and short-term
“fight or flight” action (policies). The intent is to return perceptual states, whether
physiologically vital to survival or in terms of conscious awareness, to those that
are preferred.

The level-spanning nature of this from low-level physiological needs to mental
abstractions brings forward the stressor as a concept that includes tremendous diver-
sity over types, including duration, severity, level, and life-course timing (Aneshensel
and Mitchell 2014; Wheaton 1994). Anticipating this, Sapolsky (2004) emphasized
anticipatory stress as the scourge of the modern era. The idea he put forward is that
our bodies only have the one stress response, whether or not a stressor is acute or
anticipated, with the latter instantiated as a response to mental events. We suggest
a subtler distinction: the mechanisms and bodily processes whose joint actions are
called a stress response are not so special. The stress response is but a few discor-
dant chords played upon the strings of cardiometabolic and related mechanisms by
which the body is allostatically regulated every moment of life. Anticipatory stress
as a response to mental events thus obfuscates as much as it illuminates. Instead, we
propose considering it in terms of the anticipated dis-preferred states that result from
epistemic (un)certainties, by which we mean both probabilistically uncertain and
probabilistically certain. Such (un)certainties undermine actors’ abilities to manage
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their expected and free energy, leaving them to pay the local metabolic and other
costs that come with higher regulatory free-energy bills (Bobba-Alves et al. 2022).

Anticipatory stress can thus alternatively be seen as a balancing act of predicted
demand and inherent (un)certainty about what is coming in life. Sociological con-
cerns about social structure and stress processes implicate generative processes in
which individuals and groups of actors are predictably unable to enact action poli-
cies for preferences, or at least complete them after starting, blocking epistemic
and pragmatic goal attainments. Actors in adverse conditions must act within the
constraints on what they can learn toward what can and cannot be achieved, along
with the proliferating uncertainties about what the costs of failures could be (i.e.,
stress proliferation; Pearlin et al. 1997). It seems likely, in fact, that much of what is
chronic about modern stress reflects the jointness of the limitations on the scope of
feasible action policies and the myriad uncertain follow-up consequences that arise
when things go wrong. Disadvantage is often a lack of robustness to even small
changes in already dis-preferred conditions. This jointness can confound selection
of even less-preferred but potentially realizable action policies, increasing anxiety
(Barrett 2017a), and thus the inference that the world is an innately dangerous place,
abound with risk, that the body must accordingly be prepared for (Sterling 2012,
2018; Schulkin and Sterling 2019). The brain seeks to match its bodily energetics
to its contexts as efficiently as possible, bringing along the broad packages of soci-
ological stress processes that accumulate as functions of time? (i.e., allostatic load
and overload; Bobba-Alves et al. 2022).

Body regulation is central to the embodied and embodying phenomenology of
experience beyond the physiological demands of stress. Affect in Fig. 4 provides the
low-dimensional indexing of interoceptive monitoring of allostatic regulatory states
and changes in terms of valence and arousal (and sometimes dominance; Russell
1980; Mehrabian 1980), and acute stress typically occupies a negative, energetic
location within the affective-state space (negative valence, high arousal, and high
dominance or lack of control). As von Scheve (2018) notes, affect is under-theorized
in sociological research, but it plays a foundational role here by providing a mind-
accessible summary index of how the brain understands its body states by route of
its moment-to-moment feelings (Damasio 1999; Barrett 2017b; Duncan and Barrett
2007; Kleckner et al. 2017; Wormwood et al. 2019). In other words, affect signifies
bodily states and their dynamic shifts, facilitating context-specific (i.e., situated)
embodied inferences (Seth and Friston 2016; Barrett 2017a). Recent models, such
as Barrett’s (2014, 2017a, b), proposes that emotions are concepts** used to interpret
and make sense of affective experiences against the backdrop of prediction error
resolution rates within specific situational contexts (see also Joffily and Coricelli
2013; Van de Cruys 2017). That is, emotions categorize what we feel within the

23 Medical sociologists have been greatly interested in depression and mental health over the years, and it is
worth noting that there is considerable interest in depression as a problem of allostasis and/or interoception
(e.g., Arnaldo et al. 2022; Barrett et al. 2016; Harshaw 2015; Seth and Friston 2016; Shaffer et al. 2022;
Stephan et al. 2016).

24 Pulvermiiller (2023) provides insights into neural dynamics by which language directs attention to con-
ceptual features and symbols in the development of abstract concepts.
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situation we are in vis a vis our predictions and are thus inferences about the joint
distribution of causes in the body and the world.

Affect is thus posed as a low-dimensional summary of current and changing body
states, whereas emotions make meaning of these feelings, elaborating them, situating
them within their broader statistical panorama, and dimensionalizing them over the
diverse conceptual terrain in which actors are enculturated. Emotions are therefore
sociocultural constructs, grounded in biology, that make meaning from intero- and
exteroceptive inputs through conceptual acts and guided by prediction error resolu-
tion (Barrett 2014, 2017a, b; Joffily and Coricelli 2013; Van de Cruys 2017; Van de
Cruys and Wagemans 2011). Each emotion instance is proposed to be a realization
of a “population of instances” over the unique features of situations, body state,
and neural state dynamics at that time (Siegel et al. 2018), and are therefore posed
as integrative and multimodal (i.e., relying on many different sources). This view
challenges specific circuit-based proposals (not that there are not well-documented
regions/circuits, hubs, and networks involved; Barrett 2017b) based in part on the
failure to identify the “fingerprints” of specific emotions in the brain (Barrett and
Satpute 2013; Lindquist et al. 2012; Wager et al. 2015). Consequently, and harken-
ing back to both social constructionist and biological debates about such things (see
Turner 2009; Turner and Stets 2006), neither provides an accurate description with-
out the other. Emotions are in this way a duality like a coin: their existence emerges
as the joining of both sides.

It is our proposal that this view provides a promising definitional grounding that
could help to anchor a sociology of emotions in which there are nearly as many
definitions as contributors (for reviews see Bericat 2016; Olson et al. 2017; Turner
2009; Turner and Stets 2006). This biosocial view contends, in other words, that cats
and dogs likely feel some representation of affect and the motivations to (in)action
it supplies, but do not experience emotions because they lack the capacities to be
enculturated with the necessary concepts (Barrett 2017a). In this view, emotions are
just as sociological as psychological or biological, and this “partnership” allows us
to share our feelings and collaborate with one other in culturally elaborated and
thus generative model-dependent (i.e., informative and predictable) ways. This view
integrates much health physiology with affect via allostasis and interoception via
cycles of action and perception in the body (b subscripts in Fig. 4). By adding the
cultural cognitive superstructure of meaning-making by which actors can signal and
share physiological regulation patterns with one another, emotions facilitate mutual
understandings of the salience of situations, and scaffold decision-making (Massey
2002). Emotions thus allow an actor to communicate conceptually with oneself
about their self, to share that knowledge with others, to interpret and make sense
of others’ states, and to entrain with one another to reinforce social collectivity by
sharing bodily and conceptual models of situations.

Emotions in Fig. 4 are therefore a nexus of body, situation, and culture. Quite
subtly here, this implies a deep correspondence between emotions and cognition
that undermines the common emotion—rationality dualism in much Western thought.
Thinking and feeling are concurrent and intertwined with information on body states,
and making meaning of body states is deeply intertwined with thinking. Indeed, our
bodies are part of our generative models, and our actions are inevitably in service
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to them (Clark 2023; Mitchell 2023). Part of thinking is thus feeling, and the sense
making of that emerges out of enculturation. Lizardo et al. (2016; see also Leschziner
2019) provides a detailed review of dual process theories of cognition in cultural
sociology, emphasizing enculturation in terms of phases comprising paired “fast”
and “slow processes”: cultural learning (cultural acquisition), remembering (storage
of culture), thinking (processing of culture), and action (use of culture) (e.g., Vaisey
2008; Swidler 2008). Within the predictive Bayesian brain framework, learning,
remembering, and thinking are integral components of the generative models that
encode the statistical regularities observed inside and outside the body. These cog-
nitive processes work in tandem, equipping actors with the diverse cognitive tools
necessary for guiding perception and planning complex action policies, both toward
concrete and abstract ends, and over arbitrary lengths of time.

Learning involves the processes by which generative models are made, elab-
orated, selected, and optimized through action—perception cycles and consequent
predictive coding dynamics (Friston et al. 2016, 2017b). Actors become socialized
and enculturated as they update and confirm their beliefs from experience to experi-
ence. Remembering provides for active reconstruction of past experiences, simulat-
ing prior sensory inputs and other forms of self-history, enabling deep and adaptive
temporality (Badcock et al. 2019; Friston et al. 2018). Thinking is simulation with
countless evaluative and projective uses, such as the formation of complex action
policies projecting into the future. Thinking can lead to learning via the conscious
evaluation of cognized prediction errors over different potential models, and thus
can be conceived of as involving model development, state expansion, reduction,
and selection (Friston et al. 2016; Ramstead et al. 2022; Sandved-Smith et al. 2021;
Smith et al. 2020). Within this framework, learning updates or confirms beliefs,
remembrances are beliefs about the past, and thinking combines the two and brings
on-board beliefs about both alternative models and potential futures.

The process of enculturation plays a pivotal role in providing actors with the
tools they need to predict the future states of their bodies and surroundings. This
predictive ability relies on one’s understanding of their identities and positions within
the world, their capacities to act, and the potential costs and benefits associated with
their actions. Action is thus viewed as action policy selection, a form of Bayesian
model averaging over policies such that those policies that lead to preferred outcomes
have a greater impact on predictions (Friston et al. 2018, 2017a). The point of
action is thus the realization of predicted states; hence, action—perception cycles
can be recast in terms of enculturation as action-learning/memory/thinking cycles.
Learning, remembering, and thinking thus arise from action just as they are used to
guide action; hence, the active inference in AIF, and thus the intertemporal and cyclic
nature of action and perception. Notably, the AIF model does not draw distinctions
between fast and slow “Type 17 and “Type 2” cognitions in achieving these capacities
that are of such interest in cognitive sociology. However, it does propose certain
parallels. For example, maintaining a body and brain requires countless processes
and mechanisms that are modulated by descending cascades of allostatic signals,
usually taken to happen quickly (although shifts in the causal dynamics can take
place over longer periods of time, as with Type II diabetes or the development of
atherosclerosis). Of course, these are not cognitive processes.
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For higher-order processes of those that lead to externally observable behaviors
and are more typically of sociological concern, Friston et al. (2016) argue that the
important distinction is whether or not current states are sufficient to specify an
action or whether it is necessary to consider uncertainty, and thus deliberate. They
propose instead a distinction based on belief-free (no uncertainty) and belief-based
(uncertainty) states. Habits emerge naturally from goal-direct behavior within this
distinction, raising the possibility that “fast” cognitions or habitual actions reflect
those that deploy “automatically” because the model has high confidence, not be-
cause of a specific “Type 1” neural system. In the body and its core regulatory
dynamics, these are constituted by evolutionary adaptation (Sterling 2015, 2020;
Mitchell 2023). In the predictive brain, such expressions are taken to be implicit
precisely because they are powerfully tuned predictions with very precise priors.
In other words, many fast “cognitive” processes are indeed the least deliberative
precisely because they embody the predictions that a brain has the most confidence
in. Such predictions are metabolically efficient because deliberate thinking is more
effortful (Parr et al. 2023), and thus metabolically expensive, when compared with
actions with high degrees of situational success that can be implemented without
deliberation. Such a view, for example, provides an alternative account of social
schema (cast as Type 1 responses in prior work) (Boutyline and Soter 2021), as
well as insights into everyday microsituational rituals and their breaches (Garfinkel
1967; Goffman 1967), in terms of highly precise priors.

6 Conclusion

We presented an introduction to the concepts of predictive processing, the Bayesian
brain, and variational (approximate) Bayesian inference through the lens of the AIF.
Admittedly, this hierarchical predictive brain model, though drawing on findings
from across the neurosciences, is an ongoing project. Although the neuroscience will
no doubt continue to complicate, the details may not be of particular sociological
interest if the global normative model is preserved. Part of the appeal lies in the
fact that this perspective seems to resolve certain mind-body and biology—social
dualities, while offering a more natural framework for human cognitive prospectivity
and other capacities. Although there are many more sociological concerns? that we
would like to have addressed beyond our thematic “bread-crumb trails,” this way of
thinking about brains, and action and perception via and within bodies, furnishes
human actors that speak to neurological, biological, and sociological concerns in
each area. This framework is level-interdependent and it intercorrelates actors via
shared patterns of (co-)enculturation, emphasizing both generative processes of the
body and the world, and actors’ subjective generative models by way of the expected

25 We have alluded to, but not strictly developed, the mathematical frameworks of the AIF. A deeper
investigation has the potential to enable specifying neurobiologically realistic agents, creating exciting
new avenues within theoretical computational sociology (see Foster 2018). A useful starting place can be
found in Smith et al. (2022).
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and variational free energy minimizing action—perception cycles propelling minds
through time.
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