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Abstract
Football is one of the most played sports in the world and kicking with adequate accuracy increases the likelihood of

winning a competition. Although studies with different target-directed movements underline the role of distinctive cortical

activity on superior accuracy, little is known about cortical dynamics associated with kicking. Mobile electroen-

cephalography is a popular tool to investigate cortical modulations during movement, however, inherent and artefact-

related pitfalls may obscure the reliability of functional sources and their activity. The purpose of this study was therefore

to describe consistent cortical dynamics underlying target-directed pass-kicks based on test–retest reliability estimates.

Eleven participants performed a target-directed kicking task at two different sessions within one week. Electroen-

cephalography was recorded using a 65-channel mobile system and behavioural data were collected including motion

range, acceleration and accuracy performance. Functional sources were identified using independent component analysis

and clustered in two steps with the components of first and subsequently both sessions. Reliability estimates of event-

related spectral perturbations were computed pixel-wise for participants contributing with components of both sessions.

The parieto-occipital and frontal clusters were reproducible for the same majority of the sample at both sessions. Their

activity showed consistent alpha desyhronization and theta sychnronisation patterns with substantial reliability estimates

revealing visual and attentional demands in different phases of kicking. The findings of our study reveal prominent cortical

demands during the execution of a target-directed kick which may be considered in practical implementations and provide

promising academic prospects in the comprehension and investigation of cortical activity associated with target-directed

movements.
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Introduction

Target-directed and accuracy-demanding movements exist

in the nature of many sport types. Athletes throw, hit or pass a

ball towards a certain target, such as a hoop in basketball, a

cup in golf or teammates as in rugby. Hitting this target

accurately and on time increases the likelihood of scoring,

and thus winning a competition (Lyons et al. 2006; van den

Tillaar and Fuglstad 2017). For football, one of the most

played sports in the world, kicks are a ‘‘sine qua non’’ action

used by players either to pass the ball from one position to

another, or to perform a goal (Andersen and Dorge 2011;

Kunz 2007). Kicking accuracy alone or accompanied by

kicking speed is an indicator of a good manoeuvre in terms of

passing the ball to the correct spot at the correct time (Bauer

1993; Hunter et al. 2018). A recent review has described

accuracy as one of the most significant variables for deter-

mining success in football (Lepschy et al. 2018). An accurate

kick requires coding, storing and translating spatial infor-

mation into an appropriate motor output, making it a com-

plex target-directed movement with high cortical demands

(Davids et al. 2000). However, cortical dynamics associated

with target-directed kicking has been barely investigated,

probably due to methodological challenges in capturing

cortical activity during movement. Only two recent mobile

brain imaging studies have focused on cortical modulations

which may correlate with measures of kicking performance,

such as accuracy and ball velocity. Palucci-Vieira et al.

(2022) have revealed the impact of frontal and occipital areas

on ball velocity and radial error, respectively, whereas the

findings of Slutter et al. (2021) showed that higher
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oxygenation of the prefrontal cortex may lead to poorer

accuracy while performing penalty kicks. Similarly, other

EEG studies highlighted distinctive modulations in the

frontal, central and posterior cortices during the superior

execution of different target-directed sport movements such

as golf putts, basketball free throws and archery shoots,

which may propose their contribution to enhanced accuracy

(Baumeister et al. 2008; Chuang et al. 2013; Rampp et al.

2022). Considering the potential role of cortical activity in

movement precision, the acquisition of substantial evidence

regarding cortical dynamics associated with target-directed

kicking may constitute an insight for interventions which

intend to improve accuracy in relevant applied scenarios,

like penalty and short passes in football. It may also provide a

baseline for prospective studies and help to investigate if

and/or how these dynamics are affected in various contexts

such as different levels of expertise, injury and interventions.

Mobile EEG is an important method to capture cortical

activity during motion and in real-world environments

(Palucci-Vieira et al. 2022; Park et al. 2018; Rampp et al.

2022). With its high temporal resolution, it allows to

investigate movement-related cortical dynamics in healthy

and clinical populations (Jungnickel et al. 2018). Time-

locked analytical approaches, such as event-related spectral

perturbations (ERSP), may reveal peri-movement cortical

strategies used to optimise motor performance (Schranz

et al. Schranz et al. 2022; Posti et al. 2021). One big

challenge in EEG research with gross and complex tasks is

the predisposition towards movement-related artefacts

(Gorjan 2022). Further, inherent EEG problems like vol-

ume conduction results in summed projection of cortical

activity onto scalp electrodes and therefore reduces spatial

accuracy (Bell and Sejnowski 1995). In this regard, inde-

pendent component analysis (ICA) is one of the milestone

algorithms commonly used in mobile EEG studies allow-

ing decomposition of the sum signal into mathematically

independent brain and non-brain sources (Jung et al. 2000).

Compared to channel-based designation of regions of

interest, source-based approaches may reveal cortical

sources in a more sterile manner overcoming the spatial

mixing fact and become the gold standard in mobile EEG

investigations (Gwin et al. 2010; Peterson and Ferris 2018;

Visser et al. 2022). However, the reliability of IC-derived

clusters in gross motor tasks remains inconclusive due to

artifact predisposition and aforementioned pitfalls. High

intra-individual variability across sessions may hinder the

identification of consistent task-related markers and the

reliable use of EEG especially in longitudinal studies

(Mayeux 2004). Aware of this problem, several EEG

studies have assessed the test–retest reliability of diverse

EEG measures in exercise and movement context with a

repeated-measures design (Büchel et al. 2021; Domingos

et al. 2023; Espenhahn et al. 2017). High test–retest

reliability profile for a given EEG measure stands for low

within-individual variance and may therefore indicate task-

related states with high internal consistency (Lopez et al.

2023). For source-based analysis, only one study (Grand-

champ et al. 2012) has focused on the reproducibility of

ICs up to now, however, in a static task and on a correla-

tional basis. Despite its potential advantages, the unknown

test–retest reliability of functional IC activity in a gross

motor task such as kicking leaves the use of source-based

analysis in describing reliable task-related patterns

questionable.

Based on this background, the aim of this study was i) to

describe cortical dynamics associated with target-directed

kicking based on source-based analysis and ii) to assess the

test–retest reliability of these dynamics across two sessions

within one week in young healthy novices. The primary

advantage of this design is that it can reproduce cortical

dynamics across different experimental sessions and reveal

consistent patterns associated with kicking which do not

fluctuate over time. Furthermore, functional IC dynamics

with high internal consistency may provide a reliable

measure for studies focusing on intra-individual changes in

different scenarios such as injury and fatigue, or longitu-

dinal changes such as response to specific interventions.

Methods

Participants

Eleven healthy participants (3 female/8 male, mean age:

27.42 ± 3.68), who were not engaged in sports on a reg-

ular basis, participated in this study. Only right-dominant

participants were recruited to avoid hemispheric bias

(Marcori et al. 2020). The laterality of the participants was

determined based on Lateral Preference Inventory (Coren

and Porac 1978). None of them had previous orthopaedic

injuries or neurological diseases. Their activity level was

assessed with the Marx Activity Scale (Marx et al. 2001)

and an additional questionnaire, which indicated activity

only at a recreational level. All subjects had normal or

corrected vision at the time of the experiment. They were

informed about the purpose and procedures of the study

and gave written consent prior to participation. The ethical

committee of the affiliated university approved the con-

duction of this study in accordance with the Declaration of

Helsinki.

Target-directed kicking task

The present study adopted a simplified kicking task in

order to ensure a stable, comparable movement pattern

among novices. The target was the rectangular frontal
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surface (10 9 15 cm) of a wooden box fixated on the floor.

In contrast to larger goals on the field, a much smaller and

precise target was chosen in order to eliminate the vertical

dimension of accuracy and have a concrete description of

precision (Hunter et al. 2018). A standard soccer ball

(FIFA size 5) was placed three metres apart from and

perpendicular to the target. Participants placed their left

foot next to and their right foot behind the ball with a light

external rotation and were instructed to perform a pass-kick

with the inside of their foot (Zago et al. 2014). They per-

formed 10 trial-kicks to familiarise with the task and during

these kicks, they were allowed to fine-tune the position of

their feet to assign the most comfortable location, which

was subsequently marked on the floor for the stance leg to

assure a standard position for all trials. Finally, in this

position, self-initiated pass-kicks were performed with the

dominant (right) leg towards the target as accurately as

possible. The trials in which the participants were able to

hit the rectangular surface with the ball were counted as

hits. In total, 90 trials were performed within six blocks of

15 trials. An overview of the experimental setting is pre-

sented in Fig. 1.

Behavioural data collection and analysis

The three dimensional biomechanics of the kicking and

stance leg were recorded using a wearable inertial mea-

surement unit (IMU) system (myoMOTION, Noraxon,

USA) at a sampling rate of 200 Hz. Seven IMU sensors

were placed on the pelvis (sacral surface), thighs (laterally

on the lower quadrant), shanks (anteromedially on tibial

surface) and feet (on metatarsal surface dorsally and

proximally to the ankle; Berner et al. 2020). The recorded

biomechanical data was digitised and exported using

myoRESEARCH Software (version 3.14, Noraxon, USA).

The maximum acceleration of the kicking foot in the x-axis

corresponding to ball contact (Lees et al. 2010) was

extracted for each kick using MATLAB (version R2020b,

The Math Works, USA). The minimum, maximum and

median values among all 90 kicks were calculated for each

participant. To ensure that participants performed pass-

kicks with comparable biomechanics described in other

studies, the movement range of hip flexion, knee flexion

and foot external rotation was computed (Kellis and Katis

2007; Zago et al. 2014). Additionally, the accuracy per-

formance was video-recorded using a webcam (Logitech

Brio, Switzerland) synchronised with the aforementioned

software. The number of hits was determined and the

accuracy rate was calculated in percentage as the propor-

tion of hits to the total number of kicks (Lepschy et al.

2018). In order to verify a comparable kicking pattern,

speed and accuracy performance between two sessions, the

test–retest reliability of the movement range for the

aforementioned joints, minimum, maximum and median

acceleration values of the kicking foot and accuracy rate

were computed based on intraclass correlation coefficients

(ICC; Henriksen et al. 2004).

EEG data collection and analysis

Cortical activity was continuously recorded throughout the

experiment using 65 active electrodes (actiCap, Brain

Products, Germany) and a mobile amplifier (LiveAmp64,

Brain Products, Germany). The electrodes were positioned

in accordance with the international 10–20 system, with

AFz being the ground and FCz being the reference elec-

trode (Pivik et al. 1993). A 3D acceleration sensor (Brain

Products, Germany) directly connected to the mobile

amplifier was placed on the posterior of the lateral malle-

olus to detect onset of the kicks. The impedance was

Fig. 1 The experimental

setting. Participants performed

pass-kicks towards a target

placed at three meters with an

EEG cap, an amplifier placed in

a backbag and IMU sensors

attached on the legs and lower

back
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reduced to 25 kX and the EEG signal was recorded using

BrainVision Recorder (Brain Products, Germany) at a

sampling rate of 500 Hz.

The recorded EEG data were processed using MATLAB

(version R2020b, The Math Works, USA) and the

EEGLAB toolbox (version 14.1.2b, Delorme and Makeig

2004). Sinusoidal line noise was removed using the

Cleanline plugin (Mullen 2012) and the signal was band-

pass filtered between 3 and 30 Hz. Automatic detection of

noisy channels was based on a deviation criterion, and the

channels, whose robust z-score of standard deviation was

more than 5, were removed. To avoid bias in the repeated

measures design due to the unequal number of channels per

session, mssing channels were interpolated before running

ICA (Bidgeley-Shamlo et al. 2015). The data were then re-

referenced to a common average and downsampled to

256 Hz.

The preprocessed data were epoched based on kick-

onset. The kick-onset was detected based on the 3D

acceleration data as the point where a statistically signifi-

cant increase was observed in the transverse plane, namely

the x-axis (Lees et al. 2010). The acceleration signal was

rectified and smoothed with a Gaussian-weighted moving

average filter at a window length of 1000 (Mendi et al.

2013). Subsequently, abrupt changes in the resulting signal

corresponding to kick-onset were determined on the basis

of signal mean using the ischange function in Matlab. In

order to focus on peri-event cortical modulations such as

movement planning, execution and monitoring, an epoch

time window of 3000 ms before and after kick-onset was

chosen with the following reasons: (i) Preparatory cortical

processes have been shown to emerge two seconds before

the movement onset (Shibasaki and Hallett 2006), (ii) The

approximate duration of the kicks in our data was two

seconds (0–1000 ms: backswing and swing,

1000–2000 ms: follow-through), (iii) Shortening of epochs

after wavelet transformation. Upon the visual inspection of

epochs, those containing non-stereotypical artefacts were

rejected. Baseline correction was performed from - 2500

to - 2000 ms (Groppe et al. 2009) and the data were

decomposed into maximally independent sources of corti-

cal activity using an adaptive mixture independent com-

ponent analysis (AMICA; Palmer et al. 2012). To avoid the

effect of rank deficiency due to spherical interpolation, the

dimension of the analysis of the principal components was

reduced relative to the number of channels interpo-

lated (Bidgeley-Shamlo et al. 2015). The spatial source of

decomposed independent components (IC) was estimated

using a standardised four-shell spherical head model

(BESA, Germany) implemented in the DIPFIT plugin

(Oostenveld and Oostendorp 2002). Correspondingly, brain

components were labelled based on their source, activity

and residual variance (B 15%, Onton and Makeig 2006).

The brain components detected in the first session and

subsequently in both sessions were clustered using the k-

means algorithm in two different steps. To avoid circular

inference in the subsequent statistical analysis, clustering

was only based on dipole locations (Kriegeskorte et al.

2009). ICs located more than three SDs apart from cluster

centroids were set as outliers. The number of clusters was

specified using the Silhouette, Davies-Bouldin and Calin-

ski-Harabasz optimisation algorithms based on the mean

distance of ICs to cluster centroids (Miyakoshi et al. 2020).

Reproducible clusters representing at least 50% of the

sample in both clustering steps and including ICs of both

sessions in at least 50% of the sample in the second clus-

tering step (Peterson and Ferris 2018; Solis-Escalante et al.

2019) were assumed to be prominent cortical areas

involved in kicking and considered in reliability analysis.

Computing ICC estimates based on ERSPs

For the reproduced clusters, participants contributing with

ICs of both sessions were retained. For each participant and

IC, the ERSP matrix was extracted for session I and II and

individually for the frequency ranges of interest, namely

theta (4–7 Hz), alpha-1 (8–10 Hz), alpha-2 (11–13 Hz) and

beta-1 (14–20 Hz) using the integrated study function in

EEGLAB. Due to possible contamination caused by mus-

cular activity at frequencies higher than 20 Hz, the beta-2

range was sidelined (Paluch et al. 2017). The correspond-

ing ERSP matrices were accessed in MATLAB and for

participants with multiple ICs in a session, the ERSP values

were averaged on a pixel basis in order to transform mul-

tiple ICs into one representative array for a single session

(Delorme and Makeig 2004). This procedure ended up in a

50 9 200 matrix with each cell representing a single pixel

in the ERSP map with x axis corresponding to epoch time

points and y axis to frequency. Subsequently, the ICC

estimates (r values) and the corresponding p-values were

computed for each pixel in order to investigate test–retest

reliability (Shrout and Fleiss 1979). With this approach, a

resultant reliability map was achieved at which the x- and

y-axes indicated time and frequency, respectively, and the

consistency in ERSP patterns between session I and I was

demonstrated (the visualisation of ICC estimation protocol

is presented in online source 1). Finally, for the interpre-

tation of cortical dynamics in a systematic manner, the

r values were averaged for four frequency bands of interest

(theta, alpha-1, alpha-2 and beta-1) and for each 250 ms in

a 4 9 20 matrix.

Statistical analysis

All statistical analyses were performed in MATLAB

(Version 2020b, The Math Works, USA). Initially, the
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normality of the acceleration data was assessed using

MATLAB’s swft function (Gardner-O’Kearny 2021) and

the median value was adopted to indicate the average peak

acceleration for each participant due to skewed distribu-

tion. The relative test–retest reliability of behavioural and

cortical data was investigated using ICC function (Salarian

2021). The ICC estimates and their 95% confidence

intervals (CI) were computed with the following formula of

a two-way mixed effects model, based on single ratings and

absolute agreement (McGraw and Wong 1996; MSBS =

mean square between subjects; MSE = mean square for

error; k = number of measurements; n = number of sub-

jects; MSBM = mean square between measurements).

ICC ¼ MSBS�MSE

MSBSþ k � 1ð ÞMSE þ k
n MSBM �MSEð Þ

An ICC value is conventionally a positive value between

0 and 1 (negative estimates in some cases), with values

between 0.5 and 0.75 indicating moderate reliability, 0.75

and 0.9 good reliability and[ 0.9 excellent reliability (Koo

and Li 2016). In the current study, these values were

adopted to rate reliability and the negative ICC scores, as

well as the pixels with a non-significant p-value, were

treated as zeros (Zhang et al. 2011; Zhang et al. 2017).

Systematic differences resulting from random variation

between two time points were inspected using paired t-test.

Results

Behavioural data

The analysis of the biomechanical data demonstrated that

participants performed pass-kicks with backswing and

swing phases at both sessions. The hip flexion, knee flexion

and foot external rotation components are shown in Fig. 2.

The movement range of hip flexion, knee flexion and foot

external rotation showed moderate reliability from session

I to II (ICC = 0.65, CI = 0.02–0.92; ICC = 0.62, CI =

0.06–0.89; ICC = 0.74, CI = 0.20–0.94 respectively).

There were no systematic differences in any of the men-

tioned movement ranges between both sessions.

The minimum and the median values of the peak

acceleration showed moderate reliability (ICC = 0.68,

CI = 0.16–0.91; ICC = 0.57, CI = - 0.02 to 0.87

respectively), whereas the maximum value showed poor

reliability (ICC = 0.25, CI = - 0.39 to 0.74). No sys-

tematic differences were found between sessions.

The accuracy rate showed moderate reliability (ICC =

0.56, CI = - 0.002 to 0.86) from session I (M = 63.94,

SD = 12.04) to II (M = 66.19, SD = 12.45, for indivudual

accuracy rates please see online source 2).

Cortical clusters

The optimum number of clusters suggested by the three

optimisation algorithms (Silhouette, Davies-Bouldin and

Calinski-Harabasz) was five for both clustering steps. The

cortical data recorded at the first session revealed a right

parieto-occipital cluster (11 participants, 18 ICs, Fig. 3A),

a right fronto-parietal cluster (5 participants, 10 ICs,

Fig. 3B), a left parieto-occipital cluster (6 participants, 14

ICs, Fig. 3C), a left frontal cluster (5 participants, 8 ICs,

Fig. 3D) and a mid-frontal cluster (8 participants, 15 ICs,

Fig. 3E). The second clustering step with ICs of both

sessions revealed a right parieto-occipital cluster (11 par-

ticipants, 43 ICs, Fig. 3F), a right fronto-parietal cluster

(10 participants ICs, 24 ICs, Fig. 3G), a left parieto-oc-

cipital cluster (6 participants, 20 ICs, Fig. 3H), a left

fronto-parietal cluster (10 participants, 27 ICs, Fig. 3I) and

a mid-frontal cluster (7 participants, 25 ICs, Fig. 3J). The

number of components per participant showed moderate to

excellent reliability from session one to two (ICC = 0.87,

CI = 0.61–0.96). The right parieto-occipital (Fig. 4) and

the mid-frontal cluster (Fig. 5) represented at least 50% of

the participants at both time points and included compo-

nents from both sessions for at least 50% of the participants

(100% and 64% respectively), and were considered for

reliability analysis.

ERSPs and their reliability map

ERSPs of the right parieto-occipital cluster (Fig. 6)

demonstrated a strong desynchronization in the alpha band

upon kick-onset at both sessions. The desynchronization

emerged in the alpha-2 band in the swing phase, radiated to

alpha-1 and slightly to beta-1 bands following ball contact,

becoming more evident prior to ball contact between 1000

and 2000 ms in the alpha-2 band. The ICC estimates

showed moderate to excellent reliability for these fre-

quency bands after kick-onset with higher scores after

1000 ms overlapping with the stronger desynchronisation

in the follow-through phase. The averaged ICC estimates

are presented in Fig. 7.

ERSPs of the mid-frontal cluster (Fig. 8) revealed

a theta synchronization starting prior to ball-contact and

continuing in the swing phase. At both sessions, the syn-

chronization was distinctive after kick-onset and in the

second half of the swing phase towards ball contact. Fur-

thermore, a desynchronization could also be seen in the

alpha band starting in the follow-through phase and

becoming stronger peri-kick-end. The ICC estimates

showed moderate to good reliability for the theta syn-

chronization observed at kick-onset and in the swing phase

before ball contact until 1000 ms. For the alpha
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desynchronization seen after ball contact, the ICC esti-

mates demonstrated moderate to excellent reliability. The

averaged ICC estimates are presented in Fig. 9.

Discussion

The purpose of the current study was to identify prominent

cortical dynamics which contribute to target-directed pass-

kicks in novices and show substantial reliability across two

different sessions. The main findings reveal the reliable

activity of right parieto-occipital and mid-frontal clusters

observed in the same majority of the sample at both ses-

sions. The kick-related activity of these clusters was

especially evident following kick-onset and showed sub-

stantial reliability from session to session as measured by

kick-related spectral perturbations. The alpha desynchro-

nisation in the parieto-occipital ERSPs after kick-onset

demonstrated moderate to excellent reliability. The relia-

bility of the frontal theta synchronisation in the swing

phase was good, whereas estimates for alpha

desynchronisation showed good to excellent reliability in

the follow-through and post-kick phases. Moreover, the

behavioural measures—specifically anatomical motion,

acceleration and accuracy rate—showed moderate relia-

bility, supporting the assumption that the kicking behaviour

associated with the observed cortical dynamics was com-

parable between the two sessions. These findings may

suggest that the consistent kick-related activity of right

parieto-occipital and frontal areas may represent reliable

cortical dynamics contributing to different phases of target-

directed kicking.

The novel approach in this study was to identify con-

sistent cortical patterns associated with target-directed

kicking based on the reliability estimates of kick-related

perturbations in reproducible clusters. Although all clusters

could be reproduced in the second session with similar

dipole locations (Fig. 3), only the right parieto-occipital

and mid-frontal clusters represented ICs of the same

majority at both sessions. Grandchamp et al. (2012) have

mentioned the reoccurance of specific ICs to be a potential

cortical marker for a given task. Given that the posterior

Fig. 2 Movement range of hip flexion, knee flexion and foot rotation during kicking in session I (A, B and C) and session II (D, E and F). The

comparable behavioural pattern in swing and follow-through phases yielded moderate reliability for each of the described anatomical motions
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and frontal regions are linked to enhanced visual process-

ing and top-down regulation respectively (Babiloni et al.

2006; Doppelmayr et al. 2008), the insistent occurance of

posterior and frontal ICs at two different sessions may

reflect the prominency of visual and attentive demands

while trying to kick a ball towards a target as accurate as

possible. Palucci-Vieira et al. (2022) have recently reported

similar results indicating a correlation between the activity

of frontal/posterior areas and radial error/variance of ball

velocity during kicking. Other EEG studies investigating

Fig. 3 Obtained clusters in the first (A–E) and second clustering step

(F–J) including ICs of only the first and subsequently both sessions. The

parieto-occipital and frontal clusters (A and F; E and J; marked in red)

were reproducible at the second session and considered for reliability

analysis. They included independent components of the first session for

100% and 73% of the sample in the first clustering step and components

of both sessions for the 100% and 64% of the sample in the second

clustering step, respectively. (Color figure online)

Fig. 4 Dipoles of the right parieto-occipital cluster (11 participants,

43 ICs) with a 3D (A), top (B), sagittal (C) and coronal (D) view

Fig. 5 Dipoles of the mid-frontal cluster (7 participants, 25 ICs) with

a 3D (A), top (B), sagittal (C) and coronal (D) view
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cortical mechanisms involved in golf and basketball tasks

have also underlined the potential role of these areas in

accuracy performance (Baumeister et al. 2008; Chuang

et al. 2013), which may support the notion that target-

directed tasks may characterize high visual and attentive

demands as reflected by the associated activity of posterior

and frontal cortices (Paneri and Gregoriou 2017).

At both sessions, the ERSP patterns in these two regions

were visible especially following kick-onset in theta, alpha

and beta bands (Figs. 6 and 8). A plausible reason for this

may be the segmented and durative nature of kicking.

Unlike instantaneous response-tasks with a very short

duration and a small amplitude, kicking a ball towards a

target requires the execution of sequential phases such as

backswing, swing and ball contact (Kellis and Katis 2007).

In the current analysis, the EEG data was epoched based on

the onset of the backswing phase with the a priori

assumption that preparatory dynamics may be observed in

a time range of up to two seconds before movement onset

(Shibasaki and Hallett 2006). However, it can be argued

that the most decisive component of a kick is the ball

contact, determining the direction and speed of the ball

upon release. This may increase cortical demands shortly

before ball contact and explain why the observed dynamics

were seen not prior to, but during the execution of swing

phase in contrast to our assumption (Toda et al. 2011;

Waldert et al 2008).

The right lateralisation of ICs in the parieto-occipital

cluster disclose the activity of right posterolateral regions

during the execution of the task (Fig. 4). Given that the

non-dominant hemisphere is postulated to dominate the

control of visuospatial processes (Corballis 2003; Spagna

et al. 2020), the visual demands of right-side kicks may be

reflected predominently by the activity of non-dominant

(right) posterolateral areas. The consistent alpha desy-

chronization induced by kick-onset in this cluster (Fig. 6)

may support this functional assumption, as it is referred to

augmented visual processing in numerous studies (Erick-

son et al. 2019; Rajagovindan and Ding 2011; Worden

et al. 2000). In various cognitive tasks, a high reliability for

alpha response over posterolateral regions was reported in

attribution to consistent visual fundamentals of the tasks

(Vazquez-Marrufo et al. 2020; Neuper et al. 2005). Even

though its reliability has not been assessed in movement

context until now, our parallel findings indicating sub-

stantial reliability for alpha desychronization in the swing

(0–1000 ms) and follow-through phase (1000–2000 ms)

may reveal visual demands with high within-individual

consistency, which may be linked with target detection and

tracking ball trajectory (Gallicchio and Ring 2020). Fur-

thermore, this desynchronisation was also noticeable in the

lower beta range at both sessions, being relatively weaker

at the second one. Gomez et al. (2006) have associated

alpha and lower beta rhytms in the frontal, as well as in the

posterior regions with enhanced preparatory processes in

visuomotor tasks. Based on this, it may be speculated that

the alpha and lower beta responses together may suggest a

preparatory arousal starting in the swing phase. Moreover,

posterior beta power is also shown to decrease syn-

chronously with Rolandic beta rhythms to modulate motor

excitability in visuomotor tasks, which may be another

explanation for this alpha–beta coupling (Mäki and Ilmo-

niemi 2010). However, as suggested by moderate reliabil-

ity estimates, the beta reponse may rather indicate

dynamics which fluctuate from session to session and

represent variable strategies as a result of habituation

(Lopez et al. 2023).

The ERSPs of the frontal cluster reveal a theta syn-

chronisation prior to and an alpha desynchronization

folowing ball contact with high reliability estimates

(Fig. 8). Frontal midline theta is attributed to executive

processing—especially augmented attention—in cognitive

(Doppelmayr et al. 2008; Laukka et al. 1995), as well as in

bFig. 6 The scalp map (A) and ERSPs of the parieto-occipital cluster

for the first (B) and second (C) session. An alpha desynchronisation

(blue pattern) can be observed emerging in the swing phase and

becoming stronger in the follow-through phase. The reliability map

(D) shows moderate to excellent ICCs for this desynchronisation with

higher scores towards kick-end. (Color figure online)

Fig. 7 Averaged ICC estimates of the parieto-occipital cluster for theta, alpha-1, alpha-2 and beta-1 frequency ranges indicating higher reliability

following kick onset (0–2500 ms). The estimates are higher especially for Alpha-1 range
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motor tasks (Baumeister et al. 2008; Chuang et al. 2013).

The consistent theta synchronisation observed prior to ball-

contact at both sessions may underline the insistent need

for increased focus before releasing the ball during a kick.

At this phase, participants attempt to initiate the movement

in line with the target and subsequently undergo fine motor

adjustments under enhanced focus, such as inhibition of

inappropriate leg position, in order to kick the ball with

optimal accuracy. A similar theta response was also

observed in other sport-specific tasks with a target-directed

nature and similar demands (Baumeister et al. 2008;

Chuang et al. 2013). Our results may contribute to the

prominency of attentional processes before impact (ball

contact in our study) in target-directed tasks as indexed by

task-related theta activity, whose reliability has also been

shown in other static tasks (McEvoy et al. 2000; Ding et al.

2022).

Besides theta reponse, a clear alpha desynchronisation

was also remarkable in the frontal ERSPs starting subse-

quent to ball contact and preceded by a moderate syn-

chronisation in the swing phase (Fig. 8). Task-related

response in the frontal alpha band is mentioned to highlight

top-down processes regulating the inhibition/activation of

areas associated with motor tasks (Klimesch et al. 2006).

From this perspective, the desynchronisation occurring

after 1000 ms in the follow-through phase may be inter-

preted as the re-activation of areas which were inhibited

prior to ball contact to avoid irrelevant information pro-

cessing and maximize attention in the swing phase. The

moderate, preceding sychronisation observed in the swing

phase may reinforce this remark, as it may propose the

inhibitory role of alpha activity prior to ball contact (Kli-

mesch et al. 1999). Another attribute of alpha

desynchronization is its contribution to memory processes

(Erickson et al. 2019; Klimesch 1995; Wianda and Ross

2019). Considering the occurance of this pattern following

ball-contact, it may also suggest the encoding and retrieval

of successfull kicks in the motor memory, which may be

processed by the supplementary motor area upon the visual

feedback achieved from ball trajectory (Gallicchio and

Ring 2020; Tanji 1994). However, although this pattern is

observable at both session with high reliability estimates,

the paucity of studies with comparable kicking tasks hin-

ders the task-specific interpretation of it. Palucci-Vieira

et al. (2022) have shown a similar alpha synchronisation

over the frontal electrodes following ball contact and

interpreted it within the neural eficiency framework. Still,

the very short duration of this alpha increase due to a

shorter epoch window in their results does not allow for a

plausible comparison with our findings. The accumulation

of more evidence regarding cortical responses before and

following ball release may enable the reliable task- and

phase-specific interpretation of cortical dynamics associ-

ated with target-directed tasks.

In order to control for the possible confounding effect of

different kicking behaviour across sessions, the current

study also assessed the reliability of kicking behaviour in

terms of anatomical motion range, peak acceleration and

accuracy performance. Except for the maximum value of

peak acceleration observed in trials, all behavioural end-

points showed acceptable reliability, which may support

the assumption that the observed cortical dynamics

occurred under comparable motor behaviour. The poor

reliability of the peak acceleration values may be explained

by the novice profile of the cohort and the instructed

emphasis on accuracy during the execution of the task. The

exceptional trial of different speeds as a strategy—espe-

cially at the first session until the achievement of optimal

kicking behaviour—might have caused a higher variance.

The development of strategies from session to session may

also explain the overall suboptimal reliability estimates and

wide CI ranges in the behavioral data, as changes in

kicking speed are linked with changes in motion range

bFig. 8 The scalp map (A) and ERSPs of the mid-frontal cluster for

the first (B) and second (C) session. A theta synchronisation (red

pattern) can be seen emerging prior to kick-onset and becoming

stronger at ball contact. A subsequent desynchronisation (blue

pattern) can be observed in the alpha band starting in the follow-

through phase and continuing after kick-end

Fig. 9 Averaged ICC estimates of the mid-frontal cluster for theta, alpha-1, alpha-2 and beta-1 frequency ranges indicating higher reliability

following kick onset (0–2500 ms). (Color figure online)
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(Lees and Nolan 2002). Moreover, prioritising accuracy is

known to minimise kicking speed in line with Fitts’ law

(Standage et al. 2014; van den Tillaar and Fuglstad 2017).

The higher reliability estimates of mean and median values

of peak acceleration may therefore acknowledge that the

participants favoured overall lower speeds to pursue max-

imal accuracy.

To the best of our knowledge, this is the first study to

describe consistent cortical dynamics underlying a target-

directed movement based on test–retest reliability esti-

mates in a mobile EEG context. By revealing reproducible

clusters for the same majority of participants at two dif-

ferent sessions, the current findings provide an insight into

the cortical regions which may prominently be involved in

the execution of a target-directed kick. The high test–retest

reliability of task-related parieto-occipital and frontal

activity advocate the prominence of visuospatial and

attentional processes in subsequent phases of a target-di-

rected kick which do not fluctuate significantly from ses-

sion to session. The described dynamics may provide a

basis for prospective studies with a longitudinal design, in

which the response of these dynamics to a specific inter-

vention can be investigated (Mayeux 2004). The low

within-individual variance may also enable to explore if

different applied scenarios, such as fatigue and injury, may

disturb these dynamics, which may contribute to precision

in an important football-specific task. Last but not the least,

our study proposes the use of repeated-measures design as

a merit in mobile EEG studies and provides an example in

terms of adopting source-based analysis in longitudinal

studies.

Limitations

The methodological limitations of the present study should

be recognised and considered while interpreting the current

findings and adopting this methodology in prospective

studies. Regarding the kicking task used, the execution of

complex movements may vary inter- and intra-individually,

and increase the variance of cortical dynamics. In the present

study, this effect was minimised and controlled by means of

standardised position, instructed execution and reliability

measures of behavioural data. Still, a possible variance

should be regarded. On the other hand, the methodology-

related standardisation and simplification of complex tasks

can reduce ecological validity and reflect real sports-situa-

tions only to a certain extent (Chang et al. 2022).

The present findings provide an insight about cortical

dynamics associated with target-directed kicking, however,

do not distinguish the specific patterns which contribute to

successful kicks. Investigating the distinctive patterns in

successful and unsuccessful kicks may deepen the

knowledge about how these cortical dynamics are used as

strategies in different populations (Palucci-Vieira et al.

2022).

With regard to the limitations of EEG, this study focused

only on clusters, which were reproducible for the same

majority of the sample at two different time points. Although

the excluded clusters may also deliver important knowledge

about task-related cortical dynamics, this is a common

approach used also in other studies (Solis-Escalante et al.

2019; Peterson and Ferris 2018). As another point, the

number of reliable brain components varied inter-individu-

ally, however, showed good reliability within individuals. It

may be inferred that the amount of dominating, task-related

cortical information as measured by EEG sources is intrinsic

to individuals and is reliable under equivalent circumstances

(Grandchamp et al. 2012). This notion also reinforces the

presumption that clusters with the majority of participants

contain the more prominent task-related cortical dynamics,

since when the number of ICs was less than the number of

clusters in some participants, the ICs were still assigned to

the considered clusters. Finally, AMICA outputs approxi-

mate cortical sources and the location of these sources may

deviate from the actual anatomical locations (Gramann et al.

2010). However, the repeated measures design in this study

may suggest an acceptable reliability of the discussed spatial

sources, as ICs of two different time points were assigned to

the same cluster for the majority of participants (Grand-

champ et al. 2012).

Conclusion

The current study described the reliable cortical dynamics

underlying target-directed kicking based on test–retest

reliability estimates. The parieto-occipital and frontal

clusters were reproducible for the same majority of the

sample at two different sessions. Their activity with high

test–retest reliability estimates revealed prominent, phase-

specific visual and attentional demands while kicking a ball

towards a target. Our findings provide an insight for

practical implementations of kicking precision and

important academic prospects in understanding cortical

activity associated with target-directed movements. Future

studies may consider the investigation of these dynamics in

different applied scenarios.
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