
RESEARCH ARTICLE

Computational modeling of attractor-based neural processes involved
in the preparation of voluntary actions

Azadeh Hassannejad Nazir1,4 • Jeanette Hellgren Kotaleski1,2 • Hans Liljenström3,4

Received: 4 February 2023 / Revised: 31 August 2023 / Accepted: 28 September 2023
� The Author(s) 2023

Abstract
Volition is conceived as a set of orchestrated executive functions, which can be characterized by features, such as reason-

based and goal-directedness, driven by endogenous signals. The lateral prefrontal cortex (LPFC) has long been considered

to be responsible for cognitive control and executive function, and its neurodynamics appears to be central to goal-directed

cognition. In order to address both associative processes (i.e. reason-action and action-outcome) based on internal stimuli,

it seems essential to consider the interconnectivity of LPFC and the anterior cingulate cortex (ACC). The critical placement

of ACC as a hub mediates projection of afferent expectancy signals directly from brain structures associated with emotion,

as well as internal signals from subcortical areas to the LPFC. Apparently, the two cortical areas LPFC and ACC play a

pivotal role in the formation of voluntary behaviors. In this paper, we model the neurodynamics of these two neural

structures and their interactions related to intentional control. We predict that the emergence of intention is the result of

both feedback-based and competitive mechanisms among neural attractors. These mechanisms alter the dimensionalities of

coexisting chaotic attractors to more stable, low dimensional manifolds as limit cycle attractors, which may result in the

onset of a readiness potential (RP) in SMA, associated with a decision to act.

Keywords Intention � Volition � Attractor networks � Neurodynamic transitions � Hierarchical control � Neurocomputational

modeling

Introduction

Background

Human life is full of decisions and actions that are taken to

be totally voluntary. In everyday life, our decisions could,

for example, concern the choice of food to eat, or of means

of transport from home to work, which is highly dependent

on societal/environmental and intrinsic information. In

order to be able to unravel the mysteries of conscious (free)

will, it is essential to understand which and how neural

structures are encoding information during intentional

control.

Different views exist on the temporal and causal rela-

tionship between intentions and decisions, and to what

degree intentions are conscious (see e.g. Haggard

2008, 2019; Mele 2009, 2019; Block 2021), but the dif-

ference partly depends on the context. For example,

experimental situations are usually quite different from

ecological ones. Here, we adhere to the view that inten-

tions, which may be unconscious or conscious to various

degree, in general precede decisions, which typically

would be conscious. This view links closely to that of

Freeman (1999), who based his view primarily on physi-

ological and behavioral studies of animals.

The process of intentionality may comprise the opera-

tions of predicting, planning, and learning actions, while

intentions could imply the creation and projection of

alternative future states, desired, avoided, or feared. Such

hypotheses could be constructed in attractor dynamics by
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Kungliga Tekniska Högskolan, Stockholm, Sweden

3 Department of Energy and Technology, SLU, P.O. Box 7032,

75007 Uppsala, Sweden

4 Agora for Biosystems, P.O. Box 57, 19322 Sigtuna, Sweden

123

Cognitive Neurodynamics
https://doi.org/10.1007/s11571-023-10019-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0002-9938-2867
http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-023-10019-3&amp;domain=pdf
https://doi.org/10.1007/s11571-023-10019-3


extrapolation from past experience, controlling choices and

directions of actions in the present (Freeman 1999; Lil-

jenström, 2018).

In principle, there could be many intentions within our

brain-mind system, conscious or unconscious, and possibly

competing, but one (or a few) of them may lead to a

decision to act. Intentions have been classified as distal,

proximal, or motor intention, depending on their temporal

relation to a decision to act (see e.g. Mele 2019, and Parés-

Pujolràs and Haggard 2021). There could also be different

causes for the emergence of intentions, for example

genetic, or physiological, but sometimes also emotional

and cognitive. Hence, intentions may originate in different

parts of the brain, including the limbic system.

Decisions, on the other hand, are cognitive in nature and

are primarily associated with higher cortical systems/pro-

cesses. Hence, many animals may have intentions to do this

or that, but never really make a decision to do so. Humans,

too, while still largely influenced by our limbic system,

may have unconscious intentions, perhaps leading to

actions without decisions. However, some of our intentions

could be cognitively and perhaps also consciously formed

in neocortex, e.g. in prefrontal cortex (Haggard and Parés-

Pujolràs, 2021). Typically, a distal intention may last for a

longer period of time, and would precede a decision to act.

Proximal intentions are usually quite close in time for an

action. In some cases, when immediate actions are called

for by environmental conditions, intentions and decisions

could be more or less simultaneous.

Intention can be viewed as a precursor to conscious

(free) will, as an ‘‘urge’’ or ‘‘desire’’ to act in a certain

direction, to attain a certain goal. Voluntary movement, or

more generally, behavior, is based on perception and past

experience (memory), which are required for prediction of

(inter)actions. Attention may provide information about the

internal and external worlds, but intention guides our

actions (Liljenström, 2011).

During the past decades, there has been a debate in the

literature regarding some experiments apparently showing

that free will is just an illusion. Seemingly, the brain

knows, at least half a second in advance what ‘‘you’’ decide

to do (Libet et al. 1982, 1983). Lately, this time window

has been extended to incredible ten seconds, based on more

recent experiments (Soon et al. 2008; Haynes 2011). The

common interpretations of these studies have, however,

been criticized (see e.g. Mele 2009, 2019; van Inwagen

2017), and alternative interpretations of the experiments

can be given (see e.g. Liljenström, 2022).

A series of famous EEG experiments (Kornhuber and

Deecke 1965; Libet et al. 1982, 1983; Keller and Heck-

hausen 1990; Haggard and Eimer 1999; see Libet (2004)

for a review) are often quoted as evidence for free will

being an illusion. The EEG readiness potential (RP),

apparent only when averaged over a large number of trials,

appears to precede the conscious will for spontaneous

voluntary movements. However, in contrast to Libet type

of experiments where arbitrary and purposeless choices are

studied, more ecological experiments, where deliberate

choices are made, no RP is observed (Maoz et al. 2019).

Voluntary actions can be considered to be endogenously

self-initiated, and based on internal decisions and motiva-

tions (Brass and Haggard 2007; Haggard 2008), in contrast

to involuntary movements. According to Haggard (2008),

volition is associated with the concept of a goal-directed

activity, based on both motivation for pursuing a goal and

the instrumental knowledge for controlling the motor

action. In this regard, the causal relation between the action

and its outcome, as well as reason-action associations are

major concerns for the study of goal-directed volitional

behavior. Therefore, we may be able to take into consid-

eration context-action and action-outcome associations in

the presence of endogenous signal(s) as features of vol-

untary actions (Fried et al. 2017). These aspects of voli-

tional actions can be addressed with the involvements of

the hierarchically higher neural regions (Friedman and

Robbins 2022). The feature of goal-directedness is strongly

related to the concept of cognitive control, which is dif-

ferent from habitual behaviors (Petrides 2005). Cognitive

control is a neural-based process developed based on the

adaptive function of the brain. This process is about the

maintenance of neural patterns, correlating goals and

potential actions (Miller and Cohen 2001).

There are certain cortical areas believed to be central for

cognitive control and attentional functions (Corbetta and

Shulman 2002). The lateral prefrontal cortex (LPFC) and

anterior cingulate cortex (ACC) are two key neural struc-

tures involved in bottom-up and top-down attention (Rossi

et al. 2009; Aarts and Roelofs 2011). The intentional pro-

cesses hierarchically influence the dynamics of internally/

externally stimulated neural structures towards stability for

framing decisions. Accordingly, a major focus in this work

is modelling the functionalities of LPFC and ACC, as well

as their interactions during intention, as the preparatory

phase of volitional decision making.

Undoubtedly, many different structures are directly and

indirectly involved in the exertion of voluntary actions. In

addition to LPFC and ACC, areas such as the orbitofrontal

cortex (OFC) and amygdala are structures related to emo-

tional processes, which were included in our previous

model of decision making (Hassannejad Nazir and Liljen-

ström, 2015). One could also consider modelling the pre-

SMA and SMA, where the RP has been detected, but for

simplicity, in this work we do not consider activity in OFC,

amygdala, or SMA. Instead, we confine our work to the

major areas supposed to be directly involved in the emer-

gence of the early intentional process, preparing for a
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decision to act, and preceding the activity in SMA. We do

not consider direct motor intentions in this work.

Executive functions associated with voluntary action
control

Decision making process The decision-making process

(DM) is described in a simple way by Doya (2008) in five

steps: (1) presentation of external/internal stimuli, (2)

predicting values of the associated potential decisions, (3)

selection of an option, (4) actual outcome evaluation, and

finally, (5) learning, based on the difference between the

predicted and actual values of the potential options.

According to Doya and others (Doya 2008; Fobbs and

Mizumori 2014), maximizing the utility of the decisions is

considered the main goal of all humans decision-making,

where different types of contextual learning contribute to

the knowledge-base for reaching a decision (Gariépy et al.

2014; Lee and Harris 2013).

Working memory Working memory and attentional con-

trol are two strongly associated cognitive functions (Uns-

worth and Spillers 2010; Oberauer 2019; Kang et al. 2020).

The commonly accepted features of working memory

(temporarily holding, monitoring, and manipulating infor-

mation) make this process an essential cognitive aspect of

goal-directed voluntary actions. To accomplish voluntary

actions, the selection of relevant stimuli and suppression of

irrelevant ones is resulting from various procedural aspects

of working memory affecting excitatory and inhibitory

neurons at the site of termination (Baddeley 2012; Adams

et al. 2018). Brodmann areas BA 9 and BA 46, which are

laterally and highly connected subregions of LPFC, appear

to be involved in working memory, where cytoarchitectural

differences between these two areas bring about different

functional aspects of working memory. The neural activity

of these areas may represent different if–then rules,

including reason-action and action-outcome associations.

Neural structures associated with volitional control

Lateral prefrontal cortex In order to be able to make

decisions, while being bombarded by numerous internal

and external stimuli, our brains need to be equipped with

functional specifications. Keeping on hold different

received environmental information, loaded memories,

projected interoceptive signals and goals are essential for

controlling such a great deal of information. Moreover,

shifting between these signals and managing the competi-

tion between them is indispensable. In this regard, the role

of the most essential neural regions must be considered.

The extrinsic and intrinsic connectivity of neural parts

located in the prefrontal lobe of cortex provide a broad

contribution to cognitive controlling processes and execu-

tive functions. The cytoarchitecture and laminar organiza-

tion of prefrontal neural areas seem to provide a basis for

structure-based hierarchical information processing

required for cognitive functions (Bludau et al. 2014). The

executive functionality of the cortical laminar structure of

LPFC was demonstrated by Pribram and others (Pribram

et al 1952). The intra-cortical connectivity of LPFC serves

as an early sensory stimuli processor for subsequent cog-

nitive reasoning (Mushiake et al. 2006; Figner et al. 2010).

Cognitive flexibility, working memory and inhibitory

control are major aspects of executive functions involved

in the intentional controlling process, including vetoing and

self-control, as well as externally driven actions.

The LPFC, located in the frontal pole of the brain, has

been recognized as one of the most important structures

involved in cognitive processes (Tanji and Hoshi 2008).

Functional neuroimaging of LPFC illustrates its contribu-

tion, not as an integrator of external information from

associative sensory structures (i.e., early sensory stimuli),

but as the recipient of internal afferents from other laminar

cortical structures, limbic and subcortical areas. In this

regard, the intrinsic connections within its different sub-

regions, as well as its extrinsic connectivity with some

other brain areas, demonstrate its versatile role in con-

trolling goal-directed and stimulus driven behavior.

The functionality of LPFC is highly attributed to its

neural organisation. Taking into account the Brodmann

structural classification, LPFC consists of different subre-

gions with different laminar organisation including Brod-

mann areas BA 9, 45, 46 and 47. Some studies also

consider BA 10 as part of LPFC. Among these subregions,

the architectonic organisation of BA 9, 10, and 46 are

similar. These three areas are composed of six granular

layers including well-defined layer IV (Petrides 2005),

however, with different cellular distribution, bringing

about different functional capacities (Petrides 2005).

Brodmann area 9 As shown in Fig. 1, BA 9 is subjected

to early sensory information capable of encoding the

environmental contextual information. This area also has

strong connections with ACC, encoding endogenous

stimuli. The high capacity of BA 9 in processing afferent

endogenous signals and integrating them with environ-

mental signals makes this structure one of the most

potential neural candidates during the preparatory process

of intention in the presence of endogenous signals.

This controlling process of BA 9 can be mediated

through expression of calcium-binding proteins in the

interneurons of this area. The abundance of calcium-

binding proteins as calretinin (CR) and calbindin (CB)

among the GABAergic interneurons enables BA 9 to

control the environmental information considering the
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projected internal signal via ACC. The expression of these

proteins in the interneurons activates the gating process

during attentional control. Generally, CR interneurons are

connected to CB interneurons, while the target of CB

interneurons is excitatory (Ex) pyramidal cells. Hence, the

expression of CR interneurons disinhibits the excitability

of pyramidal neurons (Barinka and Druga 2010).

Brodmann areas 46 and 10 BA 46 and 10 are structurally

similar. Both consist of six well-developed layers with the

same cellular composition. However, their different cellu-

lar intensities result in distinct functionalities. BA 46 is a

well-developed six laminar structure, bordered by BA 9,

BA 10. The supragranular layers of this sub-region are

densely organized with medium size cells (Bludau et al.

2014; Petrides 2005). This LPFC subregion is involved in

executive processes such as attentional control and work-

ing memory, as well as DM (Barbey et al. 2013; Blakemore

and Frith 2000).

BA 10 is the largest area in the frontal lobe of the brain,

with a wide range of connections to various neural areas.

This cortical area is known as a supramodal structure

widely contributing to various cognitive functions. The

adjacent regions of BA 10 are BA 9, BA 46 (as parts of

LPFC), ACC and OFC, indicating the key involvement of

this neural part in attentional control and DM. In addition,

it has extensive connections with the pre-supplementary

motor area (pre-SMA), thalamus, hypothalamus, and basal

ganglia (Peng et al. 2018).

BA 10 has a lower cellular density compared to the cell

density distribution of BA 46. Generally, structures with lower

cellular density have greater neuropil space, and subsequently

larger space for higher neural connections have been observed

(Hrvoj-Mihic and Semendeferi 2019). Therefore, consider-

able higher neuropil fraction is likely more strongly con-

tributing to complex functions while higher level of

controlling, here referred to as hyper-controlling, compared to

other LPFC subregions is required (Okuda 2007; Peng et al

2018). According to Chahine et al. (2015) BA 10 is involved in

branching activations in a complex solving task strongly

dependent on resolving goal-tree sequences. This process also

increases complexity of working memory.

Considering the above-mentioned observations, Medalla

and Barbas (2010) have suggested that the cellular density

difference between BA 10 and BA 46 makes them play

different roles in the controlling process. Therefore, BA 10

is likely to be more involved in cognitive functions with

higher-order processing (Ramnani and Owen 2004).

Anterior cingulate cortex Considering the unique position

of ACC, this structure is connected to the cortico-cortical

and cortico-limbic pathways. This structure also receives

dopamine, innervated by the ventro-tegmental area

encoding error related negativity. The bidirectional con-

nections of ACC with amygdala and OFC facilitate the

flow of endogenous information among these structures

projecting LPFC (Bush et al. 2000; Allman et al. 2001;

Palomero-Gallagher et al. 2008; Medalla and Barbas 2012;

Apps et al. 2016). ACC plays an important role in modu-

lating the neurodynamics of the LPFC through projecting

its subregions during different attentional control phases.

The modulatory action of this neural area is highly attrib-

uted to its laminar pattern (Palomero-Gallagher et al.

2008). Hierarchical signal transmission, determining the

type of projection, is strongly related to the development of

granular layer IV in cortical structures. The origin of

ascending (feedforward) signals is the granular neural

structure with well-developed layer IV, while the

descending (feedback) signals with modulatory properties

are generally projected by agranular structures which lack

layer IV (Braver et al. 2001). The laminar organization of

ACC, with a large densely packed layer V merged with

layer VI and no layer IV, provides the structural basis of

selective attention function. The controlling role of ACC

during selective attention could be the result of response

conflict monitoring (Shipp 2005).

ACC receives afferent signals from OFC, which has

long been known as a structure involved in modulating

Fig. 1 Exciting and inhibiting pathways projected from ACC to BA 9.

BA 9 is composed of pyramidal neurons and various inhibitory

interneurons. This area is exposed to environmental early sensory

stimuli and afferent endogenous signal from ACC. The integration of

these signal would bring about the unconscious selective attentional

control. Providing that the internal and external stimuli are correlated,

ACC excites BA 9 pyramidal neurons (Ex) through projecting directly

pyramidal neurons and indirectly by exciting calretinin (CR)

inhibitory interneurons resulting in disinhibition of calbindin (CB)

interneurons, (i.e. pathway (a)). To suppress the activity of external

stimulus given that the efferent signals to BA 9 are uncorrelated, the

ACC excites directly the CB inhibitory neurons (i.e. pathway (b))
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emotional arousal (Jenison 2014; Stalnaker et al. 2015).

The recorded oscillatory activity of OFC represents the

expected value of the associated outcome of the afferent

stimulus, which is referred to as the ‘‘expectancy signal’’.

Therefore, ACC is capable of projecting this expectancy

signal to its connected structures. According to the hier-

archical control required to manage the projected signal

process, it is expected that ACC evokes recognizably dif-

ferent neurodynamics in each of the LPFC subregions. That

is why ACC targets different neural cell types in each BA

areas, resulting in the emergence of different frequencies

and neural pattern behaviors.

Pre-supplementary motor area (pre-SMA) The supple-

mentary motor complex (SMC) is functionally parcellated

into two areas: the supplementary motor area (SMA) and

the pre-supplementary motor area (pre-SMA) (Nachev

et al. 2008). The variety of observed functional activities

and the outflow/inflow of information from these areas are

bases for neural segregation. These two subregions of

SMC, categorized as agranular structures, lack cortical

layer IV. Pre-SMA has been well known as a neural

structure with the function of predictive coding (Akkal

et al. 2007). With regard to the neural areas adjacent to

these two SMC subregions, SMA is mainly involved in

movement generation, while pre-SMA provides the basis

for movement initiation. Therefore, pre-SMA is considered

to be strongly coupled to higher order cognitive functions

(Nachev et al. 2007). Pre-SMA is characteristically well

known for its oscillatory readout, and primarily the

early readiness potential (RP), as a neural signature of

volition. The emergence of this signal is characterized with

two components (i.e. early and late RP, respectively),

which supposedly are administrated by different projec-

tions from various neural structures (Seghezzi and Zap-

paroli 2020). The slow negative build up of the oscillatory

activity consitituting the early phase of the RP, which

emerges around 1500–400 ms before the movement onset,

and represents the intentional preparatory process, whereas

the late RP occures 400–0 ms prior to action performance

(Schurger et al. 2021). The pre-SMA is exposed to afferent

pathways, conveying goal-directed and motivational sig-

nals originated from different neural areas, bringing about

different components of the RP. The early RP, as measured

in pre-SMA, is presumed to result from input signals from

LPFC subregions, while the emergence of the late RP

component is the result of primary motor cortex projections

(Schurger et al. 2021).

The early RP in the pre-SMA may evolve as a result of

the projections of associative signals, i.e. context-action

and action-outcome associations encoded by oscillatory

activities of the neural attractors correlated to potential

actions/goals. Hence, this cortical area mediates the

required preparatory processes of DM. Subsequently, the

late RP, and eventually voluntary action, would appear

through bidirectional interactions between the pre-SMA

and SMA, as well as some other subcortical areas, such as

basal ganglia (Nachev et al. 2008).

Focus and objectives

Although there have been many advances in the past dec-

ades in understanding the role of the brain in decision-

making and volition, there are still many unanswered

fundamental questions targeting the intentional control

process, preparing for a decision to act. In order to shed

light on these neural-mental relations, some fundamental

questions should be addressed. We propose that a mathe-

matical representation of the neurodynamics related to

cognition may demonstrate transitions between different

degrees of order and disorder in the brain (Freeman 2000;

Århem et al., 2000). Hence, a decision could be the result

of a transition from an unstable chaotic attractor to a

stable limit cycle attractor in the cortical networks, which

could be a hallmark of the volitional control process

(Sussillo and Abbott 2009). Given these assumptions, it

should be essential to examine what and how neural cor-

relates may transform chaotic dynamics to stabilized and

controlled activity patterns, in order to understand volun-

tary actions.

With the conceptual framework given here, we suggest

the following three hypotheses, H1-3:

H1 Voluntary actions are the result of a reorganization of

chaotic high-dimensional activity patterns to stabilized

low-dimensional activity patterns.

This hypothesis is related to the question of decisions

made during arbitrary and deliberate choices.

H2 Three LPFC subregions, BA 9, 10, and 46, as well as

ACC are necessary for the intentional control process,

which precedes a decision to act.

H3 The succession of transient-like dynamics of the brain

during intentional control can be emulated by attractor

networks with transitions from chaotic dynamics to stabi-

lized low-dimensional neural activity.

These hypotheses should ideally be tested experimen-

tally, e.g. by EEG and fMRI measurements of relevant

areas during experiments on volition, but in lack of such

data, we have further developed and used a phenomeno-

logical attractor based neurocomputational model, origi-

nally developed by Liljenström (1991). The output of this

model can be expressed as the averaged frequency and

amplitude of simulated EEG signals. Previously, the orig-

inal model has been used to simulate cortical neurody-

namics in functions such as perception (Liljenström, 1995;
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Liljenström and Wu 1995), associative memory (Liljen-

ström, 1995; Liljenström and Hasselmo 1995) and decision

making (Hassannejad Nazir and Liljenström 2015). In the

following section, we describe our model in more detail,

and the way it has been implemented in our modeling of

the neural activity associated with intentional control.

Theory and model

As mentioned above, the focus of this study is to scrutinize

the states of attractor networks and the mechanisms

underlying the reorganization process of attractor states

during intentional control, as the preparatory phase of

voluntary action control. In this context, we regard the

brain as a nonlinear system, capable of hosting oscillatory

and high-dimensional chaotic neural patterns. This promi-

nent feature of the brain may provide a basis for deliberate

decision making and adaptation. We hypothesize that a

decision could be associated with a transition from a

chaotic to a stabilized oscillatory brain state, and explore

the possibility for how a control mechanism of chaotic

neural attractors could be a new approach to the ‘‘neuro-

science of volition’’.

Theory of attractor-based voluntary action
control

Attractor-based decision-making

Simply described, decision making (DM) is about selecting

an option among potential alternatives. This one-line def-

inition can be attributed to any type of DM including

habitual, self-initiated or externally-driven action selection

processes. However, it can be questioned whether the

implicit process in this definition is the same for all types of

DM processes.

The common definition of a five-step DM, as mentioned

in the Introduction, embodies a conscious control process,

which is the hallmark of volitional decision making. In this

regard, we may claim that ‘‘implementing successful con-

scious decisions’’ is thoroughly dependent on the adaptive

behaviour of the brain, based on executing a set of

orchestrated processes. Hence, weighing and accordingly

selecting potential options could be exclusively dedicated

to a volitional DM. Accordingly, what we could expect to

observe in the brain before making a ‘‘conscious’’ decision

is high-dimensional chaotic neural patterns correlated with

external/internal stimuli.

Hence, in order to be able to measure the hallmarks of

the neural processes, the complexity of the neural networks

needs to be reduced. Consequently, the dynamics of cor-

tical neural networks are represented by artificial low-

dimensional attractor networks that can be described by

coupled differential equations.

Attractors are recurrent activity patterns that the neural

networks can settle to and which can help us to simulate

neural functionalities associated with voluntary action

controls. Memory formation, language processing, and

preparatory processing of intention and DM are examples

of neural functions modeled with the help of attractors

(Albantakis and Deco 2011; Hutt and beim Graben 2017;

Schoemann and Scherbaum 2020). The attractor neurody-

namics in different neural areas determine the functionality

that a cortical area is involved in (Freeman 2000). As

suggested above, the attractor activity patterns of BA 9,

exposed to internal and external stimuli, are supposed to

behave chaotically.

Voluntary action control as a hierarchical DM process

The five-step DM can be associated with different subre-

gions of the LPFC, responsible for different levels of

volitional decisions. As Fig. 2 illustrates, different control

procedures are exerted hierarchically to make a final con-

scious decision to act. In the first step (I) of this hierar-

chical process, there is an attentional control of received

external and internal stimuli, followed by initial decisions

on ‘‘goals’’ (Katayama et al. 2019). The steps II and III in

Fig. 2 comprise the initial phase of intention, while step IV

indicates the time period the agent is intending to make a

specific decision (step V) to act (step VI), resulting from

the previous steps. The outcome of the action will even-

tually be evaluated and stored in memory, for possible

update of future decisions.

Every day we make various (distal and proximal)

intentions with different time scales, which are also con-

sidered here: (1) the initial phase of intention (steps II and

III), and (2) the process of intention, preparing for a

decision to act (steps IV and V).

1. The initial phase of intention includes intentional goal

control (step II) and intentional action control (step

III). The time scale for this process depends on many

different parameters, including optional goals and

choices for action, external and internal stimuli, and

loading long-term memories, etc.

2. The period of intention is associated with the required

time to make a final decision. In case of distal

intentions, this period may include some kind of

cost–benefit evaluation of various optional choices and

also consideration of consequences of the optional

actions, in particular for deliberate choices. The time

period is usually much shorter for proximal intentions.

The time scale for both of these phases (1 and 2) may

differ dramatically depending on circumstances. If we are
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considering where and how to travel for our vacation, the

time scale may be days or months, while if we are con-

sidering choosing/picking a food item in a grocery store,

the time scale could be seconds.

The temporal scale in the first case is normally too long

and complex for experimental studies, while the latter case

could be studied in goal-directed volitional experiments. In

Libet type of experiments, with arbitrary choices, the time

scale is typically seconds.

In the present work, we consider time scales relevant to

experimental circumstances, i.e. seconds, although in

principle, much longer time scale could be imagined. We

primarily focus on more realistic, deliberate choices, which

are more related to conscious (free) will, than the simpli-

fied Libet type experiments.

In the following, we will describe our modeling of steps

I–IV in the hierarchical process of voluntary action control,

as described in Fig. 2. We use our model to analyze the

attractor neurodynamics in different neural structures at

each hierarchical level, illustrating the preparatory process

before a decision to act. We refer to this process as the

intentional control process. In attractor models of inten-

tional control, relevant information for decision making

(e.g. optional choices, goals, and memories) are settled as

activity patterns, i.e. as attractors, continuously integrated

in the state space of the systems considered.

Computational model of attractor-based
intentional control

Model of cortical interactions

We live in a world where it is almost impossible to elim-

inate environmental stimuli. However, in order to study the

intentional control process, it seems reasonable to focus on

endogenous signals. In this study, ACC has been modeled

as an area transferring afferent signals from emotion-re-

lated neural structures, as well as mesolimbic dopamine to

the LPFC.

Feedforward and feedback control

Control is a goal-oriented process embedded broadly in the

nervous system and its interactions with the environment.

This process ensures the achievement of a goal by moni-

toring the input or output according to the type of control.

Feedforward control is a linear process with the major

focus on inputs, while feedback control monitors through

gradual evolution of error signals in the system.

The need to correct the control process with regard to

output determines the leading control system. This differ-

ence can be observed among behaviors that are driven

voluntarily or triggered externally. An important question

is what drives any of the controlling systems: endogenous

stimuli or external/habitual stimuli. In other words, an

individual may decide to follow an external stimulus, such

as a red traffic light (i.e. voluntarily decides to follow an

immediate external stimulus), or may habitually press the

breaks after the appearance of the red light.

This example can be rephrased with a question: ‘‘What

causes an individual to make either a conscious volitional

action, or merely unconsciously follow an external trig-

ger?’’ To address this question, we demonstrate in our

model how a feedback loop would be triggered. In the

following, we use our model to suggest how the ACC-

LPFC interaction is capable of contributing to intentional

control.

ACC-LPFC subregion interactions

ACC controls LPFC neurodynamics through interacting

equally with all the three considered subregions of LPFC:

Step      I    II III IV V VI

Fig. 2 The hierarchical voluntary action control process. Efferent

external and internal stimuli provide bases for the retrieval of long

term memories. The first step (I) of the process is attentional control

of received external and internal stimuli. The second step (II) is

intentional control of goals, associated with integrated external and

internal stimuli. The signal correlating to the selected goal(s) bring

about the recall of the relevant potential actions. In the third step (III)

potential actions are considered. The intentional control procedures

comprise the initial phase of intention (IV). The fifth step (V) is

making the final decision, which may lead to an action performance

(VI)
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BA 9, 10, and 46. However, targeting different neural types

(excitatory or inhibitory) in each subregion leads to dif-

ferent functions. The hierarchical controlling process

occurs through the reciprocal connections of ACC with

these three subregions.

Two other prominent features of intentional control,

goal-directedness and causal attribution of actions, have

been modeled through two separate ACC-LPFC pathways.

BA 9 is the first LPFC subregion exposed to projections

from the ACC. The signal from the ACC particularly

encodes endogenous information in the BA 9, while this

area is also subject to environmental stimuli. The degree of

correlation between the activities of externally generated

cell assemblies and internally encoded neural patterns in

the BA 9 determines the orientation of attention. This

attentional filtering and orienting is presumably uncon-

scious. The efferent signal projected from ACC is labeled

as ‘‘carrier signal’’ and is illustrated in Fig. 3. The inte-

grated signals automatically load associated long-term

memories and relevant goals. The recalled long term stored

goals and optional choices represent the contextual bases

(environmental/internal) of retrieved potential actions,

projecting two other LPFC subregions: BA 10 and 46.

Time–frequency based phase-amplitude coupling

Considering the fact that the projected signal from ACC

and the oscillatory activity of the neural patterns in BA10

are in two different frequency bands, theta and gamma,

respectively, the coupling process between signals serve a

functional role in managing the goals. It could be in a way

that the phase of the slower afferent signal from ACC

modulates the amplitude of the oscillations with higher

frequency in BA10, supposedly in a closed loop, continu-

ously updated by the strength of coupling and frequency

power. To characterize this process, the Hilbert transform

of the analytic signal of the high/low pass filtered signal is

computed. Accordingly, the level of coupling between the

high amplitude signal and the low phase signal are mea-

sured in the model.

The retrieved goals associated with the potential choices

are competing in BA10, considering the integrated internal

and external stimuli. The competition could be managed by

‘‘salience signal’’ from ACC stimulating the excitatory

layer of BA 10. In this competition, the relevant signals to

the endogenous signals will be enhanced and the irrelevant

ones will be suppressed. This is the second controlling

process during hierarchical DM. The goal-directedness

feature of the voluntary control process is supposed to be

addressed in this area.

Phase space reconstruction

As stated above, neural patterns may behave chaotically

while they are exposed to internal or external stimuli. To

predict the behavior of such neural activity patterns during

the intentional process, the model scrutinizes the time-

structure based evolutionary changes of attractor features

(i.e. the dimensionality and level of disorder), by present-

ing the temporal data in phase space. The reconstructed

phase space characterizes the embedded fractal dimension

of the attractors and its ‘‘entropy’’ based on Takens’ the-

orem (Takens 1981).

Phenomenological model

To be able to simulate the evolution of neural activity

patterns during the intentional preparation for a volitional

decision, we apply a phenomenological cortical network

model, originally developed by Hans Liljenström (1991),

but which here has been extended and modified to mimic

the structures of LPFC and ACC, respectively. The values

of the parameters used in the model are listed in Table 1 in

the Appendix). The schematic network structure of these

Fig. 3 Illustration of the schematic flow of information among neural

structures involved in intentional control. ACC is subject to

projections from OFC, LPFC and mesolimbic dopaminergic pathway

signalling expectancy signals about action-outcome (goal-directed-

ness) contingencies. This area stimulates three subregions of LPFC:

BA9, BA10 and BA46. These three areas are bidirectionally

connected. ACC transfers interoceptive and emotional signals to

BA9, which is also subject to environmental stimuli. The integrated

signals loading into long term memory. Accordingly, the retrieved

stored memories about potential actions and goals propagated to the

three subregions of LPFC. The projected goal-correlating signal to

BA10 receives signals correlating the internal signals projected to

ACC and to BA10. Based on the measure of coupling between the

projected signals to BA10, some would be enhanced and some

suppressed. The enhanced signals stimulate the associated action in

BA46. Here, ACC encodes BA46 based on the expectancy signals

received from OFC. This brings about a competition between the

potential actions. The one(s) with higher correlation would be the

chosen actions signalled to the pre-SMA. BA10 also stimulates the

intentional preparatory process in the pre-SMA
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two cortical areas is given in Fig. 4, where the six layers of

the real structures have been lumped into three layers in the

model: an excitatory layer (pyramidal cells) with one

inhibitory layer (of interneurons) above and another below.

An oscillatory/chaotic dynamics may result from a balance

between the bidirectional connectivity of the excitatory and

inhibitory layers (Liljenström, 1991; Liljenstrom and Wu

1995). The network units are non-spiking with the ‘‘mean

membrane potential’’ as model output, stimulated by

external/internal stimuli.

The cortical neurodynamics is modeled with first order

differential equations, where the mean membrane potential

(ui) of each network unit is given by Eq. 1, where wij is the

connection (‘‘synaptic’’) strength between units i and j, dij
is the conduction delay between units i and j, si is the

membrane time constant, gi(ui) is a sigmoid gain function,

Ii is external input to unit i, and n(t) is a noise term.

dui=dt ¼ �ui=si þ
XN

j6¼i

wijgj ujðt � dijÞ
� �

þ Ii tð Þ þ nðtÞ

ð1Þ

The input–output function, gi(ui) was experimentally

determined by Freeman (1979) and is based on a gain

parameter, Qi, denoting the level of arousal, or the

excitability and C is a constant.

gi uið Þ ¼ CQi 1 � exp �exp uið Þ=Qi½ �ð Þ ð2Þ

To allow for learning, the connection weights are

incrementally updated according to a learning rule of

Hebbian type (Hebb 1949; Liljenström, 1995):

Dwij ¼ ggi ui tð Þ½ �gj uj t�dij
� �� �

wmax�wij

� �
ð3Þ

where the learning rate is denoted by g, and wmax is the

maximum strength of an intrinsic synaptic connection.

This model is implemented to simulate the behavior of

the two cortical areas, LPFC and ACC during the inten-

tional preparation for a decision, preceding the activity in

(pre-) SMA. As described before, the laminar organization

of these two cortical areas are, respectively, granular with

clearly developed layer IV and dysgranular with thin layer

IV. The structural differences between these areas provide

a basis for feedback projections from ACC to LPFC,

encoding reward expectancy signals. The implemented

model for both cortical areas is the same, but with different

cytoarchitectural-related parameters. Considering the

described hypothetical argument about a hierarchical

decision-making process, the neurodynamics of LPFC is

studied by modelling its three critical subregions, BA9, BA

10 and BA46, as well as their interaction. All these three

regions belong to the same neuronal granular laminar

structure. However, slight differences between their neural

intensity and inhibitory neural types have been considered

in modelling.

It should be noted that our model, as well as the

underpinning concepts and theories, are not intended to

describe Libet-type experiments, where spontaneous finger

movements are correlated with a conscious ‘‘urge’’ to

move. However, as our model clearly focuses on goal-

directedness, suggesting a mechanism for intentional

preparation of volitional actions, we believe our model

could be applied to experiments addressing these aspects of

(primarily deliberate) volition.

Simulations and results

Oscillation characteristics

In order to test the first hypothesis (H1) proposed in the

Introduction, we investigate the time evolution of neural

activity patterns in LPFC and ACC with the help of our neu-

rocomputational model (described above) of these cortical

areas and their neurodynamics. In particular, we simulate

attractor network dynamics in these systems during the

preparatory process of intentional control (Steps I–IV in

Fig. 2) before a decision to act. The results may explain the

relationship between the controlling statutes and certain fea-

tures of the attractor dynamics of this process, which we study

in a time, phase, and time-frequency domain. We propose that

time-domain EEG-like signals generated by the model are

capable of elucidating factors associated with the oscillatory

behavior of the brain areas involved.

Feedforward 
inhibitory layer 

Excitatory layer

Feedback
inhibitory layer

Fig. 4 Schematic illustration of the simplified three-layered neural

structures, consisting of excitatory and inhibitory neural units. The

middle layer consists of 100 neural units, with one layer of 25 feed-

forward inhibitory units above and 25 feedback inhibitory units in a

layer below. There are extensive connections between the excitatory

units, and more local connections between excitatory and inhibitory

units, with no inhibitory-inhibitory connections present in the model.

Afferent fibres from other areas connect only to the excitatory layer
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Time-domain signal

The readout of the model is an EEG-like one-dimensional

time series signal, representing the oscillatory neural

activity pattern of a cortical structure, like LPFC and ACC.

The simulated time-domain EEG signal, illustrated in

Fig. 5 as a one-dimensional variable, may provide us with

information about the time-dependent frequency and power

spectrum of the neural oscillations. This figure presents the

neural activity and the relevant frequency properties of an

oscillating pattern in BA 9 related to Step I in Fig. 2.

However, to have comprehensive information about the

states of neural attractors in time, it is essential to analyse

multivariate information, so the oscillatory activity needs

to be defind in a higher dimensional space. In the follow-

ing, the attractor neuodynamics are analysed in a recon-

structed phase space.

Reconstructed phase space

In order to study the attractor neurodynamics during the

intentional control process (i.e. Step II and III in Fig. 2), the

emerged time-dependent signals in BA 10 and BA 46

should be reconstructed in a higher dimensional space. This

high-dimensional reconstructed phase space is enriched

with information about the characteristics of the nonlinear

dynamics of neural attractors. The m-dimensional time

delay embedding of the oscillatory signals in BA 46 is

shown below (Takens 1981; Matilla-Garcı́a et al. 2021).

Figure 6, which is an illustration of Step III in Fig. 2,

indicates the time evolution of an attractor state under

interaction-dominant dynamics during the intentional

control in BA 46. Here, the model explores the behavior of

the attractor in twelve iterations, while this area is involved

in a feedback loop with ACC (Fig. 6a–l). The number of

iterations mimics the deliberating process, which is similar

to the convergence process during the intentional goal

process in BA 10.

Attractors have different embedding delay and surrogate

dimensions in each iteration. The illustrated trajectories of

dynamical states in each frame of Fig. 6 represent different

levels of disorder. The changes of attractor behavior in the

reconstructed phase space can be quantified with the

measure of either correlation dimension, Lyaponuv expo-

nent, or entropy level. In this regard, it is possible to

measure the complexity of the signal in terms of such

measures in the attractor fractal space.

The observed changes in the level of disorder during

convergence of a chaotic to a near limit cycle attractor in

Fig. 6 are illustrated in Fig. 7. Figure 7a illustrates how the

state of an attractor’s entropy, as a measure of disorder,

changes during the intentional action control (Step III in

Fig. 2). In general, the disorder of the attractor increases

reaching a value close to zero. The same process can also

be analysed by measuring the Lyapunov exponent, which

quantifies the degree of freedom.

This measure also demonstrates the level of disorder in

the system, as illustrated in Fig. 7b. The reduction of an

attractor’s entropy indicates the convergence of the

attractor state, from chaotic to limit-cycle. The correlation

dimension of an attractor is the measure of complexity of

the system. In Fig. 7c, this value decreases from 3.8 to 1.8,

illustrating the downward trend of the attractor’s disorder.

Time–frequency domain

In each iteration of the simulation, reorganization of the

neurodynamics from chaotic to more stabilized attractors is

the result of a feedback loop between ACC and BA 46/BA

10. The characteristic structural coupling processes

between ACC and the different subregions of LPFC bring

about oscillatory activities in different frequency bands. An

analysis of the time-series signals of each subregion in the

frequency domain may determine the role of each feedback

loop, making large contributions to reorganisation of neural

attractors.

The increase in power of frequencies in higher ranges,

and the subsequent emergence of beta – gamma interplay

indicates competition between patterns. This process is

repeated twelve times, simulating the endogenous attention

span while making decision(s) on goals (Step II in Fig. 2).

This repeated intentional control process is illustrated in

Fig. 8. As shown in this figure, the decrease in beta power

and increase in the strength of gamma frequency band

engenders a beta–gamma interplay. Here, signals with

higher frequency in gamma range are coupled with the

ones with slower rhythms in beta frequency band, see

Fig. 9.

The enhanced goal-relevant patterns oscillating in

gamma frequency stimulate the associated action in BA 46.

Here, the model simulates the predictive coding of ACC

based on the value of the expected outcomes in BA 46,

generating a competition between the retrieved potential

actions. This competition is the result of feedforward

inhibition and stimulation of both the excitatory and

feedforward inhibitory layers of BA 46. In this model, the

upstream excitatory signals from ACC stimulate supra-

granular inhibitory neurons of BA 46 (the feedforward

inhibitory layer in our model), which in turn suppress the

downstream pyramidal cells (the excitatory layer in our

model). Therefore, the gamma frequency oscillation is the

result of a balance between excitation and inhibition, after

external stimulation of layers I and II in our model. This

also explains the frequency shift observed in Fig. 10.

Emergence of the gamma frequency band indicates the

competition between the most relevant potential actions as
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a result of suppression and enhancement of, respectively,

irrelevant and relevant action-correlating patterns. Fig-

ure 10 illustrates, in a single frame, behavior changes of

neural attractors during Steps I, II, and III.

Gamma frequency oscillations are the signature of

cognitive processing. Barr and his colleagues (2009) have

conducted EEG experiments recording the modulatory

process of working memory in BA 46. The recorded

Fig. 5 Simulated EEG-like time-series oscillatory activity of excitatory neural units in Brodmann area 9. (Left) The balanced excitatory-

inhibitory oscillatory activity in BA 9. (Right) The frequency domain of the signal. Here, the dominant frequency is in theta band

Fig. 6 Convergence of a chaotic to a near limit cycle attractor. The

illustrated patterns are the reconstructed phase space of attractors

correlated to an optional choice in BA 46 during intentional control.

a illustrates the chaotic dynamics of a neural activity pattern

correlated to an option. b–l During different controlling steps the

random disordered behaviour of the pattern transform into a near

limit-cycle attractor
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signals in the gamma frequency band confirm what our

model predicted regarding the BA 46 activity.

Emergence of intentional awareness

The pre-SMA is a well-known cortical structure involved

in voluntary action control. LPFC projects to pre-SMA

directly and indirectly through different cortical structures.

Two direct pathways from LPFC subregions originate from

BA 10 and BA 9. In our model, the direct pathways give

rise to the emergence of early RP (Steps IV–V in Fig. 2).

Oscillations originating from BA 10 propagate through

laminar-based backward connections to the pre-SMA. These

signals initiate the RP illustrated in Fig. 11. It is predicted that

the rising trend of RP (i.e. smoothed red curve in Fig. 11) could

be influenced by the enhancement of the activity in neural

assemblies underlying intentional goal control. Since BA 10 is

largely connected to different subcortical areas (Peng et al.

2018), this brain region is presumably involved in the con-

scious experience of the intentional process. This, we pre-

sume, would occur when there are synchronous oscillations

(limit cycle attractors) in cortical areas. The characteristics of

Fig. 7 The level of disorder during the intentional control process.

a Entropy indicates the reduction in the state of disorder of attractors.

b The Lyapunov exponent is another measure of disorder demon-

strating the stabilization process of attractors. c The reduction in

correlation dimension of the attractor approves the reduction of

energy of the system. The convergence of an activity pattern from a

chaotic to a limit cycle attractor results in reduction of its

dimensionality, here from 3.8 to 1.8

Fig. 8 Frequency spectrogram

of the goal-related signals in BA

10, which manages competition

between the retrieved signals

correlating associated goals to

potential choices. The

competition between relevant

and irrelevant patterns give rise

to the gamma—beta interplay.

The cytoarchitecture of BA 10

(i.e. low cellular density and

more neuropil spaces) provides

a basis for high-level of control

over goal-related patterns. This

intentional goal control results

in the increase of frequency

bands to high beta and low

gamma frequency band. The

interaction between theta and

gamma frequencies illustrates

the stabilization process of

competing relevant patterns
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the oscillating patterns in the BA10 may determine the onset

of the ‘‘emergence of consciousness’’. However, considering

consciousness as a graded process, neural patterns at different

spatiotemporal scales could express different levels of com-

plexity, corresponding to different conscious states of the

individual. Therefore, any changes in the level of conscious-

ness might be accompanied with a phase state transformation,

where the complexity of the system could be defined in terms

of the predictability of the neural phase space. An increase of

the level of consciousness could be associated with a lower

Fig. 9 Illustration of

simultaneous activities of two

neural attractors in different

frequency bands during

intentional action control. With

regard to the correlation

between the afferent signals

from ACC and the goal-

correlated oscillations in the BA

10, the competing neural

attractors undergo different

alterations in their

neurodynamics. The activities

of relevant patterns are

enhanced, reaching high-power

gamma frequency, while the

irrelevant ones encounter

suppression. Hence, these

patterns oscillate with low-

power theta/beta frequency

Fig. 10 Frequency spectrum

during control phases. The

frequency domain of neural

activity during controlling

processes shifting from alpha-

beta bands to gamma frequency

band. The higher frequency

indicates the strong competition

between the potential actions.

During different processes the

irrelevant patterns to the

dominant internal stimulus have

been suppressed and the

relevant ones are enhanced. The

competition between the

relevant patterns engenders

gamma frequency
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degree of neural pattern complexity, and consequently a

higher predictability of the attractor behavior.

Crossing some threshold (which may vary according to

the state of arousal), the neural structure(s) involved may

stimulate BA 10 assemblies. This threshold crossing could

correspond to a transition from an unconscious to a con-

scious state of mind, i.e. reflecting an increasing awareness

of the intention leading to a decision to act. The decision

itself would have to be conscious. The emergence of a

sense of agency for an individual on the verge of making a

voluntary decision is contingent on such a transition.

From a dynamical point of view, the neural entrainment

by an endogenous signal in the iterative controlling process

described above, could be related to a ‘‘chaotic crisis’’

(Grebogi et al. 1983), although possibly at a longer time

scale. The stabilization of attractors can be represented with

the phase trajectory controlled as a result of increasing the

level of inhibition. The increase of inhibitory effects in our

model is the result of the emergence of lower levels of graded

consciousness into the iterative controlling process. The

increase of consciousness, whereby the inhibitory effect is

facilitated, is assumed to be highly correlated with the

oscillatory properties during the time span considered here.

The second direct pathway originated from BA 9 cause

further incremental trend of preparatory process of inten-

tion. The competitive process between the optional choices

(Steps III-IV) leads to a final decision to act in SMA.

Discussion

Assumptions

In this paper, we have proposed three hypotheses to study

the neural correlates and mechanisms underlying the

intentional control process leading to a (conscious) deci-

sion to act. Here, it is suggested that characterizing the

neural patterns as attractors could be an appropriate

approach for unraveling this type of intentional process.

Taken into consideration this assumption, we have devel-

oped an attractor-based neurocomputational model, and

investigated the behavioral changes of neural activity pat-

terns during the intentional control process, in preparation

for a decision to act. With our model, we have investigated

the time evolution of different attractor states. We have

demonstrated that the emergence of intention is dependent

Fig. 11 Illustration of the activity in LPFC regions BA 10 and 46, which

feeds into pre-SMA. In our model, the early RP is emerged as the result

of two distinct direct projections originating from BA 10 and BA9. The

rising trend of early RP is predicted to be related to the enhancement of

oscillatory activity of goal-related patterns (in BA10) and optional

choice-related patterns (in BA 46). The broad connectivity of BA10

with subcortical areas brings about the projections of (conscious)

intentional signals to this area, which afterwards would be propagated to

the pre-SMA. This propagation pathway might be activated based on

the specifications of oscillatory patterns in BA10. Hence, the conscious

experience of our intention, related to the early RP (or other activity in

pre-SMA) is dependent on BA 10 oscillatory activity patterns. The other

propagation pathway from BA 9 to pre-SMA also contributes to the

rising trend of the early RP leading to a decision
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on the hierarchical control of external and internal infor-

mation, as well as on retrieved associated goals and

actions. This hierarchical organization provides a basis for

recursion to key components of the control process, thereby

underpinning reinforcement contingencies at different

levels. Moreover, the states of the neural attractors

involved in this hierarchical step-model are controlled by

feedback loops at each step. The relatively homogenous

cytoarchitecture of the LPFC subregions (i.e. BA9, BA 10

and BA46), which are functionally segregated, is able to

structure the hierarchical control process.

The main idea behind our modeling is based on the

recorded flow of information between LPFC subregions, as

well as LPFC and ACC interactions during the cognitive

control process (Medalla and Barbas 2010). The structure-

based functional connectivity between LPFC subregions,

as well as between ACC and pre-SMA, has been guiding in

developing the hypothetical ideas about various compo-

nents of our model. The interactions between LPFC sub-

regions as fairly similar granular structures have inspired a

hierarchical controlling process of intention. Moreover, the

critical location of BA 10, broadly receiving afferent sig-

nals from subcortical areas, and also its strong connectivity

with pre-SMA has directed us to consider this connectivity

to be a pathway to an increasing awareness of the inten-

tional process towards a decision to act.

Challenges in modeling

The main focus of this paper has been to explore possible

neural mechanisms underlying intentional control. As dis-

cussed in the Introduction, certain psychophysical evidence

appears to dispute the existence of free will. This conclu-

sion is based on the observations of neural activities which

correspond to the outcome of a decision (D-moment) be-

fore the advent of a sense of agency (W-moment) in

making that decision (Libet et al. 1983; Soon et al. 2008).

By developing a computational model of the neurody-

namics of brain areas associated with intentional control,

we can suggest neural mechanisms underlying the obser-

vations in experiments on volition. Our results, including

the demonstration of neural state transitions, suggest an

explanation for those experimental observations, which we

believe are just part of what happens during intentional

control. Therefore, we argue that available experimental

observations cannot, by themselves, be taken as evidence

against free will. However, there is still a lack of relevant

data for validating our model, which constitutes the main

problem for this type of modeling. Ideally, simulation

results such as ours, mimicking EEG/MEG signals, should

be compared with experimental data collected in a similar

volitional decision-making paradigm. We hope to be able

to validate our model with such data in future work.

The objective of our study also came with challenges in

interpreting the relevant experimental results and developing

a neurodynamic model of voluntary-based actions. In order

to be able to unravel the neural mechanisms involved, it was

essential to consider the fundamental differences between

deliberate and arbitrary choice (Maoz et al. 2019), while

allegedly the initial neural states and the outcome action in

both situations may be similar. An important feature that

reveals the need for different mechanisms in these two sit-

uations is that different stimuli could drive these two pro-

cesses. Another distinguished feature is that immediate

external triggers do not necessarily initiate a decision-mak-

ing process, as was described in the Introduction, while an

internally triggered action would.

In this regard, taking into consideration the irregular

behaviour of brain neurodynamics, the central question

would be how an endogenously triggered decision-based

process could result in a convergence of a chaotic neural

pattern to a stabilized oscillatory one. It is a central chal-

lenge to understand the mechanisms involved in this pro-

cess, studying the neural assembly states in continuous

time, as well as the measure of disorder in each state.

The problems we experienced in our modeling efforts

were mainly related to recognizing and designing the

structure-based neural mechanisms behind reason-action

and action-outcome contingencies, specifically, in the

presence of endogenous triggers. The main challenges we

faced were modeling of (i) the intra-LPFC pathways (i.e.

the connectivity between the LPFC subregions) and (ii) the

feedback loops between ACC and the LPFC subregions. It

is noteworthy that the presence of an immediate external

trigger does not necessarily lead to a deliberate action.

Individuals might avoid following environmental triggers

voluntarily. Therefore, in our model, external stimuli were

solely counted as contextual information. However,

another challenge is to unravel what initiates the voluntary

pathway even in the presence of immediate external

stimuli. This question raises a great challenge in modelling

of conscious and unconscious volitional decisions.

The neuroimaging techniques have not yet developed

enough to be able to get detailed access to neural activities

in all brain areas relevant to volition (or any other cognitive

function). It also seems impossible, in some cases, to dis-

tinguish the order of neural activation in terms of time.

Although the observations seem to be correct, inferring

based on incomplete data might lead to incorrect conclu-

sions. Under these circumstances, the development of

computational models improve our incomplete interpreta-

tions about brain functionality arising from the shortcom-

ings of technology. We believe our neurocomputational

model has been able to suggest plausible aspects of an

intentional control process, preceding a decision to act. The

model results presented here can, for example, explain the
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very early (10 s) ‘‘unconscious brain activity’’ in frontal

cortex before the subject’s decision reached awareness, as

observed by Soon et al. (2008). Indeed, this kind of mod-

elling may contribute to a new perspective on the problem

of volition and free will.

Control pathways targeting contingencies

With regard to the features of intentional control, in our

model, possible neural mechanisms underlying the inten-

tional process leading to volitional decisions are based on

inspecting the reason-action, as well as action-outcome

associations. Therefore, the control pathways are based on

stimulating the associative based signals. The endogenous

and exogenous signals are considered to be reasons (mo-

tivations) behind retrieval of long-term stored potential

goals and associated actions. Based on the evoked reason-

action/goal contingencies, internal stimuli subsequently

address goal-directedness feature of intentional control, by

bringing about highly probable goals satisfying potential

actions. In these two control processes, attractors corre-

sponding to the actions and goals undergo changes towards

either stable oscillations, or more chaotic behavior.

Simulating the neural mechanisms of the intentional

control process was developed mainly based on a hierar-

chical recollection of long-term stored contingencies (i.e.

reason-action and action-outcome contingencies). The

effects of processing contingencies on attractor neurody-

namics have been observed and analyzed from different

aspects, which is discussed more thoroughly below.

Attractor (in)stability associated
with reinforcement contingencies

One of the contextual influences of hierarchical control is

based on the level of disorder of the neural attractors. In the

first step of this hierarchy, controlling exposure to endoge-

nous (signalled from ACC) and external stimuli in BA 9

gives rise to the retrieval of potential actions and associated

goals. In our model, the integrated endogenous-exogenous

signals are considered to be motivation(s) behind retrieved

actions. Loading of long-term stored reason-action and

action-outcome associations result in changes of stored

attractor disorder. This could be observed by measuring the

dimensionality and/or the entropy of the attractors.

Measuring the entropy of an attractor as a neural sig-

nature of chaos in the system have provided us with

information about the stability of the attractor. In the way

of recollection of contingencies, integrated internal–exter-

nal signal integration, as well as the strength of exposed

signals, some external signals have been removed and

some have been strengthened. In this regard, many related

and unrelated associated actions and goals have been

provoked. This process is considered to be a kind of

attentional process which occurs unconsciously.

The disorder state of a neural pattern correlated to one of

the potential actions has also been analysed in Fig. 6. With

regards to the characteristics of any feedback loop, the

enhancement of oscillatory patterns correlated to the

endogenous pattern and suppression of irrelevant ones

brings about stability. This process explains the mechanism

controlling the convergence of an attractor in phase space,

from a chaotic state to a limit-cycle one. This transfor-

mation is the result of a decrease of the disorder of the

attractors, as illustrated in Fig. 6.

Frequency changes associated
with reinforcement contingencies

The general downward trend of the measures of entropy

and Lyapunov exponent in the different states of feedback

control, demonstrate convergence of chaotic attractors state

into stability. These changes are accompanied by the

changes in frequency spectrum. The gradual frequency

shift from high-power alpha–beta frequency bands to high-

power gamma frequency indicate a feedback loop control

of potential actions. Figure 8 demonstrates the frequency

shift from high-power beta to gamma band. The signal(s) in

the gamma frequency band with higher power is (are) the

ones intended to be selected endogenously.

Externally triggered actions vs. (un)conscious
self-initiated actions

The overall objective of this paper can be summarized in

the question: ‘‘What causes an action, exerted either

endogenously or exogenously?’’ In contrast to externally

triggered actions, as was described above, the neural

mechanism underlying a volitional decision is based on a

closed-loop control system. An externally stimulated action

is controlled by a feedforward process, while an endoge-

nously controlled process is feedback-based.

Considering the simultaneous presence of external and

internal stimuli, we suggest that the strength of these

stimuli, the ratio of their powers, as well as the correlation

between them, play a key role in activating any of these

loops. In our model, the signal driving the feedforward or

feedback loops originates in BA 9. With regard to the

bidirectional interaction between this LPFC subregion and

ACC, the characteristics of the integrated internal–external

signals in the BA 9 may determine the pathway driving the

chosen action. It could either initiate the feedback loops

between ACC and the other LPFC subregions (i.e. delib-

erate pathway), or prohibit ACC propagations to other

areas (i.e. arbitrary pathway). While an experimental study

on the neural mechanisms underlying deliberate and
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arbitrary actions seems to show that no RP appears for

deliberate actions (Maoz et al. 2019), further studies are

required to unravel the significance of this.

In our model, the threshold for the emergence of con-

scious intention is associated with the synaptic strength of

the projected attractors in the pre-SMA. Provided that the

endogenous signal from ACC propagates through the

LPFC subregions, initiating the deliberate pathway, the

strength of oscillations in BA10 determines whether the

volitional action would be taken consciously or uncon-

sciously. We suggest that this process might be threshold-

based. Therefore, voluntary exertion of the body to make

an action is normally accompanied by a sense of agency.

Precedence of the recorded D-moment to W-
moment

Based on the neurocomputational modeling described

above, we may be able to explain the order of D-moment

and W-moment (Libet et al. 1982) during conscious voli-

tional action. As was described in Sect. 2, BA 10 is the

gate for driving the intentional control process through

propagating a signal projected by subcortical structures.

Hence, the efferent ‘‘conscious’’ signal to the BA 10 would

stimulate the pre-SMA, resulting in the emergence of the

preparatory process of intention. Simultaneously, oscillat-

ing signals in the BA 10, corresponding to goal competi-

tion, would propagate through BA 46, stimulating the

associated actions. The retrieved potential associated

actions in BA 46 are presumably exposed to ACC pro-

jections. The stimulation of excitatory/feedforward inhibi-

tory correlating neural units in the BA46 brings about the

emergence of signals propagated through BA 9 to pre-

SMA, leading to the final decision(s).

The signals representing competing goals and actions in

BA10 and BA46, respectively, are supposed to propagate

through two pathways (i.e. BA10 to pre-SMA and BA10 to

BA 46-BA9-preSMA) with some time delay. This interlude

explains the reason behind the precedence of the recorded

D-moment to W-moment, while the action would be made

voluntarily.

Conclusion

In this paper, we have described our neurocomputational

attractor based model, which has been applied to investi-

gate the neural mechanisms underlying intentional control.

We have also addressed differences between deliberate and

arbitrary actions, and described possible neural pathways

for deliberate choices. Our research demonstrates that in

order to be able to describe the cognitive process of

intention and volition, it is necessary to understand changes

in the neurodynamic patterns involved. The convergence of

chaotic to (near) limit cycle attractors, as well as the

observed frequency transition from beta to gamma oscil-

lations, indicate the importance of the key role of feedback

pathways in the intentional preparation of voluntary

actions. Our model of the underlying neural mechanism of

intentional control demonstrates how the feedback-based

connectivity between ACC and different LPFC subregions

engender a hierarchical intentional control process.

We conclude that current experimental observations can

only explain a part of the process of voluntary actions, but

not necessarily determine on the existence of free will. By

developing a neurocomputational model, we have been

able to provide a more comprehensive look at this process,

which could lead to further experimental predictions on

how to pinpoint brain processes important for our experi-

ence of conscious (free) will.

Appendix

Table 1 The neurodynamics of

the three-layered network in

each of the two modelled

structures, LPFC and ACC is

dependent on the variability of

structural and dynamics related

parameter values. The assigned

values are biologically plausible

and based on experimental

measurements

N Total number of network units in each of the two structures 150

Nex Number of excitatory neurons 100

Nin Number of inhibitory neurons in each layer 25

sI Decay time constant for feedforward inhibitory units 70 ms

sII Decay time constant for excitatory units 7 ms

sIII Decay time constant for feedback inhibitory units 10 ms

kex�ex Space constant for excitatory -excitatory connections 5 mm

kex�in Space constant for excitatory -inhibitory connections 5 mm

d Distance between nearest neighbors 1 mm

vex Signal velocity in excitatory-excitatory connection 0.5

Q Gain parameter in the output function of Eq. (6) 12

tsyn Synaptic delays at all connections 0.8 ms
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Sensitivity analysis of the model

The neurodynamics of the lateral prefrontal cortex

(LPFC)’s sub-regions (i.e. BA9, BA 46 and BA10) and the

anterior cingulate cortex (ACC) are dependent on structural

and dynamics related parameters listed in Table 1. The

assigned values to these parameters are based on physio-

logical measurements.

To determine the sensitivity of the model behavior to the

inputs, we have analysed the variations of the output

through a change of each parameter value by 20%. The

model is robust to changes for a range of ± 20% of all the

listed values in Table 1. It should be considered that the

stability of the system in terms of correlation dimension

will be defined in a range. So that, the correlation dimen-

sion of phase spaces in the range of 1–2 are considered

stable. The stability of the attractors has been measured as

a value in the mentioned stability range. However, the

closer the changes were to 20%, the closer the correlation

dimension was to the limit of stability (i.e. approximately

1.8). Interestingly, we also observed that as the changes get

closer to 20%, the oscillatory power in gamma frequency

decreases. However the entropy of the attractors have been

measured around 0%. The stability of the system, consid-

ering the correlation dimension and entropy values, will be

disturbed when changes exceed ? 20% of the initial val-

ues. We also observed that the rate of frequency shift

decreases when the changes reach ± 20% of the initial

values. In addition, the number of units is not considered to

be a parameter influencing the model’s behavior to a larger

extent. However, we tested the model for twice the number

of units listed in Table 1. The obtained results are similar to

the results presented in the ‘‘Simulations and Results’’

section.
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Gariépy JF, Watson KK, Du E, Xie DL, Erb J, Amasino D, Platt ML

(2014) Social learning in humans and other animals. Front

Neurosci 8:58. https://doi.org/10.3389/fnins.2014.00058.PMID:

24765063;PMCID:PMC3982061

Grebogi C, Ott E, Yorke JA (1983) Crises, sudden changes in chaotic

attractors, and transient chaos. Physica D Nonlinear Phenomena

Elsevier BV 7(1–3):181–200. https://doi.org/10.1016/0167-

2789(83)90126-4.ISSN0167-2789

Groen Y, Wijers AA, Mulder LJM, Minderaa RB, Althaus M (2007)

Physiological correlates of learning by performance feedback in

children: a study of EEG event-related potentials and evoked

heart rate. Biol Psychol 76(3):174–187. https://doi.org/10.1016/j.

biopsycho.2007.07.006

Haggard P (2008) Human volition: towards a neuroscience of will.

Nat Rev Neurosci 9(12):934–946. https://doi.org/10.1038/

nrn2497

Haggard P (2019) The neurocognitive bases of human volition. Annu

Rev Psychol 70:9–28. https://doi.org/10.1146/annurev-psych-

010418-103348. (Epub 2018 Aug 20 PMID: 30125134)

Haggard P, Eimer M (1999) On the relation between brain potentials

and the awareness of voluntary movements. Exp Brain Res

126:128–133
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