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Abstract
Modern call centers require precise forecasts of call and e-mail arrivals to optimize 
staffing decisions and to ensure high customer satisfaction through short waiting 
times and the availability of qualified agents. In the dynamic environment of multi-
channel customer contact, organizational decision-makers often rely on robust but 
simplistic forecasting methods. Although forecasting literature indicates that incor-
porating additional information into time series predictions adds value by improv-
ing model performance, extant research in the call center domain barely consid-
ers the potential of sophisticated multivariate models. Hence, with an extended 
dynamic harmonic regression (DHR) approach, this study proposes a new reliable 
method for call center arrivals’ forecasting that is able to capture the dynamics of 
a time series and to include contextual information in form of predictor variables. 
The study evaluates the predictive potential of the approach on the call and e-mail 
arrival series of a leading German online retailer comprising 174  weeks of data. 
The analysis involves time series cross-validation with an expanding rolling win-
dow over 52 weeks and comprises established time series as well as machine learn-
ing models as benchmarks. The multivariate DHR model outperforms the compared 
models with regard to forecast accuracy for a broad spectrum of lead times. This 
study further gives contextual insights into the selection and optimal implementa-
tion of marketing-relevant predictor variables such as catalog releases, mail as well 
as postal reminders, or billing cycles.
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1  Introduction

In the retail industry, typical stages along the customer journey like order taking, 
after-sales service, and complaint resolution can easily be completed online (Gensler 
et  al. 2012; Verhoef et  al. 2015). Nevertheless, approximately 70% of customers 
still prefer to interact with a human counterpart for customer service requests (Sitel 
Group 2018). For many organizations, call centers constitute the main or only point 
of human-to-human interaction with their customers. Thus, call centers are an essen-
tial communication channel for businesses and an important customer touchpoint 
across many industries (Aksin et al. 2007).

High perceived service quality at this customer interface contributes greatly to 
customer loyalty and is determined by short waiting times as well as the call experi-
ence and service outcome itself (Brady and Cronin 2001; Parasuraman et al. 1985; 
Zeithaml et al. 1996). Hence, to provide the correct number of call center agents as 
customer service representatives at the right time and to evaluate their required areas 
of expertise, call arrival volumes in different queues have to be predicted1 reliably in 
advance. In this regard, preceding literature in the fields of operations management 
and forecasting so far focused on optimizing the opposite tendency of staffing costs 
and customer waiting times by enhancing forecast accuracy of predominant time 
series models (Dean 2007; Gans et al. 2003). Methods like autoregressive integrated 
moving average (ARIMA) (Andrews and Cunningham 1995; Barrow 2016; Mabert 
1985; Thompson and Tiao 1971), exponential smoothing (Taylor 2003, 2008, 2012), 
or dynamic harmonic regression (DHR) (Young et  al. 1999; Young 1999) have 
traditionally been established as standard-setting approaches. However, such time 
series models generate predictions based on the time series’ previous values without 
including any contextual data or other additional information available.

Meanwhile, new methods apart from time series models were developed and 
investigated to predict call center arrivals with high accuracy (Albrecht et al. 2021; 
Rausch and Albrecht 2020). Regression models (Aldor-Noiman et al. 2009; Brown 
et  al. 2005; Ibrahim et  al. 2016; Ibrahim and L’Ecuyer 2013) and machine learn-
ing (ML) approaches like random forest (RF) and neural networks (Barrow 2016; 
Jalal et al. 2016) were found to yield accurate predictions by including meaningful 
predictor variables. Incorporating contextual data into call arrival forecasts not only 
positively affects prediction accuracy but also allows for a more customer-centric 
perspective in call center forecasting. By including information on customer motives 
and behavior, valuable marketing insights are gained. Thus, prior research recom-
mended to model predictor variables (Taylor 2008).

Hence, extant forecasting literature still disagrees on the best-performing model 
type for call arrival forecasting. Simultaneously, from a conceptual point of view, 
previous research did not explicitly investigate whether incorporating the benefits 
of both time series approaches as well as regression and ML models into one model 
yields an unrecognized predictive potential. We therefore contribute to literature 

1  The terms predicting and forecasting will be utilized interchangeably in this paper.
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by proposing a new method for call center arrival forecasting, which combines the 
strengths of those model types—on the one hand by capturing the dynamics of the 
time series and on the other hand by including predictor variables. We hypothesize 
that this approach will lead to an increase in predictive performance and, simultane-
ously, will entail advantages for practical use. We extend the established Dynamic 
Harmonic Regression (DHR) model, which utilizes a sum of sinusoidal terms (i.e., 
Fourier terms) as predictors to handle periodic seasonality and an ARIMA error 
to capture short-term dynamics, by including predictor variables in the considered 
information space to generate predictions. We test the predictive potential of our 
approach with two different call and e-mail arrival series of a leading German online 
retailer comprising 174 weeks of data. We compare our proposed model to different 
established time series and ML approaches with time series cross-validation and an 
expanding rolling window. We further extend knowledge on suitable predictor vari-
ables in a marketing context, which has been neglected by prior research, as most 
datasets do not include such contextual information.

The remainder of this paper is structured as follows: Sect. 2 reviews related work 
on call center arrival forecasting approaches. In Sect. 3, we derive our DHR model 
including predictor variables. Sections  4 and 5 analyze the customer support call 
and e-mail arrival series respectively by presenting the preliminaries of both data-
sets, the experimental design, and the analysis results. Section 6 discusses the results 
with regard to the practical implications as well as the theoretical contribution of the 
study before it reflects the limitations and provides guidance for future research. The 
paper concludes with a concise summary of its principal points in Sect. 7.

2 � Related work

Call center call arrivals are count data and hence, discrete data restricted to non-
negative integers. Therefore, a common model utilized for call arrivals’ forecasts is a 
Poisson arrival process (see e.g., Aksin et al. 2007; Cezik and L’Ecuyer 2008; Gans 
et  al. 2003; Taylor 2012). However, one key feature of call center arrivals, which 
is not aligning with the preceding Poisson assumption, is their time dependence: 
call arrival counts exhibit obvious patterns (or seasonalities respectively) which are 
repeating itself sub-daily (e.g., half-hourly, hourly), daily, weekly, or yearly (Brown 
et  al. 2005; Ibrahim et  al. 2016). Thus, literature frequently draws on time series 
analysis to forecast call center arrivals assuming them to be a sequence of depend-
ent, contiguous observations which are made continuously over a certain time inter-
val (Brockwell and Davis 2002).

Box and Jenkins (1970) developed a non-seasonal ARIMA (p,d,q) which 
assumes that—with d degrees differenced—the time series y′

t
 at time t  is depend-

ent on past values p periods apart (autoregressive part) and is related to a finite 
number q of preceding forecast errors � (moving average part). The ARIMA 
model—or reduced models containing only sub-components respectively—are 
among the most common approaches to predict future call arrivals. The fields of 
application include e.g. a public telephone company (Thompson and Tiao 1971), 
an emergency line (Mabert 1985), banks in the US, UK, and Israel (Barrow 
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2016), or a retailer for outdoor goods and apparel (Andrews and Cunningham 
1995). In the latter case, additional contextual covariates (i.e., catalog mailings 
and holidays) were modeled to enhance forecast accuracy (Andrews and Cun-
ningham 1995). Bianchi et al. (1998) forecasted call center arrivals for telemar-
keting centers and found ARIMA modeling to be superior to Holt-Winters’ expo-
nentially weighted moving average.

Exponential smoothing methods are predicting values by weighting averages of 
previous observations with exponentially decaying weights the further the obser-
vations lie in the past (Holt 2004; Winters 1960). Extensions of the Holt-Winters’ 
approach comprised double seasonality (Taylor 2003), a Poisson count data model 
with gamma-distributed stochastic arrival rate (Taylor 2012), and robust exponential 
smoothing (Taylor 2008). For relatively short forecast horizons (up to 6 days), Tay-
lor (2008) found the Holt-Winters’ extension to outperform established approaches 
such as seasonal autoregressive moving average (ARMA). A novel subclass of expo-
nential smoothing models are innovation state space models that add an error term 
to exponential smoothing models yielding the label Error, Trend, Seasonal (ETS) 
(⋅, ⋅, ⋅) for each state space model (Hyndman et al. 2002). The single components can 
be defined as Error = {Additive (A),Multiplicative (M)} , Trend = {None (N), A} and 
Seasonal = {N,A,M} . ETS models were found to be both superior (Hyndman et al. 
2002) as well as inferior (Barrow and Kourentzes 2018) to ARIMA in a call center 
forecasting context. De Livera et  al. (2011) extended the basic ETS model which 
allows the seasonalities to slowly change over time by including Fourier terms for 
a trigonometric representation of seasonality and a Box-Cox transformation. The 
model’s key features trigonometric seasonality, Box-Cox transformation, ARMA 
errors, trend and seasonal components yield the acronym TBATS.

The random walk (RW) method is an easy-to-implement time series approach fre-
quently used as a benchmark model. Essentially, its forecasts equal the last actual 
value or observation respectively. By including the drift parameter c , the model 
additionally captures the average of changes between consecutive observations. 
Despite its simplicity, its performance is to some extent comparable—but not supe-
rior—to established methods in many experimental settings (see e.g., Taylor 2008).

Aside from time dependence, another key property of call center arrivals is their 
overdispersion, i.e., the variance of an arrival count per time period usually exceeds 
its mean (Aldor-Noiman et  al. 2009; Avramidis et  al. 2004; Jongbloed and Koole 
2001), which is not consistent with the Poisson assumption. One option to deal with 
overdispersion is to assume the Poisson arrival process as doubly stochastic with 
random arrival rate (Whitt 1999). Literature then drew on the root-unroot variance 
stabilizing data transformation for Poisson data assuming that with a large number 
of calls per interval, the square-root transformed counts are roughly normally dis-
tributed (Aldor-Noiman et  al. 2009; Brown et  al. 2005, 2010). Normality is then 
exploited to fit Gaussian linear models. Particularly, linear fixed-effects (Ibrahim 
and L’Ecuyer 2013; Shen and Huang 2008; Weinberg et al. 2007), random-effects, 
and mixed-effects models (Aldor-Noiman et  al. 2009; Brown et  al. 2005; Ibrahim 
et al. 2016; Ibrahim and L’Ecuyer 2013) were utilized subsequently. Mostly, fixed 
effects comprise the effect of the day of the week and the time of the day and their 
interaction, whereas random effects capture the daily volume deviation of the fixed 
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weekday effect. In call center forecasting, Aldor-Noiman et al. (2009) further mod-
eled billing cycles and delivery periods as additional covariates.

Recently, research started to investigate beyond time series and regression mod-
els. In the context of forecasting, approaches within the ML paradigm are character-
ized by detaching from distributional assumptions while, at the same time, promis-
ing immense predictive performance in a variety of application areas (Carbonneau 
et al. 2008). Rausch and Albrecht (2020) included RF as a powerful ML method in 
their comparison of novel time series and regression models for call center arrivals 
forecasting. RF was found to yield higher prediction accuracy for nearly all of the 
considered lead time constellations. Similar results were gathered in an extensive 
ML comparison study by Albrecht et al. (2021). Besides, artificial neural networks 
such as multilayer perceptrons (Barrow 2016) and recurrent neural networks (Jalal 
et al. 2016) attracted increasing attention. Barrow and Kourentzes (2018) found arti-
ficial neural networks to outperform traditional models for model complex outliers 
in call center arrival forecasting. However, call center forecasting research using ML 
approaches is still in its infancy.

While time series models generate predictions based on previous values in the 
time series but generally do not capture additional information, aforementioned ML 
and regression models allow for the inclusion of predictor variables. As these param-
eter values are typically available for both the past (i.e., the training data) and the 
future (i.e., the predictions and the test data), ex-post forecasts can be created. Such 
data specifying a forecasting period in the future at the time of the prediction may 
include, for instance, date-related information or data on scheduled customer contact 
activities. In contrast, time series models’ forecasts are solely based on information 
available at the time of the prediction, i.e., the time series’ historical values are used 
to generate ex-ante forecasts (Taylor 2008). This difference regarding the forecast-
ing method was previously found to significantly affect a models’ ability to maintain 
stable prediction accuracy with varying lead time as the inclusion of predictor vari-
ables is assumed to make forecasting call center arrivals more robust and accurate 
(Rausch and Albrecht 2020). On the other hand, ex-post forecasting models’ lacking 
ability of capturing information of a time series’ course and dynamics is supposed to 
prevent a significant further increase in model performance (Barrow 2016).

In case of ex-post forecasting models, including meaningful context factors in the 
form of predictor variables is critical as their informative value strongly affects pre-
diction accuracy (Andrews and Cunningham 1995). Previous literature identified an 
extensive list of possible variables that have been observed to affect arrival volumes. 
Data specifying date-related patterns such as variables indicating the time of day, 
the day of the week and holidays are widely used (Ibrahim et al. 2016; Ibrahim and 
L’Ecuyer 2013; Shen and Huang 2008; Weinberg et al. 2007). Additionally, informa-
tion regarding customer contact activities on the part of the company like variables 
revealing upcoming billing cycles, delivery periods and catalog mailings has been 
investigated (Aldor-Noiman et al. 2009). However, their effect on call center arrival 
volumes has only been examined for a fixed point of prediction so that findings on 
the influence on customer call behavior are vague and do not allow for a thorough 
understanding of the relation. In this regard, capturing the temporal effect of influen-
tial factors over time to enable the estimation of short-time and medium-term effects 
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as well as to assess their interrelation with data-related factors such as holidays and 
weekends is needed. This would lead to a better transferability of research into the 
complex and dynamic environment of practical call center arrival forecasting and, at 
the same time, provide valuable insights into the effect of customer contact activities 
on customer behavior.

3 � Dynamic harmonic regression with predictor variables

The methods used in previous call center forecasting studies presented in Sect.  2 
only allow for the inclusion of information from past observations of a time series or 
the incorporation of external data from predictor variables. Hence, either contextual 
information possibly stemming from predictor variables or information extracted 
from time series dynamics is lost. The latter applies to ordinary regression models 
of form

with i predictor variables xi,t at time t and the time series’ value yt at time t . The 
error term is mostly assumed to be a set of zero-mean and normally distributed 
white noise random shocks at (Pankratz 1991). Thus, if Nt in (1) has mean zero and 
is normally distributed white noise, then Nt = at . However, it is problematic esti-
mating ordinary regression models of (1) with time series data (Pankratz 1991). As 
stated earlier, regression models cannot capture previous dynamics of a time series: 
E.g., the error term might be autocorrelated, i.e., Nt is related to its previous values 
Nt−1,Nt−2 , etc., i.e.,

with coefficient �1 and random shock component at . Alternatively,

with coefficient �1 and at−1 being the random shock component of Nt−1 . Thereby, 
Eq. (2) represents an autoregressive process whereas Eq. (3) displays a moving aver-
age process. Hence, combining both equations yields an ARIMA process. If we 
allow the error term Nt in (1) to contain autocorrelation of (2) and (3), we obtain a 
dynamic regression model

with then �t being the ARIMA process depicted in Eqs. (2) and (3). The resulting 
regression model thus is able to capture previous dynamics of a time series.

In harmonic regression models, the observed time series is considered as being 
composed of a signal, i.e., consisting of a sum of sinusoidal terms (or Fourier terms 
respectively) (Bloomfield 2000), so that any time series can be expressed as a com-
bination of cosine (or sine) waves with differing periods. That is, the variation of a 
time series may be modeled as the sum of k different individual sinusoidal terms 

(1)yt = �0 + �1xt +⋯ + �ixi,t + Nt

(2)Nt = �1Nt−1 + at

(3)Nt = at − �1at−1

(4)yt = �0 + �1xt +⋯ + �ixi,t + �t
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(harmonics) occurring at different frequencies of periodic variation � (Bloomfield 
2000). Thus, a harmonic regression model can be defined as

with white noise error et , coefficients �k and �k , and �k, t = 1, 2,… ,N being the fre-
quencies of periodic variation.

Combining both the autocorrelated error term of (4) and the Fourier terms of 
(5) yields a DHR model (Young et al. 1999; Young 1999) using Fourier terms as 
predictors in combination with dynamic regression to handle periodic seasonality 
(Hyndman and Athanasopoulos 2018)

with �t being a non-seasonal ARIMA (p,d,q) process. The DHR as in (6) and its 
extensions have already been utilized by research to forecast sub-daily call arrivals 
(Taylor 2008; Tych et al. 2002) since it allows for long seasonal periods compared to 
ARIMA and ETS models and short-term dynamics are handled by the ARIMA error 
(Hyndman and Athanasopoulos 2018). Nevertheless, the DHR model in (6) does 
not include additional contextual information such as the effect of holidays, cata-
log mailings, or billing cycles. As mentioned in the previous section, prior research 
(Aldor-Noiman et al. 2009; Andrews and Cunningham 1995) found such informa-
tion to substantially enhance forecast accuracy and thus, recommended to include 
predictor variables (Taylor 2008). Therefore, we extend the DHR model in (6) from 
extant call center literature by adding predictor variables aside from Fourier terms:

4 � Analysis of customer support call arrival series

4.1 � Preliminary data analysis

We gathered call center data from a leading German online retailer for fashion. The 
retailer’s call center comprises arrival queues for each customer support, order taking, 
customer complaints, and consultation service. We investigate the customer support 
queue for e-mail arrivals as well as for call arrivals. Thus, in line with the concept of 
multi-channel customer contact in modern call centers, we are able to investigate two 
different queues of the same call center that represent different channels and types of 
media for customer support. The call queue is open from 7 a.m. to 10 p.m. from Mon-
day through Saturday. Since our proposed DHR model is computationally only capa-
ble of modeling one seasonality, we apply a common two-step temporal aggregation 

(5)yt =

K∑

k=1

(
�kcos(�kt) + �ksin(�kt)

)
+ et

(6)yt = �0 +

K∑

k=1

(
�kcos

(
�kt

)
+ �ksin

(
�kt

))
+ �t

(7)yt = �0 + �1xt +⋯ + �ixi,t +

K∑

k=1

(
�kcos

(
�kt

)
+ �ksin

(
�kt

))
+ �t
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approach (Kourentzes et  al. 2017): first, we aggregate our original high sampling 
frequency data (half-hourly data) at a pre-specified aggregation level with lower fre-
quency (daily values) and thus, predict the daily arrival volume. Then, we disaggregate 
the daily predictions with respect to the averaged arrival distribution per weekday to 
re-yield the original high frequency, i.e., half-hourly predictions. The described tem-
poral aggregation approach has gained substantial attention in recent methodological 
forecasting literature (Boylan and Babai 2016; Kourentzes et al. 2014; Kourentzes and 
Petropoulos 2016; Nikolopoulos et  al. 2011) as it smooths the original time series, 
removes noise, improves forecast accuracy, and particularly simplifies the generation of 
forecasts (Kourentzes et al. 2017).

Hence, our aggregated daily data contain 1045 observations from January 2, 2016 
to May 4, 2019, i.e., 174 weeks of data. One week comprises six observations and 1 
year contains 312.25 observations considering leap years. The maximum number of 
call arrivals per day are 5300 arrivals and the mean of call arrivals per day is 2105.56. 
Our data exhibits overdispersion with a variance of 675,914.17. We excluded 2 weeks 
of data (i.e., 12 observations) due to incorrect interval capturing.

To enable the use of time series models, the time series has to be stationary. We 
conduct an Augmented Dickey Fuller (ADF) test (Dickey and Fuller 1979) to check 
for unit root in our data. With a p-value of 0.99 at lag order 312 (value of test statistic 
0.1139), we cannot reject the null hypothesis of unit root in our data and thus, assume 
our data to be nonstationary.

To determine appropriate frequencies for our DHR model and further, to make 
the time series stationary, we have to assess the degree of seasonality in our data. 
Figure 1 depicts the overall daily call arrival volume of the customer support queue 
and its smoothed trend. The volume remains relatively constant with a slight increase 
towards the beginning of the year 2018 and a decrease towards the end of the dataset. 
Figure 2 displays three consecutive weeks of data. The number of call arrivals peaks 
on Mondays, then decreases throughout the week, and exhibits a second peak during 
the course of the week. The arrival volume drops substantially on Saturdays. As this 
pattern repeats every week, we assume daily seasonality, i.e., s = 6 . We do not assume 
yearly seasonality as the yearly pattern is rather weak or non-existent respectively, con-
sidering Fig. 1. More formally, these findings further have been confirmed by the data’s 
periodogram with a peak value at frequency � = 0.1667 and thus, the dominant period 
T =

1

�
 is 5.9999 , i.e., it takes approximately 6 days to complete a full cycle. The peri-

odogram does not indicate yearly seasonality.
We model different predictor variables for our data to improve forecast accuracy, 

summarized in Table 1. We utilize previous findings of literature regarding useful pre-
dictor variables (see e.g., Aldor-Noiman et al. 2009; Andrews and Cunningham 1995; 
Ibrahim et al. 2016) and include additional, potentially meaningful variables indicated 
by call center management or identified in preceding research (Rausch and Albrecht 
2020).
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4.2 � Experimental design

To evaluate the performance of our proposed DHR model with predictor vari-
ables, we draw on several standard forecasting techniques of those presented in 
Sect. 2 for comparison listed in Table 2. Thereby, we utilize different time series 
models such as ARIMA, ETS, RW, TBATS, and further, the standard DHR 
approach without predictor variables as well as common high-performance ML 
methods such as RF and gradient boosting with L1 regularization (GBR) as 
benchmark approaches since they have been found to outperform other models by 
extant forecasting research. We do not include neural networks in our comparison 
due to the trade-off between model parsimony and forecast accuracy. Neural net-
works are frequently computationally infeasible in terms of computation time and 
complexity and thus, are rather unsuitable for practical use.
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Fig. 1   Overall call arrival volume of customer support queue
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Since our time series in nonstationary, we apply time series decomposition before 
generating predictions with the time series approaches.2 The seasonal-trend decom-
position based on Loess (STL) (Cleveland et al. 1990) detrends and deseasonalizes 
the data yielding yt = Ŝt + Ât for additive decomposition ( yt = Ŝt ∗ Ât for multipli-
cative decomposition respectively) with Ât = T̂t + R̂t for additive decomposition 
( ̂At = T̂t ∗ R̂t for multiplicative decomposition respectively). Thereby, Ŝt is the sea-
sonal component and Ât is the data without seasonality, i.e., the seasonally adjusted 
component. Both components are forecasted separately. The former is predicted by 
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Fig. 2   Call arrival volume of three consecutive weeks

2  One of the anonymous reviewers pointed out that ETS models do not necessarily need time series 
decomposition prior to generating predictions. Nevertheless, although all ETS models are nonstationary, 
we also decompose the time series before applying the ETS model as predictions are assumed to become 
more accurate by detrending and deseasonalizing the time series first compared to predictions based on 
the global series Theodosiou (2011).
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Table 2   Models for comparison

Model Description

Time series models
 DHR Combination of a dynamic regression model and a harmonic 

regression model, i.e., a regression model with Fourier terms as 
predictors and an ARIMA error term (Young et al. 1999; Young 
1999)

 STL + (non-seasonal) ARIMA Combination of a seasonal-trend decomposition of time series 
based on Loess and a non-seasonal ARIMA (p,d,q) model, i.e., 
predictions are generated based on prior values yt−p of yt and 
prior errors �t−q (Box and Jenkins 1970)

 STL + ETS Combination of a seasonal-trend decomposition of time series 
based on Loess and an exponential smoothing innovation state 
space model (exponential smoothing model with an error term), 
i.e., predictions are the exponentially weighted average of past 
observations (Hyndman et al. 2002)

 STL + RW with drift (RWDRIFT) Combination of a seasonal-trend decomposition of time series 
based on Loess and a random walk model, i.e., predictions equal 
the last observation and the average of changes between consecu-
tive observations

 TBATS Exponential smoothing innovation state space model (ETS model) 
with a Box-Cox transformation (stabilizes the time series’ vari-
ance), Fourier terms (trigonometric expression of seasonality 
terms for complex seasonality as well as high frequency of sea-
sonality; allow seasonality to change over time), and an ARMA 
(p,q) correction (De Livera et al. 2011)

ML approaches
 GBR Ensemble of successive weak learners (i.e., models that achieve 

accuracy just above random guessing): within boosting, weak 
learners are trained sequentially trying to correct its respective 
predecessor (Schapire et al. 1998). I.e., each learner is con-
structed using feedback from previously grown learners. More 
specifically, within gradient boosting, a subclass of boosting, 
weak learners are fitted to the residual errors made by preced-
ing learners and gradient descent is used to identify the errors in 
previous predictions (Friedman 2001, 2002)

 RF Ensemble of successive decision trees: Withing bagging, each 
learner is grown independently from earlier learners. I.e., each 
tree is built using a bootstrap sample of the data (Breiman 1996). 
More specifically, within random forests, a subclass of bagging, 
the algorithm draws ntree bootstrap samples, grows an unpruned 
regression tree for each sample by randomly sampling mtry of the 
predictors at each node, and then chooses the best split among 
them. The outputs of the ntree trees are aggregated and averaged 
to produce one final prediction (Breiman 2001; Liaw and Wiener 
2002). An additional L1 regularization prevents the model from 
overfitting
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drawing on the last period of the estimated component, which equals a seasonal 
naïve method, whereas any non-seasonal forecasting approach can be utilized for the 
latter. The transformations of the decomposed time series are then inverted to yield 
the forecasts of the original time series 

{
Yt
}
 (Hyndman and Athanasopoulos 2018).

To select appropriate predictor variables and filter out uninformative ones for our 
proposed DHR model, we draw on the forward variable selection procedure (Hynd-
man and Athanasopoulos 2018). A prevailing approach to identify essential predic-
tor variables is to drop those variables whose p-values are statistically insignificant 
(see e.g., Aldor-Noiman et al. 2009). However, in a forecasting context, the p-value 
does not necessarily determine the variable’s predictive performance regarding the 
out-of-sample predictions which are practically relevant. Hence, we begin with 
the null model comprising none of the variables and add each predictor variable 
at a time. The variable is maintained if it enhances forecast accuracy. This step is 
repeated until no further improvement of accuracy is yielded.

We evaluate model performance with time series cross-validation and an expand-
ing rolling window. We use 118 weeks of data comprising 709 observations, i.e., 
the observations from January 2, 2016 to April 7, 2018, as our initial training data. 
We fit the models and predict 1 week or six observations respectively (i.e., forecast 
horizon h = 6 ). During the next iteration, we roll the training data 1 week forward, 
re-estimate our models, and predict one unit of our forecast horizon further. Dur-
ing each iteration n = 1, 2,… ,N , the ML models’ hyperparameters are optimized 
by implementing tenfold cross-validation with grid search. We further optimize the 
number of Fourier terms k of the DHR models by including a second loop within 
each iteration n : Since k can have a maximum value of T∕2 , the grid search for k is 
set within the range [1;3] and k ∈ ℕ . k is then optimized by fitting the model with 
the current training data and predicting the current out-of-sample data during each 
iteration n = 1, 2,… ,N . Forecast accuracy for the out-of-sample predictions is cal-
culated for each k and subsequently, k is chosen with respect to the highest forecast 
accuracy results. Overall, the procedure is repeated 52 times, i.e., for 1 year, and 
hence, N = 52 . As stated earlier, we exclude 2 weeks of data from October 22, 2018 
to November 4, 2018 due to incorrect interval capturing and therefore, we predict 
300 daily call arrival volumes.

As stated earlier, to yield relevance for practical use, we further disaggregate 
our daily predictions with respect to the averaged call arrival distribution for each 
weekday per half-hour interval to invert the daily predictions back to the series’ 
original half-hour frequency, see Fig. 3. We additionally include the averaged call 
distribution of holidays as they a divergent distribution compared to ordinary week-
days. Evidently, Mondays are the busiest days with a peak in the morning hours 
and a second smaller peak throughout the day. The remaining weekdays exhibit a 
similar course on a lower level. Saturdays register the fewest call arrivals on average 
throughout the day aside from holidays. Overall, each of the 300 predicted daily val-
ues is disaggregated into 30 half-hour intervals yielding a total of 9000 predictions.

To assess the models’ performance, we compare the sub-daily forecasts with the 
out-of-sample or test data (i.e., the actual values) and compute forecast accuracy. We 
draw on mean absolute error (MAE) and root mean squared error (RMSE) as error 
measures:
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with test (or out-of-sample) data Yi , forecasted values Ŷi , and the number of fore-
casted values T  . Since they are scale-dependent measures, they are both appropri-
ate to compare predictions on the same scale. Both MAE and RMSE are frequently 
used by research to determine their forecasts’ accuracy (see e.g., Aldor-Noiman 
et al. 2009; Barrow 2016; Ibrahim et al. 2016; Taylor 2008; Weinberg et al. 2007) as 
they can be calculated and interpreted easily (Hyndman and Athanasopoulos 2018).

We further check the robustness of our comparison results by considering (1) no 
lead time, (2) 1 week lead time, (3) 2 weeks lead time, and (4) 3 weeks lead time. In 
this context, lead time refers to the period between the dataset’s last actual observation 
and the first created forecast.

MAE =
1

T

T∑

i=1

|Yi − Ŷi| RMSE =

√√√√ 1

T

T∑

i=1

(Yi − Ŷi)
2
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4.3 � Results

We conduct forward variable selection for our proposed DHR model. Drawing on 
the results in Table  3, the variables year, outlier, school holidays, day-after-holi-
day, and CW2 do not enhance forecast accuracy regardless of the considered lead 
time constellation whereas the variables day-of-the-week, holiday, CW1, MMail2, 
MPost1, MPost2, and DMail2 improve accuracy for every lead time. The highest 
MAE improvement is yielded by the day-of-the-week and the holiday variable indi-
cating their importance for the call center arrival forecasts.

To gather more detailed insights on variable importance, we calculated the rela-
tive importance I of each predictor variable x

with E being the MAE of the final model with all selected variables (i.e., the model 
selected via forward variable selection within Table 3) (Taieb and Hyndman 2014). 
The predictor variable increasing the error the most after removing its relative effect 
can be considered the most influential predictor variable given the other predictors. 
We calculate the variable importance with our proposed DHR model without lead 
time as this yielded the highest forecast accuracy among all considered lead times. 

Ix =
E(−x) − E

E

Table 3   Forward variable selection MAE results for customer support call arrival forecasts

The bold values are an improvement to the respective preceding value and the corresponding variable is 
included in the final model

No lead time One week Two weeks Three weeks

No predictor variables 18.6089 19.2526 19.7547 20.0912
Day-of-the-week 13.5712 13.6240 13.8336 14.1911
Holiday 11.7666 11.8471 11.9814 11.8789
Day-after-holiday 11.8434 11.9490 12.0462 12.0105
School holidays 11.8158 11.8982 12.0792 12.1299
Outlier 11.9839 12.0417 12.1656 12.1069
Year 12.1754 12.2806 12.4242 12.4873
CW0 11.7389 11.8578 11.9731 11.8851
CW1 11.7127 11.8451 11.9690 11.8648
CW2 11.7655 11.8510 11.9737 11.8873
CW3 11.7244 11.8144 11.9730 11.8720
MMail1 11.7489 11.8264 11.9795 11.8644
MMail2 11.5700 11.7269 11.9324 11.7686
MPost1 11.3872 11.4660 11.6455 11.6049
MPost2 11.3369 11.3959 11.5747 11.4863
DMail1 11.3140 11.2669 11.5805 11.4648
DMail2 11.2336 11.2250 11.5571 11.4688
All 11.5466 11.6480 11.9878 12.0333
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Table 4 depicts the resulting variable importances. The day-of-the-week as well as 
the holiday variable are clearly the two most important predictors. Among the vari-
ables containing information about marketing actions, the predictor capturing the 
effect of postal reminders on the day of delivery (MPost1) worsens forecast accuracy 
the most.

Tables 5 and 6 present the MAE and RMSE results of the investigated models. 
Our proposed DHR model with predictor variables outperforms the remaining 
models with respect to its MAE results for every considered lead time. Consider-
ing 2 weeks and 3 weeks of lead time, RF performs slightly better than our DHR 
model with regard to RMSE as evaluation metric. As the RMSE gives a higher 
weight to large errors, this indicates that our model made fewer large errors com-
pared to RF. Nevertheless, as the discrepancy in RMSE between both models is 

Table 4   Predictor variable 
importance for customer support 
call arrival forecasts

MAE without predictor 
variable (compared to selected 
model)

Predictor vari-
able importance

Day-of-the-week 14.6435 0.3035
Holiday 12.9488 0.1527
CW0 11.2578 0.0022
CW1 11.2812 0.0010
MMail2 11.3541 0.0107
MPost1 11.5830 0.0311
MPost2 11.3290 0.0085
DMail1 11.3356 0.0091
DMail2 11.3083 0.0066

Table 5   MAE results for customer support call arrival forecasts

The highest forecast accuracy for each lead time is marked in bold
DHR: dynamic harmonic regression; GBR: gradient boosting with regularization; RF: Random for-
est; STL + ARIMA: autoregressive integrated moving average with time series decomposition based 
on Loess; STL + ETS: innovation state space model with time series decomposition based on Loess; 
STL + RWDRIFT: random walk with drift with time series decomposition based on Loess; TBATS: trig-
onometric seasonality, Box–Cox transformation, ARMA errors, trend and seasonal components

No lead time One week Two weeks Three weeks

DHR with predictor variables 11.2336 11.2250 11.5571 11.4648
DHR 14.3198 14.2243 14.3913 14.5242
STL + ARIMA 17.8254 17.3990 17.7603 18.2596
STL + ETS 17.8028 17.4140 17.8213 18.4370
STL + RWDRIFT 17.7657 17.5317 17.7757 18.2407
TBATS 16.3675 17.1001 17.2664 17.6892
GBR 13.4358 13.7363 13.7492 13.5698
RF 12.0249 12.0516 12.3048 12.3006
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only around 0.2, this seems rather negligible. This further indicates the superior-
ity and importance of contextual information.

The decomposed ARIMA, ETS, and RW models yield the most inaccurate fore-
casts and among the time series models while the standard DHR model without pre-
dictor variables is the second best performing model. Comparing both DHR models, 
predictor variables apparently enhance forecast accuracy substantially. Further, since 
the ML models comprise predictor variables, their forecasts are comparable but 
slightly worse than those of our proposed model. Overall, ML models are superior 
to the time series models.

Evidently, ex-post forecasts (i.e., their predictor variables can be modeled for 
both past observations (the training data) as well as future observations (the out-of-
sample data)) of our proposed model and the ML models are outperforming ex-ante 
forecasts (i.e., the models are only using information that is available at the time of 
generating the forecasts) of the time series models used.

Considering the lead times, the present results support previous findings in call 
center forecasting literature (Ibrahim et al. 2016; Rausch and Albrecht 2020). Fore-
cast accuracy declines steadily with increasing lead time for most of the models and 
the most accurate predictions for each model are yielded without any lead time.

4.4 � Robustness checks

To test the robustness of our results, we conducted further analyses. Although the 
temporal aggregation approach is assumed to remove noise and enhance forecast 
accuracy, it would not have been mandatory for the benchmark time series models, 
as these are computationally capable of modeling more than one seasonality. Thus, 
we generated forecasts based on the original series (i.e., sub-daily data) without 
the temporal aggregation approach (see Tables  7 and 8). Although forecast accu-
racy partially improves, our proposed DHR model with predictor variables is still 

Table 6   RMSE results for customer support call arrival forecasts

The highest forecast accuracy for each lead time is marked in bold
DHR: dynamic harmonic regression; GBR: gradient boosting with regularization; RF: Random for-
est; STL + ARIMA: autoregressive integrated moving average with time series decomposition based 
on Loess; STL + ETS: innovation state space model with time series decomposition based on Loess; 
STL + RWDRIFT: random walk with drift with time series decomposition based on Loess; TBATS: trig-
onometric seasonality, Box–Cox transformation, ARMA errors, trend and seasonal components

No lead time One week Two weeks Three weeks

DHR with predictor variables 15.7521 16.6844 17.0088 17.1805
DHR 22.4746 22.9245 23.1713 23.4540
STL + ARIMA 30.3195 29.0067 29.3980 30.2608
STL + ETS 30.1632 28.9110 29.4276 30.4809
STL + RWDRIFT 30.1719 28.9619 29.1190 29.8225
TBATS 24.8822 26.0952 26.3939 27.0433
GBR 18.6523 19.2414 19.0341 18.7706
RF 16.6278 16.7476 16.9844 16.9797
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superior in terms of MAE results. Nevertheless, without temporal aggregation, RF’s 
RMSE values for forecasts without lead time and with one as well as 2 weeks lead 
time are slightly better than those of the DHR model. Additionally, we generated 
forecasts based on the original sub-daily data with a double seasonal exponential 
smoothing model (DSHW) and found our models to be noticeably superior.

Table 7   MAE results for customer support call arrival forecasts based on original sub-daily data without 
temporal aggregation

DSHW: double seasonal Holt-Winters; GBR: gradient boosting with regularization; RF: Random for-
est; STL + ARIMA: autoregressive integrated moving average with time series decomposition based 
on Loess; STL + ETS: innovation state space model with time series decomposition based on Loess; 
STL + RWDRIFT: random walk with drift with time series decomposition based on Loess; TBATS: trig-
onometric seasonality, Box–Cox transformation, ARMA errors, trend and seasonal components

No lead time One week Two weeks Three weeks

DSHW 68.9264 151.4902 230.738 310.4899
STL + ARIMA 14.5263 14.7404 15.5448 15.8520
STL + ETS 14.5263 14.7407 15.5448 15.8520
STL + RWDRIFT 14.6651 14.6334 15.2941 15.7877
TBATS 18.1162 17.9856 18.8661 18.9823
GBR 12.9393 13.1488 13.3987 13.7386
RF 11.7544 11.8129 12.0648 12.8134

Table 8   RMSE results for customer support call arrival forecasts based on original sub-daily data with-
out temporal aggregation

DSHW: double seasonal Holt-Winters; GBR: gradient boosting with regularization; RF: Random for-
est; STL + ARIMA: autoregressive integrated moving average with time series decomposition based 
on Loess; STL + ETS: innovation state space model with time series decomposition based on Loess; 
STL + RWDRIFT: random walk with drift with time series decomposition based on Loess; TBATS: trig-
onometric seasonality, Box–Cox transformation, ARMA errors, trend and seasonal components

No lead time One week Two weeks Three weeks

DSHW 880.8499 1,769.499 2,675.125 3,584.931
STL + ARIMA 22.7009 23.1810 24.2187 25.0726
STL + ETS 22.9251 23.0876 23.9239 24.7768
STL + RWDRIFT 23.0503 23.1555 23.9506 24.7793
TBATS 30.8184 30.7156 31.6453 31.8839
GBR 18.1216 18.3299 18.6043 19.3079
RF 15.5678 16.6541 16.8929 18.4903
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5 � Analysis of customer support e‑mail arrival series

5.1 � Preliminary data analysis

To further validate our results and allow for the development of multi-channel cus-
tomer contact in modern call centers, we additionally investigate the e-mail arrivals 
of the customer support queue. The incoming e-mail data of this queue varies from 
the previous call analysis in the number of available observations per week, the level 
of average and maximum arrival count per interval, and the existence of trend in the 
arrival volume.

The aggregated daily data consist of 1220 observations from January 2, 2016 to 
May 5, 2019, i.e., 174 weeks of data. Since e-mails arrive at any time throughout 
the day and on every weekday from Mondays to Sundays, 1 week consists of seven 
observations and 1 year comprises 365.25 observations considering leap years. The 
maximum number of e-mail arrivals is 3240 per day. The customer support queue 
receives 1670.15 e-mails on average each day and with a variance of 283,687.87 the 
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data is overdispersed. With a p-value of 0.98 at lag order 365 (value of test statistic 
− 0.4533) of the ADF test, we cannot reject the null hypothesis of unit root in our 
data and thus, assume our data to be nonstationary.

Figure  4 exhibits a steady upwards trend in the overall e-mail arrival volume. 
Figure 5 reveals that the e-mail arrival volume is high from Mondays to Fridays and 
drops noticeably on weekends. Since this pattern repeats every week, we assume 
weekly seasonality for the daily data, i.e., s = 7 . Further, there is no considerable 
yearly seasonality. More formally, the data’s periodogram exhibits a peak value at 
frequency � = .1432 and thus, the dominant period T =

1

�
 is 6.9832 , i.e., it takes 

approximately seven days to complete a full cycle. The periodogram does not indi-
cate a frequency which implies yearly seasonality.

We use the experimental design and predictor variables described in Sects. 4.1 
and 4.2 respectively. Accordingly, we extend the day-of-the-week predictor vari-
able as well as the forecast horizon h to 7 days. To determine the averaged e-mail 
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Fig. 5   E-Mail arrival volume of three consecutive weeks
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distribution per weekday, we draw on the original hourly dataset comprising 29,280 
observations and average the cumulated e-mail arrivals for each interval per week-
day (see Fig. 6). Evidently, Mondays to Fridays exhibit a similar distribution with 
few e-mail arrivals during the night, a peak in the morning hours, and a second 
smaller peak throughout the day. The volume drops towards the end of the day. On 
Saturdays, Sundays, and holidays the e-mail arrival volume is relatively low but has 
a similar distribution.

5.2 � Results

Similar to the customer support call arrival series, we conduct forward vari-
able selection for our DHR model listed in Table  9. The variables day-after-
holiday, school holidays, outlier, year, CW1, CW2, and DMail1 do not improve 
forecast accuracy regardless of the considered lead time constellation, whereas 
the variables day-of-the-week, holidays, CW0, and MMail1 have a positive 
impact on accuracy for every lead time. Analogous to the call arrival series, 
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the day-of-the-week and holiday variables cause the highest MAE improvement 
and are assumed to be important elements contributing to the present prediction 
results.

To gather more detailed insights into predictor variable importance, we 
determine—analogously to the customer support call arrival series—the vari-
able importance of each predictor included in the selected model from Table 9. 
Table 10 outlines the respective variable importance. Again, the day-of-the-week 
variable is the most important predictor. With respect to the marketing-relevant 

Table 9   Forward variable selection MAE results for customer support e-mail arrival forecasts

The bold values are an improvement to the respective preceding value and the corresponding variable is 
included in the final model

No lead time One week Two weeks Three weeks

No predictor variables 16.4636 17.3453 18.1969 18.5699
Day-of-the-week 14.6233 14.7007 15.0112 15.1020
Holiday 14.2472 14.3957 14.5968 14.5782
Day-after-holiday 14.2547 14.4004 14.5999 14.5856
School holidays 14.2520 14.4547 14.6330 14.6229
Outlier 14.2759 14.4185 14.5990 14.6019
Year 14.3672 14.5808 14.8253 14.8272
CW0 14.2470 14.3674 14.5592 14.5604
CW1 14.2881 14.3853 14.5636 14.5761
CW2 14.2483 14.3826 14.5679 14.5792
CW3 14.2476 14.3685 14.5588 14.5686
MMail1 14.0404 14.2270 14.4386 14.4538
MMail2 14.0306 14.2055 14.4413 14.4627
MPost1 14.0497 14.2740 14.4738 14.4513
MPost2 14.0283 14.2080 14.4336 14.4520
DMail1 14.0533 14.3239 14.5907 14.5382
DMail2 13.9974 14.1827 14.4355 14.4230
All 14.2046 14.4940 14.8711 14.9533

Table 10   Predictor variable 
importance for customer support 
e-mail arrival forecasts

MAE without predictor 
variable (compared to selected 
model)

Predictor vari-
able importance

Day-of-the-week 15.6057 0.1149
Holiday 14.3916 0.0282
CW0 14.0072 0.007
MMail1 14.2565 0.0185
MMail2 14.0121 0.0010
MPost2 13.9975 0.0000
DMail2 14.0283 0.0022
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variables, the predictor capturing the effect of e-mail reminders on the day of 
delivery (MMail1) worsens forecast accuracy the most.

Tables  11 and 12 summarize the MAE and RMSE results for the customer 
support e-mail arrival forecasts. Although the customer support queue receives 
fewer e-mails than calls on average, the MAE and RMSE obtained for the cus-
tomer support e-mail arrival predictions are comparable to those of the customer 
support call arrival forecasts. Similar to the call arrivals analysis, the proposed 
DHR model with predictor variables outperforms the remaining time series and 
ML approaches for every considered lead time constellation. Forecast accuracy 

Table 11   MAE results for customer support e-mail arrival forecasts

The highest forecast accuracy for each lead time is marked in bold
DHR: dynamic harmonic regression; GBR: gradient boosting with regularization; RF: Random for-
est; STL + ARIMA: autoregressive integrated moving average with time series decomposition based 
on Loess; STL + ETS: innovation state space model with time series decomposition based on Loess; 
STL + RWDRIFT: random walk with drift with time series decomposition based on Loess; TBATS: trig-
onometric seasonality, Box–Cox transformation, ARMA errors, trend and seasonal components

No lead time One week Two weeks Three weeks

DHR with predictor variables 13.9974 14.1827 14.4336 14.4230
DHR 14.9317 15.2102 15.4306 15.5281
STL + ARIMA 15.5983 15.6356 15.8708 15.9973
STL + ETS 15.7058 15.7584 15.9991 16.1562
STL + RWDRIFT 17.1299 17.6039 17.6647 17.9944
TBATS 15.6257 15.9940 16.2795 16.3678
GBR 16.6198 18.5997 17.3449 17.1729
RF 15.9811 16.6069 17.0371 17.1368

Table 12   RMSE results for customer support e-mail arrival forecasts

The highest forecast accuracy for each lead time is marked in bold
DHR: dynamic harmonic regression; GBR: gradient boosting with regularization; RF: Random for-
est; STL + ARIMA: autoregressive integrated moving average with time series decomposition based 
on Loess; STL + ETS: innovation state space model with time series decomposition based on Loess; 
STL + RWDRIFT: random walk with drift with time series decomposition based on Loess; TBATS: trig-
onometric seasonality, Box–Cox transformation, ARMA errors, trend and seasonal components

No lead time One week Two weeks Three weeks

DHR with predictor variables 25.8450 26.3258 26.7295 26.2177
DHR 27.2817 27.7663 27.9761 28.8035
STL + ARIMA 28.3968 28.4400 28.7987 29.0450
STL + ETS 28.4915 28.5459 28.9247 29.2177
STL + RWDRIFT 30.2348 31.1480 31.4703 31.5576
TBATS 28.5707 29.1941 29.4854 29.5885
GBR 28.9195 32.0761 29.9215 29.6442
RF 28.1436 28.8698 29.3342 29.4563
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mainly declines with higher lead times while the best performance for each 
model is yielded without lead time.

For the customer support e-mail arrivals, the performance gap between time 
series and ML models is not as evident as for the call arrivals. Under the condi-
tions of a more apparent trend in the examined data, time series models operate 
in a comparable performance range as ML models. The DHR model without pre-
dictor variables yields the second-best forecasts indicating that the Fourier terms 
itself have a high predictive potential. The additional predictor variables in our 
model further enhance this predictive power. Among the ML models, the RF 
algorithm outperforms the gradient boosting approach with L1 regularization.

Table 13   MAE results for customer support e-mail arrival forecasts based on original sub-daily data 
without temporal aggregation

DSHW: double seasonal Holt-Winters; GBR: gradient boosting with regularization; RF: Random for-
est; STL + ARIMA: autoregressive integrated moving average with time series decomposition based 
on Loess; STL + ETS: innovation state space model with time series decomposition based on Loess; 
STL + RWDRIFT: random walk with drift with time series decomposition based on Loess; TBATS: trig-
onometric seasonality, Box–Cox transformation, ARMA errors, trend and seasonal components

No lead time One week Two weeks Three weeks

DSHW 18.4400 19.9364 20.5614 20.3284
STL + ARIMA 15.8875 17.0814 17.8252 17.8173
STL + ETS 17.1596 18.6449 19.1254 19.5232
STL + RWDRIFT 17.7435 19.1402 19.6219 20.1637
TBATS 19.8545 20.8313 21.7826 21.9521
GBR 18.5135 19.0513 17.5940 17.4820
RF 15.5333 16.1990 16.8110 16.9005

Table 14   RMSE results for customer support e-mail arrival forecasts based on original sub-daily data 
without temporal aggregation

DSHW: double seasonal Holt-Winters; GBR: Gradient boosting with regularization; RF: Random for-
est; STL + ARIMA: autoregressive integrated moving average with time series decomposition based 
on Loess; STL + ETS: Innovation state space model with time series decomposition based on Loess; 
STL + RWDRIFT: random walk with drift with time series decomposition based on Loess; TBATS: trig-
onometric seasonality, Box–Cox transformation, ARMA errors, trend and seasonal components

No lead time One week Two weeks Three weeks

DSHW 32.9748 35.1945 35.9617 35.6316
STL + ARIMA 28.5696 30.0853 31.0859 30.7144
STL + ETS 29.4874 31.4311 32.1550 32.3495
STL + RWDRIFT 20.2880 31.9048 33.1407 33.4434
TBATS 32.0302 33.2508 34.2860 34.3550
GBR 32.4089 29.5703 30.2263 30.3050
RF 27.7846 28.7869 29.2917 29.3207
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5.3 � Robustness checks

We conducted additional analyses to test the results’ robustness. We generated 
predictions based on the original sub-daily data without the temporal aggregation 
approach (see Tables 13 and 14). Forecast accuracy does not improve for the time 
series models, but for RF. Similar to the customer support call arrivals, we addition-
ally generated forecasts based on the original sub-daily data with a double seasonal 
exponential smoothing model. Overall, our proposed DHR approach with predictor 
variables still outperforms the benchmark models in terms of both MAE as well as 
RMSE and for every lead time constellation.

6 � Discussion

The findings of the analysis using call as well as e-mail arrival data from the cus-
tomer support queue of the call center demonstrate clear benefits of the use of our 
proposed model. In line with the hypothesis that combining the strengths of different 
forecasting model types will lead to an increase in prediction performance and, at 
the same time, entail advantages for the use in practice, the DHR model with predic-
tor variables outperforms other approaches investigated. Thereby, we contribute not 
only to the existing body of literature in several ways but further provide practical 
implications for decision-makers regarding methodological aspects on the one hand 
and meaningful contextual predictor variables on the other hand.

First, the results on both data sets show that our proposed DHR model with pre-
dictor variables yields better forecast accuracy than traditional time series models 
and ML approaches. Precisely, it outperforms established time series models used 
in previous research (e.g., Andrews and Cunningham 1995; Bianchi et al. 1998; De 
Livera et al. 2011; Hyndman et al. 2002) such as ARIMA, ETS, TBATS, standard 
DHR, and RW as well as powerful ML approaches such as gradient boosting and 
RF for every considered lead time constellation. This is achieved by simultaneously 
capturing the dynamics of the time series and including additional predictor vari-
ables. Previous studies on call arrivals forecasting methods only focused on of these 
capabilities in the same model. Thus, the standard DHR model as applied by extant 
literature (Taylor 2008; Tych et al. 2002) only relies on Fourier terms assuming that 
any time series can be expressed as a combination of cosine (or sine) waves with 
differing periods and on an ARIMA error term capturing short-term dynamics. At 
the same time, prior research suggests certain predictor variables to enhance forecast 
accuracy (Aldor-Noiman et  al. 2009; Andrews and Cunningham 1995). We there-
fore specifically contribute to call center forecasting literature by bringing methodo-
logical strings of research together and, in doing so, substantially increase the accu-
racy of call arrival forecasts. Additional robustness and generalizability are added to 
the presented results by replicating them for two different series with distinctions in 
trend, number of observations, as well as level of average arrival count. Reflecting 
our findings in a more conceptual and abstract manner, we thus contribute to litera-
ture by finding evidence that such hybrid models (combining both time series mod-
els as well as models with contextual information) unveil a high predictive potential.
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Drawing on a broader perspective regarding data characteristics, our results addi-
tionally suggest that the magnitude of trend in the time series should be considered 
in model selection. For data exhibiting only a slight trend like the call arrival series, 
ML models are outperforming traditional time series models. However, the latter 
are more competitive and comparable to ML models if the data has a stronger trend 
like our e-mail arrival series. Further, from a more general perspective of model 
selection, we found ex-post forecasts of models with predictor variables, i.e., the ML 
models and our proposed DHR model with predictor variables, to be predominantly 
more accurate than ex-ante forecasts of models without predictor variables, i.e., time 
series models, aligning with prior findings (Rausch and Albrecht 2020). This sug-
gests that the general type of forecasting approach and its possibility of including 
contextual factors in the form of predictor variables particularly affects prediction 
accuracy in a practical call arrival forecast setting. Overall, preliminary call center 
forecasting literature recognized the predictive potential of ML approaches (Albre-
cht et al. 2021; Barrow 2016; Jalal et al. 2016; Rausch and Albrecht 2020) but is still 
in its infancy and thus, we substantiate the knowledge on the performance of ML 
models.

As call center managers strongly rely on the accuracy of call arrival predictions 
for staffing, the improvements achieved by our proposed model implicate high rel-
evance for practice. To keep operating costs at a minimum by avoiding overstaff-
ing and, at the same time, to maximize perceived service quality by shortening long 
waiting times caused by understaffing, the correct number of call center agents is 
crucial. Considering e.g. the customer support call arrivals’ predictions without lead 
time of our proposed DHR model compared to ARIMA (most inaccurate model), 
call center managers would need approximately 4.123 call center agents on average 
less per day in case the model overestimates the arrival volume. Accordingly, on 
average customers would need to wait approximately 0.934  min less if the model 
underestimates the arrival volume. In comparison with the standard DHR model, 
the difference amounts to 1.93 agents less per day or respectively, an extension of 
customer waiting time of 0.43 min.

Additionally, results for both data sets fit with the theory that call center man-
agers are recommended to minimize lead time in arrivals’ forecasts, aligning with 
prior research (Ibrahim et  al. 2016; Rausch and Albrecht 2020). For every model 
investigated, the best performance is yielded without lead time and generally fore-
cast accuracy decreases steadily with longer lead times. However, in practice longer 
lead times are frequently mandatory due to personnel planning restrictions. Thus, to 
overcome this obstacle, managers might consider a two-stage forecasting process: 
first, producing an early forecast for the agents’ scheduling with a pre-defined num-
ber of weeks in advance and then, adjusting this forecast right before the start of 
the predicted week. Our results indicate that the latter prediction with a shorter lead 

3  If the processing time is 10 min per call arrival and the working hours per call center agent are 8 h per 
day.
4  If the processing time is 10 min per call arrival and there are 70.95 call arrivals per interval on average.



701

1 3

Beyond the beaten paths of forecasting call center arrivals:…

time is more accurate so that managers get more reliable information to incorporate 
immediate changes into the schedule.

Second, we increase existing knowledge on useful predictor variables. We deter-
mined the predictor variables’ practical value by conducting a forward variable 
selection procedure and by calculating their variable importance. The results indi-
cate that modeling the day of the week and holidays as predictor variables yields the 
highest improvement of forecast accuracy and thus, confirms prior research suggest-
ing these influential factors (Aldor-Noiman et al. 2009; Andrews and Cunningham 
1995; Brown et al. 2005; Ibrahim et al. 2016; Ibrahim and L’Ecuyer 2013). More 
formally, both variables were found to be the most important predictors, i.e., they 
worsen forecast accuracy the most in case they would be removed from the selected 
model. Moreover, the results illustrate that capturing the impact of catalog mailings 
during the first weekend (i.e., CW0) (and the first week after release (i.e., CW1) 
respectively) enhances prediction accuracy across all considered lead times for the 
customer support e-mail (and call arrival series respectively). This particularly indi-
cates that variables including information on marketing actions such as mailings 
affect customer behavior in terms of e-mail and call volume directly after release. 
Further, it is shown that postal reminders on the day of their delivery (MPost1) are 
the most important marketing-related predictor variables. Thus, the results sug-
gest that postal reminders have a substantial effect on the call arrival volume. Vice 
versa, reminders via e-mail affect the e-mail arrival volume on the day of delivery 
(MMail1) as this variable were found to be the most important marketing-related 
predictor for the e-mail arrival series. These findings extend existing literature since 
the effect of periods with catalog mailings or billing cycles has not been investigated 
over time (Aldor-Noiman et  al. 2009; Andrews and Cunningham 1995). Thus, by 
partitioning billing and marketing mailing periods into sequential shorter periods, 
we are able to capture their temporal effect regarding the first weekend and the first, 
second, and third week after a catalog release as well as the day of a reminder’s 
delivery and the day after.

Consequently, the results first encourage practitioners to include the availability 
of explanatory data in their considerations when selecting forecasting models in 
a call center context. Then, when choosing to use ex-post forecasting models, not 
only date dependent predictor variables as commonly suggested by literature (such 
as weekday and holidays) but also factors related to enterprises’ customer contact 
activities need to be considered. Thus, on the one hand forecast accuracy for staff-
ing and ergo high service quality can be improved while on the other hand valuable 
insights on the effect of activities such as mailings on customer behavior can be 
gained.

The theoretical and practical implications notwithstanding, our research is sub-
ject to limitations that stimulate future research. Noticeably, the proposed method is 
only capable of modeling one seasonality which can limit its use for complex data 
with multiple seasonality like e.g. sub-daily (i.e., half-hourly or hourly) data. We 
overcome this constraint by applying a two-step temporal aggregation procedure 
to yield sub-daily forecasts. Although this aggregation-disaggregation approach is 
common practice in forecasting literature, it nevertheless poses an additional obsta-
cle compared to direct sub-daily predictions. Also, we did not test for the optimal 
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aggregation level for both series, i.e., whether to conduct temporal aggregation at 
a single level or at multiple levels. Besides, it is beyond the scope of this study to 
investigate different forecast horizons. To increase the reliability of results, in addi-
tion to considering different data sets and lead times, future research on this aspect 
of call center arrival forecasting is encouraged. Regarding model comparison, our 
study is limited to a selected range of commonly used models on the one hand and 
promising approaches from related fields on the other hand. In the authors’ opinion, 
comparing the proposed DHR approach to more models, e.g., additional ML meth-
ods or mixed-effects models, as well as expanding its application to different busi-
nesses’ call center data beyond online retail is a fruitful path for future research. In 
this connection, the high dependency of model performance on the availability and 
quality of explanatory data needs to be considered. Furthermore, future research can 
validate our findings on such hybrid models and confirm their superiority by com-
bining the strengths of different model types.

7 � Conclusion

Call centers constitute an important customer touchpoint for many businesses. To 
achieve a high level of customer service satisfaction through short waiting times 
and good customer support, providing the appropriate number of agents is a critical 
task for call center management. For this purpose, accurate and feasible forecasting 
methods to predict call center arrival volumes are needed.

Combining the strengths of different model types investigated by previous 
research, this study proposes a new method for call center arrivals’ forecasting 
that is able to capture the dynamics of time series and, at the same time, include 
contextual information in the form of predictor variables. We hypothesize that this 
approach leads to an increase in prediction performance while also yielding advan-
tages for practical use. The implemented forecasting method extends the established 
DHR model, which utilizes a sum of sinusoidal terms as predictors to handle peri-
odic seasonality and an ARIMA error to capture short-term dynamics, by including 
predictor variables in the considered information space to generate predictions. To 
test the predictive potential of our approach, we analyzed two datasets comprising 
174 weeks of data on the call and e-mail arrivals of the customer support queue of 
a leading German online retailer. We compare our method to traditional time series 
models (i.e., ARIMA, ETS, TBATS, and RW) as well as established ML approaches 
(i.e., RF and GBR). Further, we apply time series cross-validation and an expanding 
rolling window over 52 weeks to assess model performance.

Results show that our proposed DHR model with predictor variables outperforms 
traditional time series models and ML approaches with regard to forecast accuracy 
for both data sets and in all lead time constellations investigated. Reflecting this 
on a more abstract level, we find evidence that such hybrid models combining the 
benefits of both model types unleash a high predictive potential. Moreover, for the 
chosen ex-post forecasting method, the predictor variables’ practical value can be 
determined by conducting a forward variable selection procedure. Beyond confirm-
ing date-related variables (such as weekday and holidays) as important influential 
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factors for arrival volume, it is shown that catalog mailings and billing cycles exhibit 
a periodically enhancing effect on prediction accuracy when implemented as predic-
tor variables over time. With the present study we contribute to existing literature 
by developing a new powerful method to be used in call center arrival forecasting as 
well as adding knowledge on the temporal effect of predictor variables on customer 
call and e-mail behavior in this context. We showed that data on e-mail reminders 
are particularly helpful to predict e-mail arrivals and vice versa, postal reminders are 
helpful to predict call arrivals. The model’s ability to capture both time series infor-
mation and predictor variables is well suited for the dynamic environment of practi-
cal call center arrival forecasting as it not only provides robust forecasts but also 
offers valuable insights into the effect of a company’s customer contact activities. In 
this regard, future research on the use of other hybrid models in call center arrival 
forecasting is encouraged to broaden the spectrum of highly accurate methods with 
practical relevance.
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