Skip to main content
Log in

Classification of bipolar disorders using the multilayer modularity in dynamic minimum spanning tree from resting state fMRI

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The diagnosis of bipolar disorders (BD) mainly depends on the clinical history and behavior observation, while only using clinical tools often limits the diagnosis accuracy. The study aimed to create a novel BD diagnosis framework using multilayer modularity in the dynamic minimum spanning tree (MST). We collected 45 un-medicated BD patients and 47 healthy controls (HC). The sliding window approach was utilized to construct dynamic MST via resting-state functional magnetic resonance imaging (fMRI) data. Firstly, we used three null models to explore the effectiveness of multilayer modularity in dynamic MST. Furthermore, the module allegiance exacted from dynamic MST was applied to train a classifier to discriminate BD patients. Finally, we explored the influence of the FC estimator and MST scale on the performance of the model. The findings indicated that multilayer modularity in the dynamic MST was not a random process in the human brain. And the model achieved an accuracy of 83.70% for identifying BD patients. In addition, we found the default mode network, subcortical network (SubC), and attention network played a key role in the classification. These findings suggested that the multilayer modularity in dynamic MST could highlight the difference between HC and BD patients, which opened up a new diagnostic tool for BD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achalia R, Sinha A, Jacob A, Achalia G, Kaginalkar V, Venkatasubramanian G, Rao NP (2020) A proof of concept machine learning analysis using multimodal neuroimaging and neurocognitive measures as predictive biomarker in bipolar disorder. Asian J Psychiatr 50:101984

    Article  PubMed  Google Scholar 

  • Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore ET (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676

    Article  PubMed  Google Scholar 

  • Ashourvan A, Gu S, Mattar MG, Vettel JM, Bassett DS (2017) The energy landscape underpinning module dynamics in the human brain connectome. Neuroimage 157:364–380

    Article  PubMed  CAS  Google Scholar 

  • Bagrow JP (2012) Communities and bottlenecks: Trees and treelike networks have high modularity. Phys Rev E 85:066118

    Article  Google Scholar 

  • Baldessarini RJ, Tondo L, Baethge CJ, Lepri B, Bratti IM (2007) Effects of treatment latency on response to maintenance treatment in manic-depressive disorders. Bipolar Disord 9:386–393

    Article  PubMed  Google Scholar 

  • Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci 108:7641–7646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassett DS, Porter MA, Wymbs NF, Grafton ST, Carlson JM, Mucha PJ (2013) Robust detection of dynamic community structure in networks. Chaos Interdiscip J Nonlinear Sci 23:013142

    Article  Google Scholar 

  • Braunstein LA, Wu Z, Chen Y, Buldyrev SV, Kalisky T, Sreenivasan S, Cohen R, López E, Havlin S, Stanley HE (2007) Optimal path and minimal spanning trees in random weighted networks. Int J Bifurc Chaos 17:2215–2255

    Article  Google Scholar 

  • Brookes MJ, Hale JR, Zumer JM, Stevenson CM, Francis ST, Barnes GR, Owen JP, Morris PG, Nagarajan SS (2011) Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56:1082–1104

    Article  PubMed  Google Scholar 

  • Cai B, Zhang G, Zhang A, Stephen JM, Wilson TW, Calhoun VD, Wang Y-P (2018) Capturing dynamic connectivity from resting state fMRI using time-varying graphical LASSO. IEEE Trans Biomed Eng 66:1852–1862

    Article  Google Scholar 

  • Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syste Technol (TIST) 2:27

    Google Scholar 

  • Choi EY, Yeo BT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciftçi K (2011) Minimum spanning tree reflects the alterations of the default mode network during Alzheimer’s disease. Ann Biomed Eng 39:1493–1504

    Article  PubMed  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Article  Google Scholar 

  • Craddock RC, James GA, Holtzheimer PE III, Hu XP, Mayberg HS (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33:1914–1928

    Article  PubMed  Google Scholar 

  • Cui XH, Xiang J, Wang B, Xiao JH, Niu Y, Chen JJ (2018) Integrating the local property and topological structure in the minimum spanning tree brain functional network for classification of early mild cognitive impairment. Front Neurosci 12:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533

    Article  PubMed  Google Scholar 

  • Delamillieure P, Doucet G, Mazoyer B, Turbelin MR, Delcroix N, Mellet E, Zago L, Crivello F, Petit L, Tzourio-Mazoyer N, Joliot M (2010) The resting state questionnaire: an introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Res Bull 81:565–573

    Article  PubMed  Google Scholar 

  • Doucet GE, Bassett DS, Yao N, Glahn DC, Frangou S (2017) The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am J Psychiatry 174(12):1214–1222

  • Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Yeo BT, Genon S (2018) Imaging-based parcellations of the human brain. Nat Rev Neurosci 19:672–686

    Article  PubMed  CAS  Google Scholar 

  • Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ (2002) The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry 59:597–604

    Article  PubMed  Google Scholar 

  • Faedda GL, Ohashi K, Hernandez M, McGreenery CE, Grant MC, Baroni A, Polcari A, Teicher MH (2016) Actigraph measures discriminate pediatric bipolar disorder from attention-deficit/hyperactivity disorder and typically developing controls. J Child Psychol Psychiatry 57:706–716

    Article  PubMed  PubMed Central  Google Scholar 

  • Firat O, Ozay M, Onal I, Oztekin I, Vural FTY (2013) Representation of cognitive processes using the minimum spanning tree of local meshes. In: conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society. Conference, 2013, pp 6780–6783

  • Fleck DE, Eliassen JC, Durling M, Lamy M, Adler CM, DelBello MP, Shear PK, Cerullo MA, Lee J-H, Strakowski SM (2012) Functional MRI of sustained attention in bipolar mania. Mol Psychiatry 17:325–336

    Article  PubMed  CAS  Google Scholar 

  • Ghahari S, Farahani N, Fatemizadeh E, Motie Nasrabadi A (2020) Investigating time-varying functional connectivity derived from the Jackknife Correlation method for distinguishing between emotions in fMRI data. Cogn Neurodyn 14:457–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Verdejo V, Martínez-Ramón M, Florensa-Vila J, Oliviero A (2012) Analysis of fMRI time series with mutual information. Med Image Anal 16:451–458

    Article  PubMed  Google Scholar 

  • Guo H, Liu L, Chen J, Xu Y, Jie X (2017a) Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI dataset. Front Neurosci 11:639

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo H, Qin M, Chen J, Xu Y, Xiang J (2017b) Machine-learning classifier for patients with major depressive disorder: multifeature approach based on a high-order minimum spanning tree functional brain network. Comput Math Methods Med 2017:4820935

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ho TC, Connolly CG, Henje Blom E, LeWinn KZ, Strigo IA, Paulus MP, Frank G, Max JE, Wu J, Chan M, Tapert SF, Simmons AN, Yang TT (2015) Emotion-dependent functional connectivity of the default mode network in adolescent depression. Biol Psychiatry 78:635–646

    Article  PubMed  Google Scholar 

  • Hsu C-W, Chang C-C, Lin C-J (2003) A practical guide to support vector classification. Taipei

  • Hutchison RM, Womelsdorf T, Gati JS, Everling S, Menon RS (2013) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp 34:2154–2177

    Article  PubMed  Google Scholar 

  • Jutla IS, Jeub LG, Mucha PJ (2011) A generalized Louvain method for community detection implemented in MATLAB. http://netwiki.amath.unc.edu/GenLouvain

  • Klumpp H, Bhaumik R, Kinney KL, Fitzgerald JM (2018) Principal component analysis and neural predictors of emotion regulation. Behav Brain Res 338:128–133

    Article  PubMed  Google Scholar 

  • Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proce Am Math Soc 7:48–50

    Article  Google Scholar 

  • Lee U, Kim S, Jung K-Y (2006) Classification of epilepsy types through global network analysis of scalp electroencephalograms. Phys Rev E 73:041920

    Article  Google Scholar 

  • Leonardi N, Van De Ville D (2015) On spurious and real fluctuations of dynamic functional connectivity during rest. Neuroimage 104:430–436

    Article  PubMed  Google Scholar 

  • Li Q, Zhang W, Zhao L, Wu X, Liu T (2022) Evolutional neural architecture search for optimization of spatiotemporal brain network decomposition. IEEE Trans Biomed Eng 69(2):624–634

  • Liang X, Wang JH, Yan CG, Kang J, Yang H, Tang HH, Gong QY, Wang L, Zhu CZ, Zang YF, He Y (2009) Different correlation metrics reveal different topological patterns in the human brain functional networks. Neuroimage 47:S170

    Article  Google Scholar 

  • Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8:204–210

    Article  PubMed  Google Scholar 

  • Maleki Balajoo S, Asemani D, Khadem A, Soltanian-Zadeh H (2020) Improved dynamic connection detection power in estimated dynamic functional connectivity considering multivariate dependencies between brain regions. Hum Brain Mapp 41:4264–4287

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuo K, Harada K, Fujita Y, Okamoto Y, Ota M, Narita H, Mwangi B, Gutierrez CA, Okada G, Takamura M (2019) Distinctive neuroanatomical substrates for depression in bipolar disorder versus major depressive disorder. Cereb Cortex 29:202–214

    Article  PubMed  Google Scholar 

  • Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RM, Petukhova M, Kessler RC (2007) Lifetime and 12-month prevalence of bipolar spectrum disorder in the national comorbidity survey replication. Arch Gen Psychiatry 64:543–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328:876–878

    Article  PubMed  CAS  Google Scholar 

  • Onton J, Westerfield M, Townsend J, Makeig S (2006) Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev 30:808–822

    Article  PubMed  Google Scholar 

  • Peng Z, Hu Q, Dang J (2019) Multi-kernel SVM based depression recognition using social media data. Int J Mach Learn Cybern 10:43–57

    Article  CAS  Google Scholar 

  • Phillips ML, Kupfer DJ (2013) Bipolar disorder diagnosis: challenges and future directions. Lancet 381:1663–1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankar A, Purves K, Colic L, Cox Lippard ET, Millard H, Fan S, Spencer L, Wang F, Pittman B, Constable RT, Gross JJ, Blumberg HP (2021) Altered frontal cortex functioning in emotion regulation and hopelessness in bipolar disorder. Bipolar Disord 23:152–164

    Article  PubMed  CAS  Google Scholar 

  • Shaffer JJ Jr, Johnson CP, Fiedorowicz JG, Christensen GE, Wemmie JA, Magnotta VA (2018) Impaired sensory processing measured by functional MRI in bipolar disorder manic and depressed mood states. Brain Imaging Behav 12:837–847

    Article  PubMed  PubMed Central  Google Scholar 

  • Shakil S, Lee C-H, Keilholz SD (2016) Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. Neuroimage 133:111–128

    Article  PubMed  Google Scholar 

  • Shao J, Dai Z, Zhu R, Wang X, Tao S, Bi K, Tian S, Wang H, Sun Y, Yao Z, Lu Q (2019) Early identification of bipolar from unipolar depression before manic episode: Evidence from dynamic rfMRI. Bipolar Disord 21(8):774–784

  • Shao J, Zhang Y, Xue L, Wang X, Wang H, Zhu R, Yao Z, Lu Q (2022) Shared and disease-sensitive dysfunction across bipolar and unipolar disorder during depressive episodes: a transdiagnostic study. Neuropsychopharmacology 47(11):1922–1930. https://doi.org/10.1038/s41386-022-01290-9

  • Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59(Suppl 20):34–57

  • Shehzad Z, Kelly AC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, Biswal BB (2009) The resting brain: unconstrained yet reliable. Cereb Cortex 19:2209–2229

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi C, Zhang J, Wu X (2020) An fMRI feature selection method based on a minimum spanning tree for identifying patients with autism. Symmetry 12:1995

    Article  Google Scholar 

  • Supekar K, Menon V, Rubin D, Musen M, Greicius MD (2008) Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 4:e1000100

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao H, Guo S, Ge T, Kendrick KM, Xue Z, Liu Z, Feng J (2013) Depression uncouples brain hate circuit. Mol Psychiatry 18:101–111

    Article  PubMed  CAS  Google Scholar 

  • Tewarie P, Hillebrand A, Schoonheim MM, Van Dijk BW, Geurts JJG, Barkhof F, Polman CH, Stam CJ (2014) Functional brain network analysis using minimum spanning trees in multiple sclerosis: an MEG source-space study. Neuroimage 88:308–318

    Article  PubMed  CAS  Google Scholar 

  • Tewarie P, van Dellen E, Hillebrand A, Stam CJ (2015) The minimum spanning tree: an unbiased method for brain network analysis. Neuroimage 104:177–188

    Article  PubMed  CAS  Google Scholar 

  • Tononi G, Sporns O, Edelman GM (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A 91:5033–5037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29:7619–7624

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Der Maaten L, Postma E, Van den Herik J (2009) Dimensionality reduction: a comparative. J Mach Learn Res 10:13

    Google Scholar 

  • Van Dijk KR, Sabuncu MR, Buckner RL (2012) The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59:431–438

    Article  PubMed  Google Scholar 

  • Vapnik V (1999) The nature of statistical learning theory. Springer science & business media

  • Wang Y, Wang J, Jia Y, Zhong S, Zhong M, Sun Y, Niu M, Zhao L, Zhao L, Pan J (2017) Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder. Transl Psychiatry 7:e1165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Sun K, Liu Z, Chen G, Jia Y, Zhong S, Pan J, Huang L, Tian J (2020) Classification of unmedicated bipolar disorder using whole-brain functional activity and connectivity: a radiomics analysis. Cereb Cortex 30:1117–1128

    Article  PubMed  Google Scholar 

  • Wee C-Y, Yang S, Yap P-T, Shen D, for the Alzheimer’s Disease Neuroimaging Initiative (2016) Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification. Brain Imaging Behav 10:342–356

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei M, Qin J, Yan R, Bi K, Liu C, Yao Z, Lu Q (2017) Abnormal dynamic community structure of the salience network in depression. J Magn Reson Imaging 45:1135–1143

    Article  PubMed  Google Scholar 

  • Yan C-G, Wang X-D, Zuo X-N, Zang Y-F (2016) DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics 14:339–351

    Article  PubMed  Google Scholar 

  • Yang Y, Cui Q, Lu F, Pang Y, Chen Y, Tang Q, Li D, Lei T, He Z, Hu S, Deng J, Chen H (2021) Default mode network subsystem alterations in bipolar disorder during major depressive episode. J Affect Disord 281:856–864

    Article  PubMed  Google Scholar 

  • Yin Z, Hou J (2016) Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes. Neurocomputing 174:643–650

    Article  Google Scholar 

  • Zamani Esfahlani F, Jo Y, Puxeddu MG, Merritt H, Tanner JC, Greenwell S, Patel R, Faskowitz J, Betzel RF (2021) Modularity maximization as a flexible and generic framework for brain network exploratory analysis. Neuroimage 244:118607

    Article  PubMed  Google Scholar 

  • Zare M, Rezvani Z, Benasich AA (2016) Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine. Clin Neurophysiol 127:2695–2703

    Article  PubMed  Google Scholar 

  • Zeng L-L, Wang D, Fox MD, Sabuncu M, Hu D, Ge M, Buckner RL, Liu H (2014) Neurobiological basis of head motion in brain imaging. Proc Natl Acad Sci 111:6058–6062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng H, Li F, Bo Q, Li X, Yao L, Yao Z, Wang C, Wu X (2018) The dynamic characteristics of the anterior cingulate cortex in resting-state fMRI of patients with depression. J Affect Disord 227:391–397

    Article  PubMed  Google Scholar 

  • Zou H, Yang J (2019) Dynamic thresholding networks for schizophrenia diagnosis. Artif Intell Med 96:25–32

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere gratitude to the Department of Psychiatry and the Department of Radiology at the Affiliated Brain Hospital of Nanjing Medical University. We are grateful for the generous support of all participants and their families.

Funding

This work was supported by the National Natural Science Foundation of China (81871066); Jiangsu Provincial Key Research and Development Program (BE2018609 and BE2019675); Jiangsu Provincial Medical Innovation Team of the Project of Invigorating Health Care through Science, Technology and Education (CXTDC2016004); Key Project supported by Medical Science and Technology Development Foundation, Jiangsu Commission of Health (K2019011); Key Project supported by Medical Science and Technology Development Foundation, Nanjing Department of Health (YKK16146 and ZKX18034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhijian Yao or Qing Lu.

Ethics declarations

Conflict of interest

All authors have no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 107 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhu, R., Tian, S. et al. Classification of bipolar disorders using the multilayer modularity in dynamic minimum spanning tree from resting state fMRI. Cogn Neurodyn 17, 1609–1619 (2023). https://doi.org/10.1007/s11571-022-09907-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-022-09907-x

Keywords

Navigation