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Abstract
The hippocampal-entorhinal circuit is considered to play an important role in the spatial cognition of animals. However, the

mechanism of the information flow within the circuit and its contribution to the function of the grid-cell module are still

topics of discussion. Prevailing theories suggest that grid cells are primarily influenced by self-motion inputs from the

Medial Entorhinal Cortex, with place cells serving a secondary role by contributing to the visual calibration of grid cells.

However, recent evidence suggests that both self-motion inputs and visual cues may collaboratively contribute to the

formation of grid-like patterns. In this paper, we introduce a novel Continuous Attractor Network model based on a spatial

transformation mechanism. This mechanism enables the integration of self-motion inputs and visual cues within grid-cell

modules, synergistically driving the formation of grid-like patterns. From the perspective of individual neurons within the

network, our model successfully replicates grid firing patterns. From the view of neural population activity within the

network, the network can form and drive the activated bump, which describes the characteristic feature of grid-cell

modules, namely, path integration. Through further exploration and experimentation, our model can exhibit significant

performance in path integration. This study provides a new insight into understanding the mechanism of how the self-

motion and visual inputs contribute to the neural activity within grid-cell modules. Furthermore, it provides theoretical

support for achieving accurate path integration, which holds substantial implications for various applications requiring

spatial navigation and mapping.
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Introduction

Spatial cognition is crucial for rodents to find food and

return to their nests (Wagatsuma and Yamaguchi 2007).

The concept of a cognitive map was first proposed as an

abstract map to represent the environment within the brains

of animals (Tolman 1948). The entorhinal-hippocampal

circuit is widely thought to provide the material foundation

for the cognitive map (McNaughton et al. 2006). In par-

ticular, spatial-related cells, including head direction cells,

place cells, speed cells, and grid cells, have been gradually

discovered in the entorhinal-hippocampal circuit. One of

the most important discoveries is grid cells located in the

medial entorhinal cortex (MEC) (Moser et al. 2017) due to

their special firing patterns. Grid cells fire at multiple firing

fields that are arranged in hexagonal structures (Rowland

et al. 2016). They are widely found in many animals,

including rats, mice (Fyhn et al. 2008), bats (Yartsev et al.

2011), monkeys (Killian et al. 2012), and humans (Jacobs

et al. 2013; Kunz et al. 2015; Doeller et al. 2010). This

shows that grid cells widely exist in the MEC and play an

important role in the cognitive map (Dang et al. 2021).

Since the discovery of grid cells, their function in the

cognitive map has been drawing attention from researchers

all the time(Zeng and Si 2021; Yan et al. 2016). One
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critical question about grid cells is how the hexagonal fir-

ing patterns are formed. Many models have been proposed

to explain the mechanism. From the perspective of spatial

dimensions, these models can be categorized into 2D

models and 3D models (Wang et al. 2021b, a; Grieves

et al. 2021). Given that all animals must navigate in 3D

space, the exploration of 3D grid-cell models becomes

crucial. However, decoding how grid cells encode 3D

space remains a significant challenge, primarily due to the

limited availability of biological evidence. Currently, the

majority of progress in this field continues to concentrate

on 2D grid-cell models (O’Keefe and Burgess 2005; Bur-

gess et al. 2007; Hasselmo et al. 2007; Pastoll et al. 2013;

Burgess 2008; Baker and Olds 2007; Fuhs and Touretzky

2006; Burak and Fiete 2009; Guanella et al. 2007; Ship-

ston-Sharman et al. 2016; Couey et al. 2013; Kropff and

Treves 2008; Samu et al. 2009; Rennó-Costa and Tort

2017; Agmon and Burak 2020). They can be divided

according to information flow in the circuit between the

hippocampus and MEC. The information flow within the

circuit consists of three primary pathways: firstly, grid cells

in the MEC serve as the primary inputs for place cells in

the hippocampus; secondly, place cells act as the primary

inputs for grid cells; and thirdly, there is a dynamic inter-

play between grid cells and place cells, both of which play

equally essential roles in the circuit. In the following, we

delve into a comprehensive discussion of the information

flow within the circuit and explore related models in detail.

In the early stages, it is widely believed that grid cells

serve as the primary contributors of inputs for place cells.

Upon the initial discovery of grid cells, Hafting et al.

(2005) noted that grid cells exhibited sustained stability in

the absence of visual input, suggesting that the formation

of grid fields might result from the integration of idiothetic

self-motion cues. Specifically, the sequential flow of sen-

sory information from the entorhinal cortex to the hip-

pocampus has been observed in previous anatomical

investigations, including the seminal work by Felleman and

Van Essen in monkeys (Felleman and Van Essen 1991).

Consequently, the hierarchical organization of visual

regions positions the hippocampus at the apex while

receiving inputs from the entorhinal cortex (Zhong and

Wang 2021). Therefore, the prevailing hypothesis in the

field suggests that grid cells may serve as a neural repre-

sentation of the spatial environment, relying on path inte-

gration. Despite the spatial tuning exhibited by both grid

cells and place cells, there are notable distinctions in their

spatial firing characteristics. Grid cells demonstrate a dis-

tinctive spatial oscillatory pattern, whereas place cells

typically exhibit single-peaked firing fields. Various studies

have provided evidence that the integration of multiple grid

cell activities can give rise to place-cell firing fields

through the summation of their inputs (McNaughton et al.

2006). The summation process results in the disappearance

of grid fields at most positions while reinforcing specific

positions, ultimately contributing to the sparse nature of

place-cell firing activity. Based on the forward postulate

discussed above, some grid-cell models are proposed to

simulate the process in the circuit of the hippocampus and

the medial entorhinal cortex. The models can be simply

divided into two types, namely, Oscillatory-interference

(OI) models (O’Keefe and Burgess 2005; Burgess et al.

2007; Hasselmo et al. 2007; Pastoll et al. 2013; Burgess

2008; Baker and Olds 2007) and continuous attractor net-

work (CAN) models (Fuhs and Touretzky 2006; Burak and

Fiete 2009; Guanella et al. 2007; Shipston-Sharman et al.

2016; Couey et al. 2013). They utilize the speed and head

direction information from speed cells and head direction

cells in the MEC and generate the hexagonal firing patterns

to provide inputs for place cells.

However, recent evidence demonstrates the place cells

from the hippocampus may play an important role in the

formation of hexagonal patterns. Evidence from studies

indicates that during development, there is a precedence of

place cell-like activity before the emergence of grid cells

(Langston et al. 2010). Place-cell activity in rats can be

observed as early as 16 days of age, during the puppy stage.

In contrast, the activity of grid cells is typically first

recorded at around 20 days of age in rats. The observation

suggests that place cells may not necessarily require input

from grid cells for their formation or functionality. More

experimental evidence shows that the grid cells need inputs

from the hippocampus. As an illustration, studies have

shown that inhibiting the septum can disrupt the firing

patterns of grid cells while leaving the activity of place

cells unaffected (Koenig et al. 2011). Additionally, global

remapping of place cells in the hippocampus can occur

when the inputs from the medial entorhinal cortex (MEC)

are severed (Schlesiger et al. 2018). Compelling evidence

supporting the essential role of place-cell activity in grid-

cell pattern formation comes from studies where hip-

pocampal inactivation leads to the loss of the grid pattern

in the medial entorhinal cortex (MEC) neurons (Bonnevie

et al. 2013). This finding highlights the dependence of

grid-cell pattern formation on the presence and function-

ality of place-cell activity within the hippocampus.

According to the aforementioned discussion and supporting

evidence, the consensus indicates a predominant direc-

tionality of information flow from place cells to grid cells.

The single-cell plasticity models are designed to align with

empirical evidence. Compared with other grid-cell models,

the single-cell plasticity models place more emphasis on

external sensory cues from the hippocampus and learning

processes (D’Albis 2018; D’Albis and Kempter 2017).

Recent findings indicate that the relationship between

grid cells and place cells is potentially more intricate than
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previously conceived, thereby challenging the adequacy of

simplistic interpretations of their interconnection (Morris

and Derdikman 2023; Yan et al. 2016). For instance, the

inhibition of MEC inputs to the hippocampus does not

influence the firing fields of place cells. Conversely, the

depolarization of stellate grid cells can provoke a tendency

for place cells to remap (Kanter et al. 2022). Furthermore,

there is evidence suggesting that enlargement in the grid-

cell scale correlates with a corresponding expansion in the

scale of place fields (Mallory and Giocomo 2018). In an

attempt to elucidate the relationship between the hip-

pocampus and the MEC, several loop models have been

proposed (Samu et al. 2009; Rennó-Costa and Tort 2017;

Agmon and Burak 2020). These models propose that the

reciprocal exchange of information between grid cells and

place cells is of equal significance for their respective

functions. At the heart of these models lies the provision of

redundancy of grid cells and place cells for spatial repre-

sentation. To a certain extent, the loop models facilitate

understanding of the information flow in the circuitry

between the hippocampus and the MEC. However, the

interaction between place cells and grid cells remains an

open question.

As mentioned previously, the information flow between

the hippocampus and MEC has been the subject of exten-

sive research. Nevertheless, the transfer and processing of

information within this circuit remain enigmatic. The pre-

vailing theory suggests that grid cells receive self-motion

inputs from MEC, while place cells offer a visual cali-

bration for grid cells (Bush et al. 2015). However, recent

evidence manifests that place cells may not only serve

functions beyond simply providing visual calibration for

grid cells (Schlesiger et al. 2018; Kanter et al. 2022;

Mallory and Giocomo 2018), which may collaboratively

contribute to the formation of grid-like patterns. In this

paper, we propose a novel CAN model based on a spatial

transformation mechanism to give place cells more roles

for the formation of grid patterns. This mechanism trans-

forms external cues and self-motion inputs into grid-cell

cognitive space via place cells. By this, the self-motion

inputs and visual cues from place cells can be synergisti-

cally integrated to form grid-like patterns and drive the

network activity. Considering individual neurons within

the network, our model adeptly replicates grid firing pat-

terns. At the level of neural population activity, the net-

work is capable of forming and propelling the activated

bump, exhibiting the important feature of grid-cell mod-

ules, path integration. Further experiments demonstrate

that our model exhibits significant path-integration per-

formance. In addition, our model acquires a more natural

arrangement of neurons within the network compared to

the classical grid-cell CAN model (Guanella et al. 2007)

due to the spatial transformation mechanism. In

conclusion, this study provides a new insight into under-

standing the mechanisms of how self-motion and visual

inputs contribute to neural activity within grid-cell mod-

ules. Moreover, it provides theoretical support for achiev-

ing accurate path integration, which facilitates the

development of brain-inspired spatial navigation and

mapping.

For clarity, we have summarized the main contributions

of our research as follows:

• We construct a CAN model for grid modules based on

spatial transformation to synergistically process the

self-motion and visual inputs. Further results demon-

strate that the individual grid-cell neurons within the

network can successfully reproduce the firing patterns.

Notably, our model achieves a more natural arrange-

ment of neurons within the network, in contrast to the

manual organization, as seen in other current CAN

models.

• The path integration using our model is performed by

processing self-motion and visual cues. Our model

exhibits significant path-integration performance.

Moreover, although grid-cell spacing and network sizes

do have an impact on the accuracy of path integration,

our model effectively constrains error within a finite

range.

• This study provides a new insight into understanding

the mechanisms by which self-motion and visual inputs

contribute to neural activity within grid-cell modules.

Additionally, it offers theoretical support for achieving

precise path integration, which contributes to the

development of brain-inspired spatial navigation.

Results

The entorhinal-hippocampal circuit, a fundamental part of

the brain’s cognitive system, has been a subject of

immense interest in neuroscience. This circuitry, located

within the medial temporal lobe, plays a crucial role in

spatial navigation. It involves two main regions: the hip-

pocampus and the entorhinal cortex, which are intercon-

nected in a complex manner that facilitates a diverse array

of cognitive functions. Empirical evidence demonstrates

that there are reciprocal anatomical connections between

grid cells and place cells. However, the relationship

between grid cells and place cells is not fully understood,

but it is generally believed that they work together to

support navigation and spatial memory. Place cells within

the circuit are generally thought to provide visual calibra-

tion for grid cells. However, recent research suggests that

place cells may play a more critical or determining role in
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influencing the activity of grid cells (Bonnevie et al. 2013).

Here, we propose a framework to process information flow

from the hippocampus to grid-cell modules. The whole

framework is described in Fig. 1. As Fig. 1 depicted, the

self-motion inputs and external cues all are initially

transformed into the hippocampus. After the procession of

the hippocampus, the information is then processed by

grid-cell modules in MEC to generate the firing activity.

We first introduce the CAN model for grid-cell modules.

The information flow within grid-cell modules for self-

motion inputs and external cues is then described.

The structure of the proposed CAN model

In contrast to the arrangement shown in Fig. 2b, our model

does not require a 60-degree angle configuration as sug-

gested by Guanella et al. (2007). As illustrated in Fig. 2a,

in our model, the neurons within the same grid-cell module

naturally form a planar arrangement. Within this sheet, the

neural population is defined as follows:

M ¼ Nx � Ny ð1Þ

where M represents the total number of neurons, Nx is the

number of neurons in the horizontal direction, and Ny is the

number of neurons in the vertical direction. In our model,

the relationship of Nx and Ny are defined by:

Nx ¼ Ny ¼ N ð2Þ

As widely acknowledged, grid cells possess three distinc-

tive attributes: spacing, phase, and orientation. To facilitate

the description of grid cells in the proposed model, the i-th

grid cell in the network is denoted as follows:

�i ¼ ½si; oi;#i� ð3Þ

where si is spacing of the grid-cell �i, oi is the orientation

of the grid cell �i, #i is the phase of the grid cell �i, and

#i ¼ ½#1
i ; #

2
i � contains the phases of the two directions. For

the grid cells in the same module denoted as M, they share

common spacing and orientation. So the grid cells in a

module can be further represented as follows:

�i ¼ ½s; o;#i�; i 2 M ð4Þ

Self-motion Inputs

External Cues

Transformation

Hippocampus

Place Cell Grid-Cell Module

Fig. 1 The framework of information flows from the hippocampus to

grid-cell modules, which synergistically integrates external cues and

self-motion inputs. The self-motion inputs are transformed into place-

cell cognitive space and grid-cell cognitive space. The processed

information is then used to drive the place-cell model and grid-cell

modules. During the movement, the place cells code the external cues

from MEC. When the rat revisits the same place in the actual world,

the place cell coding the same position is activated. The excitatory

from place cells are transformed into grid-cell modules to eliminate

the accumulated error. In addition, the external cues also shape the

place-cell cognitive space gradually, indirectly influencing the grid-

cell patterns by affecting the transformation module
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A grid cell �i within a module can be mapped onto a 2D

sheet based on its phases. As a result, each grid cell �i is

associated with a coordinate pair (x, y) in the 2D sheet,

which we label as �xy. Their relationship can be described

as follows:

�i ¼ �xy if i ¼ N � xþ y ð5Þ

Different from the CAN model in (Guanella et al. 2007),

all neurons in our model are arranged as a matrix instead of

a repetitive rectangular structure. According to the grid-cell

phases, the index (x, y) of a neuron �xy in the matrix can be

described as follows:

x ¼ #1
i

D#1
ð6Þ

y ¼ #2
i

D#2
ð7Þ

8
>><

>>:

where D#1 and D#2 are the phase gaps of neighboring

neurons along two directions, #1
i and #2

i are the phases of

�i. As Fig. 2c depicted, the neurons in our model are

connected recurrently and have the periodic boundary

condition. Thus the maximum phases of the neurons is

equal to the spacing of the grid module. Then D# can be

further calculated as follows:

Fig. 2 The structure of the proposed model. a The arrangement of

grid-cell neurons of the proposed CAN model. The neurons in a

singular grid-cell module are arranged on a sheet according to their

phases. They are mutually connected by weight profile according to

the distance between them on the sheet. The distance between

neurons needs to consider the periodic boundary condition. b The

arrangement of grid-cell neurons in the CAN model in the Guanella

et al. (2007). c The networks with the periodic boundary condition

can form a toroidal manifold. In the toroidal manifold, the neurons are

mutually connected according to their weights. d The weight profile

of the proposed model. The weight profile of the proposed model

consists of two parts. One part is the excitatory weight to activate the

local neurons. The other part is the inhibition part, and it inhibits

distant neurons. The two parts are used to compute the weight profile

of the proposed model by Eq. (12)
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D# ¼ s

N
ð8Þ

where s is the grid-cell spacing, and N represents the size of

the CAN along either the x-axis or y-axis.

The connection of the proposed model

As mentioned above, the grid cells in a module are

arranged in a sheet. They are interconnected and have a

periodic boundary condition (see Fig. 2c). According to

(Burak and Fiete 2009), the firing dynamics of these grid

cells that have the same spacing and orientation can be

described by:

s
dri
dt

þ ri ¼ f
X

j

wijrj

" #

ð9Þ

where s is the time constant of neuron response, ri is spike

rate of the neuron, and f is a non-linear function given as

follows:

f ðxÞ ¼
¼ x; x[ 0 ð10Þ
¼ 0; otherwise ð11Þ

�

The wij in Eq. (9) is the connection weight from neurons �j
to neuron �i. It comprises two parts. The first part is used to

excite the neighboring neurons of the neuron �j. The sec-

ond part is utilized to inhibit the neighboring neurons of the

neuron �j. Here, two Gaussian functions are used to gen-

erate the weight profile and their domain satisfies the

periodic boundary condition (see Fig. 2d). Consequently,

wij can be described as follows:

wij ¼ ae�qd2ij � be�cðdij�DÞ2 ð12Þ

where a; b control the extent of the Gaussian function, q; c
adjust the scope of the Gaussian function, D is the max

distance between any two neurons in the network, dij is the

distance between �j and �i, and it can be computed as

follows:

dij ¼ jj�i � �jjj2 ð13Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ2 þ ðyi � yjÞ2
q

ð14Þ

The information flow of external cues

Place cells have been considered to provide inputs for grid

cells (Li et al. 2020). The grid-like patterns observed in the

medial entorhinal cortex (MEC) of rats were found to be

lost after the hippocampus was temporarily inactivated, as

recorded through neural firings. The receptive fields of grid

cells in this condition become tuned to the direction of the

rat’s head (Bonnevie et al. 2013).

According to our mechanism, the information from the

MEC is first transferred into the hippocampus. This infor-

mation is then transformed into cognitive space. For a

landmark in the physical world, we regarded it as a visual

cue to provide an input for place cells. According to our

theory (Zhang et al. 2023), the way that the place cells

receive external cues is to transform them into place-cell

cognitive space. The frames for the physical world and

place-cell cognitive space are different in our model. So the

landmark Pw
i in the physical world needs to be transformed,

which includes rotation and translation. A landmark Pw
i is

first transformed into place-cell cognitive space by:

Pp
i ¼ Rwp � Pw

i þ -i ð15Þ

where Rwp and - are the rotation matrix and translation

vector, respectively. They are determined by the difference

between the world frame and the place-cell frame. The

difference can be further represented by the rotation angle

/ as follows:

Rwp ¼
cos/ � sin/

sin/ cos/

� ��1

ð16Þ

In this way, the landmark can be utilized to inject energy

into the place-cell CAN model (McNaughton et al. 2006).

The injected energy can then change the activities of the

place cells. After the process of network dynamics, the

state of the place cell network is gradually stabilized

because of the reciprocal connections among place cells in

the sheet.

The neuron that has the maximum firing rate is identi-

fied, representing the position Pp
max. It will be transformed

and described in grid-cell firing space by:

Pg
i ¼ Rpg � Pp

max ð17Þ

where Pg
i is the corresponding neuron position in the CAN

and Rpg is the transformation matrix. It can be depicted as

follows:

Rpg ¼
s � cosðoiÞ s � cosðoi þ p=3Þ
s � sinðoiÞ s � sinðoi þ p=3Þ

� ��1

ð18Þ

where s and o are the spacing and orientation of the grid-

cell module, respectively. The injected energy at position

Pg
i generally can be calculated as follows (Fuhs and

Touretzky 2006):

~ri ¼
XM

k¼1

TikFðPp
kÞ ð19Þ

where M is the neural population of the place-cell network,

Fð�Þ is the function to acquire the firing rate of Pp
k in the

place-cell network, and Tik is the weight profile. This

weight profile is initially defined using a 2D Gaussian
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kernel function and can then be updated by Hebbian rule

(Chakraverty et al. 2019). But in this paper, to avoid per-

forming image matching and simplify our experiments, the

energy injected at position Pg
i is set equal to the firing rate

of Pp
max, i.e.,

~ri ¼ FðPp
maxÞ ð20Þ

where Fð�Þ is the function to acquire the firing rate of Pp
k in

the place-cell network.

Through the mechanism mentioned above, the proposed

model can acquire excitation from external cues. The firing

rate of single grid cell in the Eq. (9) then can be further

described as follows:

s
dri
dt

þ ri ¼ f
X

j

wijrj þ ~ri

" #

ð21Þ

where ~ri is the feed-forward input to neuron i from external

cues. After receiving the external excitation, the proposed

model needs to process the excitatory update. A two-di-

mensional discrete Gaussian distribution is used to gener-

ate the excitatory weight matrix, wij, which is depicted in

Eq. (12). Each neuron then uses it to project activity to all

other neurons in the proposed model. Finally, the proposed

model is normalized to constrain the sum of activation in

the whole network. Before normalization, the firing rate of

each neuron must be constrained within a range by the

Heaviside function. The normalization process can be

described as follows:

ri :¼
ri

PM
j¼1 rj

ð22Þ

where M is the neural population of the proposed model, as

described in Eq. (1). Furthermore,

ri ¼ rxy if i ¼ N � xþ y ð23Þ

where N represents the size of the CAN model along the

x-axis, x and y are the indices in the network sheet. By this,

we can determine the position of neuron i within the net-

work sheet.

To assess the network’s capacity to receive excitation

from external cues, we conducted experiments with

N ¼ 100, spacing s ¼ 80 cm, the orientation o ¼ 0 and

other parameters outlined in Table 1. The experimental

outcomes are illustrated in Fig. 3.

As Fig. 3 depicted, the proposed model can receive the

stimulation and remain stable by dynamic adjustment. We

continuously injected energy in different positions (From

Fig. 3a–c). This injection of energy gives rise to the for-

mation of activity bumps, facilitated by excitation con-

nections among proximal neurons and inhibition

connections among distant neurons. Importantly, the

energy injected in a subsequent position inhibits the energy

injected in the preceding position. Consequently, the

activity bump shifts in response to changes in the position

of injected energy. Notably, remnants of prior activity

bumps can still be observed, as demonstrated in Fig. 3b, c.

From Fig. 3c, we can see that effects from the activity

bump in Fig. 3a almost disappear. The earlier activity

bump disappears faster than the later-formed activity

bump. This observation indicates that our model possesses

appropriately weighted connections between neurons to

facilitate excitation and inhibition. Notably, When the

bump position is on the edge of the network sheet, the

bump will split into two parts, appearing on the corner of

the network sheet, as shown in Fig. 3d. This behavior is

attributed to the periodic boundary condition.

The information flow of self-motion inputs

CAN-based grid cell models offer distinct advantages in

path integration compared to other grid cell models. Path

integration is achieved through the dynamic adjustment of

the network’s activity bump, driven by self-motion inputs

from speed cells (Kropff et al. 2015) and head direction

cells (Zhang 1996; Taube et al. 1990).

However, the precise manner in which self-motion

inputs contribute to grid cells remains an ongoing inquiry.

In the context of CAN-based grid-cell models, there are

typically two primary methods for shifting the activity

bump within the network (Milford and Wyeth 2008). One

way is to project the existing neural activity bump to the

expected future location and leave the competitive

dynamics of the CAN model to form the activity bump in

the future location. It takes time and effort to stabilize the

internal network dynamics. Thus, the performance of path

integration in this way is highly affected by the sensory

update rates and robot velocity. The other way is to directly

move the existing neural activity bump by rotation or

translation, without re-stabilizing internal network

dynamics. Thus sensory update rates and robot velocity

have little impact on its performance, which makes it

obtain more precise trajectories and eliminate the need for

parameter adjustment (Milford and Wyeth 2008). In this

paper, our primary emphasis is on the network activity that

is raised by external inputs. Therefore, we have opted for

the latter method, which accurately simulates the actual

biological process. This choice helps us avoid introducing

Table 1 The parameters of the proposed model

Parameters a b q c

Value 1.0 1.0 0.01 0.003
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new sources of noise that could potentially impact the

results of our models.

However, different to Milford and Wyeth (2008), which

can directly use the translation in the world frame, our

method needs to encode the translation in the grid-cell

space by the proposed model. The firing rate of the

expected future location is computed through convolu-

tional kernel operations.

After the rat moves a distance per unit of time, the

offsets can be calculated as follows:

Dxwi ¼
Z tiþ1

ti

jvðtÞj � cosaðtÞ dt

Dywi ¼
Z tiþ1

ti

jvðtÞj � sinaðtÞ dt
ð24Þ

where Dxwi and Dywi are the translation of two directions in

the world frame, vðtÞ and aðtÞ are the translation velocity

and head direction, respectively. Then the translation in the

world frame can be encoded by the proposed model via:

Dxgi ;Dy
g
i½ �T ¼ Rpg � Rwp Dxwi ;Dy

w
i

� �T ð25Þ

where Dxgi and Dygi are the offsets in the proposed model,

Rwp and Rpg respectively derive from Eqs. (16) and (18).

For a neuron �xy, its firing rate rxy can be updated by the

path integration as follows:

rxy ¼
Xdxoþ1

a¼dxo

Xdyoþ1

b¼dyo

gabrðxþaÞðyþbÞ ð26Þ

where gab is a 2� 2 convolution kernel used to compute

the firing rate of rxy, a, b are the integral indices. Every

item of gab can be acquired as follows:

gab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� Dxgið Þ2þ b� Dygið Þ2
q

Pdxoþ1
a¼dxo

Pdyoþ1
b¼dyo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� Dxgið Þ2þ b� Dygið Þ2
q ð27Þ

where dxo; dyo are the rounded-down integer offsets in the

x and y directions. They can be calculated as follows:

dxo
dyo

� �

¼
Dxgib c
Dygib c

� �

ð28Þ

where b�c represents the floor operation.

The data obtained by the neurobiological experi-

ment (Hafting et al. 2005) was used here. During the

movement of the rat, its velocity and angle were recorded.

These data were used to drive the proposed network. The

grid-cell module is configured in the same way as our

previous experiments. In addition, the world frame and the

frame of place cell firing space are set up identically. In

other words, the rotation matrix Rwp is the identity matrix

and the translation vector - is the zero vector.

At each time step, the offsets are computed using

Eq. (24), and the firing rate of each neuron in the proposed

model is updated using Eqs. (25)–(28). Snapshots of the

network’s status during this process are presented in Fig. 4.

The activity bump can be seen moving continuously across

the network sheet with the movement of the rat in the

actual environment. As we can see in the figure, when the

bump arrived at one edge of the network sheet, it reap-

peared on the opposite edge. This phenomenon comes from

the periodic boundary condition, which derives from the

manifold structure of cognitive space. These results

demonstrate that the proposed model can maintain stability

and perform path integration, even at arbitrary locations

within the network.

Fig. 3 Activity and stabilization. The yellow color and blue color

represent the high and low excited regions separately. a Firstly, the

energy is injected into the network at the position (50, 50). The

energy is spread by synaptic weight profile and the activity bump is

formed in the sheet with position (50, 50) as its center. b Then, the

energy is injected into the network at a new position (50, 30). The

internal dynamics drive the network to stabilize. The new position

(50, 30) is mostly activated forming a dominated activity bump and

the previous position becomes much less activated, becoming a dim

bump. c Similar to b, the energy is injected into the network at

another new position (80, 30). Similar phenomena are observed.

d Slightly different from (b), the energy is injected into the network at
the edge (100, 0). The activity bump appears in the four corners of the

network, due to the periodic boundary condition
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To investigate the activity of a single grid cell in the

module, we execute the aforementioned process in our

model, employing parameters as detailed in Table 1, with

N ¼ 400, s ¼ 80 cm, and o ¼ 0. Three neurons in our

model, i.e. (15,15), (150,100), and (250, 350) were

extracted for detailed inspection. Their firing activities

during path integration are given in Fig. 5. As we can see

all three neurons exhibit hexagonal symmetry firing pat-

terns consistent with the known properties of grid cells and

previous experimental results (Hafting et al. 2005).

To further elucidate the activities of individual neurons

across various grid cell modules, we constructed nine grid

cell modules using the proposed model, systematically

varying the spacings and orientations. The network size

Fig. 4 The snapshots of network status during the path integration. In

the figures, different colors represent various firing rates of the

neurons. The firing rates gradually decline from yellow to blue. In the

beginning, as (a) shows, the origin point is the (0, 0) and so the

corresponding neuron in the (0, 0) is activated. Along with the

movement of the rat in the actual environment, the excitatory bump

begins to move. In addition, the snapshots are chosen per several steps

herein to better show the process

Fig. 5 The firing patterns of the single grid cell in the different

positions of the proposed model. The black lines in the three

figures are the paths that are generated in the virtual environment. The

red points represent the firing position of the single neuron. a The

firing pattern of the neuron in the position (15, 15) of the network.

b The firing pattern of the neuron in the position (150, 100) of the

network. c The firing pattern of the neuron in the position (250, 350)

of the network
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was kept as 400 in these experiments while other param-

eters were set as the same listed in Table 1. Subsequently,

we visualized the firing activities of neurons located at

identical positions within the nine CANs that were driven

by the previously mentioned path, as depicted in Fig. 6.

Comparing the figures from left to right, the firing pat-

terns are rotated with increasing orientation of the grid cell

Fig. 6 The firing patterns of the single grid cell in the different

modules but in the same position of the network. The firing patterns in

different orientations for the grid cell in the same position of the

network are illustrated from left to right. With the increasing

orientations of the grid-cell module, the grid patterns incrementally

rotate. The firing patterns with different spacing of the grid-cell

modules are compared from top to bottom. The scales of single grid-

cell firing patterns incrementally raised with the increasing spacing of

grid-cell modules
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module. In addition, the change of interval is consistent

with the increasing spacing of the grid cell module. This

demonstrates our proposed model can stimulate different

properties of grid cells. In previous research (Bush et al.

2015; Edvardsen et al. 2020), perfect gird patterns are used

to perform accurate path integration. However, the actual

grid-like patterns recorded by biological experiments

(Hafting et al. 2005) usually are irregular and twisted,

which is consistent with our results (see Figs. 5 and 6).

Biological experiments also show that the grid-like patterns

can be distorted by border cells (Krupic et al. 2015).

Therefore the model for single grid cell may not be suit-

able for accurate path integration. Based on our concept,

path integration should be performed using a grid-cell

module rather than a single grid cell.

To verify the path integration ability of our model, we

designed several experiments. We compared the perfor-

mance of different CANs with varying spacing and net-

work size. The errors of path integration were recorded per

100 steps and calculated by:

e ¼ D# � gðP;P0Þ ð29Þ

where D# is the distance of adjacent neurons in the net-

work mentioned in Eq. (8), gð�Þ is a function to compute

the Euclidean distance, P and P0 separately are the

expected position and reached position after the path

integration. The P can be calculated by projecting true

location into grid-cell cognitive space using Eqs. (15), (16)

and (17). The results of the experiment are shown in Fig. 7.

Figures 7a, b depict the errors and variance in path

integration observed during experiments that assessed the

performance of varying spacings. These experiments were

conducted with the proposed model’s network size con-

sistently set to 100. As evidenced by Fig. 7a, b, the spacing

of grid cells significantly influences the error and variance

in path integration. Notably, larger spacings tend to exac-

erbate both error and uncertainty in path integration.

To examine the effects of different network sizes on

path integration, we kept the grid-cell spacing constant at

80 and analyzed the resultant performance. Figures 7c, d

demonstrate that smaller network sizes can notably influ-

ence the error and variance of path integration. However,

for network sizes exceeding 300, the impact on error and

variance becomes negligible, as illustrated in Fig. 7d.

In conclusion, regardless of variations in grid cell

spacing or network size, our model consistently keeps the

error smaller than 50 cm, as evidenced by Fig. 7a, c. This

suggests that the error in path integration doesn’t escalate

indefinitely. More specifically, according to Fig. 7, the

error in path integration is directly proportional to the grid

cell spacing and inversely proportional to the network size.

So we can describe the relationship between the vari-

ance and the parameters of the model as follows:

e_
N

s
¼ 1

D#
ð30Þ

where s represents the spacing of grid cells, N is the size of

the network along the x-axis or y-axis, D# is the ratio of s

and N marked as network resolution ratio of CAN, as

depicted in Eq. (8). The above relationship is inferred

according to the results depicted in Fig. 7, which suggests

the error of path integration is affected by the network

resolution ratio .. Our findings suggest that the spacing and

network sizes used in our model have an impact on error.

Nevertheless, their impact is limited, and our model is still

able to constrain the error within a certain range. In other

words, our model can maintain a certain level of accuracy

performance regardless of its parameters, indicating its

robustness and accuracy in navigating tasks.

Feedback by place cells

Typically, the error in path integration accumulates over

time. In robotic navigation tasks, visual cues are leveraged

to correct this error. Similarly, for rodents, several studies

suggest that place cells serve this corrective function

(Focus on spatial cognition 2017; Moser et al. 2017;

Crivelli-Decker 2023; Wang and Wang 2021). In our

model, the role of place cells is simulated by projecting

actual-world landmarks into the place-cell network, as

illustrated in Fig. 1. When the animal returns to a previ-

ously visited location, the place cell corresponding to its

landmarks becomes activated. This excitation within the

place-cell network is then translated and mapped to the

firing space of grid cells. The inputs from the place-cell

network prompt adjustments within the grid-cell module.

After stabilizing the grid-cell module, corrections to the

accumulating path integration error are applied. In this

manner, our proposed grid-cell module effectively

addresses and eliminates accumulated path-integration

error.

For the sake of experimental simplicity and to eliminate

the effects of scene recognition, external cues were selec-

ted every 200 steps and directly incorporated into the grid-

cell modules. To emphasize the role of feedback in our

model, we monitored the path integration error every 100

steps and juxtaposed the performance of models with and

without feedback, as illustrated in Fig. 8. We also adjusted

the spacing of grid-cell modules to investigate feedback’s

influence under varied conditions. Results revealed that

models with feedback consistently outperformed those

without, exhibiting reduced errors and enhanced stability

across all module spacings (refer to Fig. 8). Notably,

tighter spacing between grid-cell modules yields a steadier
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Fig. 7 The performance of path integration using the proposed model

with iterations. The x-axis is the moving steps. a The errors of path

integration using different spacing but the same size of the network,

i.e., 100. b The variance for different spacing but the same network

size. c The error of path integration using different network sizes but

the same spacing of grid cell, i.e., 80 cm. d The variance for various

network sizes but the same spacing

Fig. 8 The performance of path integration with and without

feedback. a The error comparison of path integration with and

without feedback. The solid lines represent the error curves without

feedback, while the dashed lines represent the error curves with

feedback. b The variance of path integration with and without

feedback. The 40_f, 60_f and 80_f in the x-axis denote the models

have the feedback and their spacing are 40 cm, 60 cm and 80 cm
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error trajectory, denoting enhanced stability in performance

(as seen in Fig. 8b). This underscores our model’s capa-

bility to counteract accumulating error through feedback

mechanisms.

Discussion

The rodent animals have outstanding navigation abil-

ity(Ball et al. 2013). They can travel a long way to forage

and return to their dens precisely. This demonstrates they

have the remarkable ability of path integration. However,

the latent mechanism of animals’ navigation is still an open

question. The cognitive map is believed to exist in the brain

of animals (Tolman 1948). It can provide a spatial repre-

sentation of the physical world to guide the animals. The

identification of place cells provides evidence that the

entorhinal-hippocampal circuitry is involved in the for-

mation of a cognitive map (O’Keefe and Conway 1978).

After that, many spatial cells are found in these areas

including head direction cells, speed cells, grid cells and so

on. Specially, The hexagonal firing patterns exhibited by

grid cells have gathered significant attention. It is hypoth-

esized that the regular firing patterns observed in the

medial entorhinal cortex (MEC) serve as an efficient way

to represent an individual’s location in large-scale space

(Bush et al. 2015).

Currently, the interaction between the hippocampus and

MEC is still in disputation. Prevailing views think that the

place cells in the hippocampus provide a visual calibration

for grid cells and grid cells mainly receive the self-motion

inputs from the MEC. However, the biological evidence

demonstrates that the inactivation of the hippocampus

leads to the disappearance of grid cells. Therefore, some

researchers think the main inputs for grid cells may come

from the external cues via place cells (Kropff and Treves

2008; Si and Treves 2013; D’Albis and Kempter 2017).

The grid-cell models based on this theory place a stronger

emphasis on the learning process and exhibit more bio-

logical plausibility. However, recent evidence suggests that

both self-motion inputs and visual cues may collabora-

tively contribute to the formation of grid-like patterns. In

our previous work (Zhang et al. 2023), a mechanism for

interaction between place cells and single grid cell has

been proposed. It can replicate grid patterns and is con-

sistent with current research (Carpenter et al. 2015).

However, it has not taken grid cells within a module into

consideration. In this paper, a novel grid-cell CAN model

is proposed for grid-cell modules to process the informa-

tion flow based on the proposed mechanism. The neurons

in the proposed model are naturally arranged. We show the

status of the proposed model from two levels. One is to

illustrate the activities of the grid-cell modules. It shows

our model can be driven and remain stable after receiving

self-motion inputs and external cues. The other is to show

the activities of single grid cell in the grid-cell module. It

can exhibit grid firing fields when driving the grid-cell

modules. We then use our model to perform the path

integration and compare the results in different grid-cell

properties and sizes of the proposed model. The results

point out that our model can acquire good accuracy

regardless of the network parameters. Furthermore, the

results also manifest that our model can acquire outstand-

ing performance even in the absence of external cues and

on a large scale.

The consensus is that grid cells provide a path integra-

tion input for place cells (McNaughton et al. 2006). So the

grid cells are regarded as a key component for spatial

representation in the entorhinal-hippocampal circuitry. The

key hypothesis for the CAN model is that path integration

can be performed by moving the bump in the network on

the sheet(Fuhs and Touretzky 2006). Many mechanisms

are designed to shift the bump around a ring (Zhang 1996)

or over a sheet (Burak and Fiete 2009). Compared with

other models, our model drives the attractor bump by

transforming the self-motion information into the cognitive

space of grid cells. To simplify the process, the speed and

head direction are calculated to acquire the translation at a

small time scale. Then the translation is transformed into

the cognitive space of grid cells. Through this method, path

integration is obtained in our model.

However, the error in the path integration will accu-

mulate over time. Then, the correction of accumulated

error by sensory cues is a crucial challenge in path inte-

gration. Recent evidence has illustrated that the grid cells

need to receive the inputs from place cells (Chen et al.

2016). So it is generally believed that the place cells play a

crucial role in correcting the accumulated errors for the

grid cells. In our model, the external cues are encoded by

place cells. Then the representation for external cues in

place cells is transformed into grid-cell modules. When the

animal revisits the same location in the physical world, the

place cells are activated due to the same visual cues. This

stimulation in place cells are injected into grid-cell mod-

ules by Eqs. (17)–(19), as shown in Fig. 1. The accumu-

lated errors of path integration in grid-cell modules can be

corrected after the dynamic adjustment of the networks, as

shown in Fig. 8. Our experimental results indicate that the

accuracy and stability of path integration in our model are

highly affected by the spacing and network size. However,

the error of path integration in our grid cell model was

confined to a certain range (see Fig. 8). Our model even

can maintain low errors in a long voyage without feedback

from external cues (see Fig. 7). Therefore our model partly

explains why rodent animals have so a prominent ability

for navigation.
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Conclusion

In this paper, we introduce a novel Continuous Attractor

Network (CAN) model based on a spatial transformation

mechanism. This mechanism facilitates the integration of

self-motion inputs and visual cues within grid-cell mod-

ules, collectively driving the emergence of grid-like pat-

terns. From the perspective of individual neurons within

the network, our model successfully replicates grid firing

patterns. When examining neural population activity within

the network, it becomes evident that the network can create

and sustain the activated bump-a defining characteristic of

grid-cell modules, specifically, path integration. Through

further exploration and experimentation, our model

demonstrates significant proficiency in path integration.

This study offers a new perspective on understanding the

mechanisms through which self-motion and visual inputs

contribute to neural activity within grid-cell modules.

Moreover, it provides theoretical support to achieve robust

navigation and establish a framework for bio-inspired

robotic navigation systems to manage the transmission and

processing of information.

In this paper, to eliminate the influence of scene

recognition for evaluating the performance of the proposed

model, the external cues are projected into grid-cell mod-

ules through place cells according to a certain frequency. In

our future work, scene recognition (Xu et al. 2022) will be

considered and added to our model. Then, the external cues

can inject energy into the grid-cell module when previous

encountered scene is recognized. By this, we hope the

proposed model can outperform the existing bio-inspired

navigation system (Ball et al. 2013).
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