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Abstract
An increasing number of recent brain imaging studies are dedicated to understanding the neuro mechanism of cognitive

impairment in type 2 diabetes mellitus (T2DM) individuals. In contrast to efforts to date that are limited to static functional

connectivity, here we investigate abnormal connectivity in T2DM individuals by characterizing the time-varying properties

of brain functional networks. Using group independent component analysis (GICA), sliding-window analysis, and k-means

clustering, we extracted thirty-one intrinsic connectivity networks (ICNs) and estimated four recurring brain states. We

observed significant group differences in fraction time (FT) and mean dwell time (MDT), and significant negative cor-

relation between the Montreal Cognitive Assessment (MoCA) scores and FT/MDT. We found that in the T2DM group the

inter- and intra-network connectivity decreases and increases respectively for the default mode network (DMN) and task-

positive network (TPN). We also found alteration in the precuneus network (PCUN) and enhanced connectivity between

the salience network (SN) and the TPN. Our study provides evidence of alterations of large-scale resting networks in

T2DM individuals and shed light on the fundamental mechanisms of neurocognitive deficits in T2DM.

Keywords Resting-state functional magnetic resonance � Type 2 diabetes mellitus � Cognitive impairment �
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Introduction

There are approximately 536.6 million adults with diabetes

mellitus worldwide and this number may exceed 783.2

million by 2045, 90–95% of which are type 2 diabetes

mellitus (T2DM) (Sun et al. 2022). Epidemiological stud-

ies have established that individuals with T2DM have a

significantly higher risk of incident cognitive impairment

(Biessels et al. 2014; Rawlings et al. 2019). Among the

medical complications of T2DM, cognitive impairment is

regarded as a major public health problem (Stoeckel et al.

2016) lacking in effective therapy and associated with huge

financial burden. Despite numerous brain imaging studies

focused on T2DM patients over the past 20 years (Biessels

and Reijmer, 2014; Moran et al. 2017; Biessels and Despa,

2018), the underlying neuromechanism of cognitive defi-

cits in T2DM patients remains elusive.

As previous studies indicated, changed cerebral blood

flow, altered hemodynamic response function and impaired

neurovascular coupling have been find in T2DM patients

(Duarte et al. 2015; Hu et al. 2019; Ryan et al. 2014).

Resting-state functional MRI (rs-fMRI) quantifies brain

activation depending on variations in blood oxygenation in

response to neural activities and may provide information

on abnormal functional connectivity in T2DM (Xia et al.

2015; Cui et al. 2016; Zhang et al. 2021; Huang et al.

2020a). However, most studies to date are based on func-

tional connectivity confined to regions of interest (ROIs)

rather than the whole brain. Furthermore, these studies

neglect the fact that functional connectivity of the brain is

not static over time and, on the contrary, fluctuates con-

stantly (Allen et al. 2014; Chang and Glover, 2010;

Hutchison et al. 2013; Preti et al. 2017; Calhoun et al.

2014; Alonso Martinez et al. 2020; Mennigen et al. 2019).
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Functional network connectivity (FNC) was proposed to

evaluate the connectivity between functional networks

(Jafri et al. 2008). Dynamic functional network connec-

tivity (dFNC) information can be captured using a sliding-

window method (Zalesky et al. 2014; Allen et al. 2014).

Some studies suggested that alterations of dFNC may be

related to some neurophysiological processes and neu-

ropsychiatric diseases (Wang et al. 2020; Chen et al. 2018;

Allen et al. 2014; Calhoun et al. 2014; Zhi et al. 2018) and

revealed that the functional connectivity between different

brain regions as well as its dynamic reconfiguration were

both crucial to the cognitive dysfunction. (Calhoun et al.

2014; Damaraju et al. 2014; Zhi et al. 2018; Sendi et al.

2020; Shine et al. 2016; Vatansever et al. 2015). Driven by

the importance of dFNC analysis in the investigation of

cognitive impairment, we speculate that this method will

provide new clues in understanding the mechanism of

cognitive impairment in T2DM. However, to the best of

our knowledge, no published study to date has reported the

dFNC characteristics across large-scale whole-brain

intrinsic connectivity networks (ICNs) in T2DM

individuals.

The main purpose of our study is to investigate abnor-

mal dynamic information of brain activity in T2DM indi-

viduals. We employed group independent component

analysis (GICA) (Fox et al. 2005; Mennigen et al. 2019) to

extract and classify intrinsic connectivity networks (ICNs)

(Mennigen et al. 2019; Calhoun et al. 2001; McKeown

et al. 1998) from whole-brain rs-fMRI data, applied sliding

windows and k-means clustering for dFNC analysis, and

finally characterized inter-group differences in brain states

generated by the dFNC procedure. We evaluated the tem-

poral properties of each dFNC state, including the fraction

time (FT), mean dwell time (MDT), and number of tran-

sitions (NT), as well as their correlations to MoCA scores.

This study provides novel insights into the fundamental

mechanisms of neurocognitive deficits related to T2DM.

Methods

Participants

The participants, who were between the ages of 18 and 65,

right-handed, and should have no history of neuropsychi-

atric, cerebrovascular, tumor, autoimmune and any other

diseases that might affect brain structure and cognitive

function, as well as without MRI contraindications, were

recruited from December 2019 to December 2020. The

diagnosis of T2DM was determined based on the criteria

set by the American Diabetes Association (ADA) based on

fasting plasma glucose (FPG) levels (C 7.0 mmol/L) or 2-h

oral glucose tolerance test (OGTT) glucose levels

(C 11.1 mmol/L). After image preprocessing (see section

‘‘Data Preprocessing’’), two of the 102 individuals were

eliminated, resulting in a final number of 100 participants

ultimately involved in fMRI data analysis (54 T2DM

individuals and 46 healthy controls). The study was

authorized by the Medical Research Ethics Committee of

Guangzhou University of Chinese Medicine (NO. K2019-

143). All participants were fully informed of the purpose,

process, and risks of the study before signing the informed

consent.

Cognitive assessment

Before image acquisition, the Chinese version of the

Montreal Cognitive Assessment (MoCA) scale testing was

administered to assess the general cognitive function of

each participant (Nasreddine et al. 2005). MoCA involves a

30-point scale with 7 modules, corresponding to visual

spatial executive function, naming ability, memory, atten-

tion, language function, abstraction, and orientation. If the

number of years of education is not more than 12 years,

one point is added, provided that the final score does not

exceed 30 points. A score of less than 26 indicates cogni-

tive impairment.

Image acquisition

A 3 T Siemens MAGNETOM Prisma MRI scanner (Sie-

mens Healthcare, Erlangen, Germany) with a 64-channel

head coil was used for MRI acquisition in the First Affil-

iated Hospital of Guangzhou University of Chinese Med-

icine (Guangzhou, Guangdong, China). The 3D T1-

weighted MPRAGE sequence was employed with the fol-

lowing parameters: TE = 2.98 ms, TR = 2530 ms, Flip

angle = 7 Æ , FOV = 256 9 256 mm2, slice thick-

ness = 1.0 mm, voxel size = 1.0 9 1.0 9 1.0 mm3, TA =

5 min 58 s.

For rs-fMRI, simultaneous multi-slice (SMS) imaging

was employed with echo-planar imaging (EPI) sequence

with the following parameters: TE = 30 ms, TR = 500 ms,

flip angle = 60 Æ , FOV = 224 9 224 mm2, slice thick-

ness = 3.5 mm, voxel size = 3.5 mm 9 3.5 mm 9 3.5

mm. For each participant, a total of 960 volumes (35 slices

per volume) were collected in 8 min 7 s. To minimize head

motion and scanner noise, foam pads and earplugs were

used for all the participants. The participants were also

instructed to keep their eyes closed, move as minimally as

possible, relax, and let their minds wander freely without

falling asleep.
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Data processing

The data was processed via SPM 12 (http://www.fil.ion.ucl.

ac.uk/spm), GRETNA (version 2.0, http://www.nitrc.org/

projects/gretna) (Wang et al. 2015) and MATLAB 2013b

(The Mathworks Inc., Natick, MA, United States). The first

10 time points of each participant’s rs-fMRI data were

discarded to eliminate the destabilizing effects that may be

caused the maladjustment of the machine and participants

at the beginning of the scan, leaving 950 images for sub-

sequent analysis. Slice-timing correction was not con-

ducted considering the TR = 500 ms, since prior

investigation suggested that slice-timing is not necessary

for short TR (Smith et al. 2013). Further pre-processing

steps were as follows: registration of T1-weighted images

to mean volume, spatial normalization of functional images

to the standard Montreal Neurological Institute (MNI)

space with warping parameters estimated from co-regis-

tered T1 images using Diffeomorphic Anatomical Regis-

tration Through Exponentiated Lie algebra (DARTEL)

(Goto et al. 2013), reslicing the voxel size to 3 9 3 9 3

mm3, and smoothing of the normalized data with a 6 mm

full width half max (FWHM) Gaussian kernel to increase

signal-to-noise ratio. After data preprocessing, two of the

102 participants were excluded because of excessive head

motion (displacement[ 2 mm or rotation[ 2 Æ ). All steps

above were repeated for the MRI data from the remaining

100 subjects because DARTEL normalization involves

registration of all subjects (Ashburner, 2007).

Independent component analysis

Spatial independent components (ICs) and their corre-

sponding time courses were calculated using GICA

implemented in the Group ICA of fMRI Toolbox (GIFT,

version 4.0b, https://trendscenter.org/software/gift/) (Cal-

houn and Adali 2012; Calhoun et al. 2001; Lewis et al.

2020). According to previous studies (Allen et al. 2014;

Rabany et al. 2019; Espinoza et al. 2019; Jiang et al. 2020;

Mennigen et al. 2019; Huang et al. 2020b), the rs-fMRI

data were decomposed by subject-level principal compo-

nent analysis (PCA) for dimension reduction to 60 com-

ponents. The data of the individuals were then

concatenated temporally and reduced by group-level PCA

to yield 40 independent components. The infomax algo-

rithm from ICASSO was applied to derive the independent

spatial map and time course of each component. The

algorithm was repeated 20 times to improve the stability of

the decomposition (Ma et al. 2011). The subject-specific

spatial maps and time courses were back-reconstructed

from group-level independent components given by GICA

(Calhoun et al. 2001; Erhardt et al. 2011).

31 of the 40 obtained ICs were identified as ICNs and

categorized into 12 networks (Shirer et al. 2012; Franco

et al. 2009) based on the following criteria: (1) the peak

cluster locations should be in gray matter, (2) the spatial

distributions overlapped minimally with ventricular and

edge regions of the brain, and (3) the time courses should

be predominantly low-frequency signals (Allen et al.

2011).

Dynamic functional network connectivity

Analysis was conducted using the temporal dFNC toolbox

in GIFT (Allen et al. 2014; Mennigen et al. 2019; Jiang

et al. 2020). The time courses of the 31 ICNs were linearly

detrended, despiked, and band-pass filtered

(0.01–0.15 Hz). The size of the sliding window used to

calculate dFNC was set to 44 s (88TRs) according to

previous studies, which show that dynamic information can

be captured with a window length of 30–60 s (Hutchison

et al. 2013; Shirer et al. 2012; Allen et al. 2014; Faghiri

et al. 2018; Mennigen et al. 2019; Jiang et al. 2020). With a

step size of 1 TR (= 0.5 s), the window was slid. By

convolution a rectangular window with a Gaussian function

(r = 3), a tapered window was generated. A total of 862

dFNC matrices were yielded by calculating a full correla-

tion matrix for each window across 31 ICNs.

K-means clustering was employed on the FNC matrices

of all sliding windows of all subjects to detect recurring

FNC patterns. The squared Euclidean distance algorithm

(500 iterations and 150 replications) was applied to eval-

uate the similarity of functional connectivity patterns

between various time windows (Malhi et al. 2019). Four

whole-brain FNC recurring patterns were identified using

the elbow method (ratio of within- to between-cluster

distances) (Allen et al. 2014). Windows from all partici-

pants were clustered into four states by adopting cluster

centroids as initializations. The following dFNC indices

were computed (Mennigen et al. 2019; Jiang et al. 2020;

Wang et al. 2020): (1) the fraction time (FT), which indi-

cates the percentage of total time in a brain state, (2) the

mean dwell time (MDT), which represents the time spent

in a given state before shifting to a different, and (3) the

number of transitions (NT) between discrete dynamic

states.
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Statistical analysis

Two-sample t-tests were used to detect group differences in

normally distributed data, and nonparametric Mann–

Whitney U-tests were used for non-normally distributed

data. The Chi-square test was used for categorical vari-

ables. The statistical differences between groups were

controlled False Discovery Rate (FDR) correction. The

relationships between MoCA scores and dynamic temporal

properties were evaluated using Spearman partial correla-

tion analysis controlled with age and education. P\ 0.05

was regarded as statistically significant. All statistical

analyses were carried out using R (version 4.1.0) on

R-Studio (https://www.rstudio.com/).

Validation analysis

To verify robustness, we repeated the dFNC analysis by

fixing the window length (44 s/88 TRs) and varying the

number of clusters (5 and 6) and fixing the number of

clusters (4) and varying the window length (30 s/60 TRs

and 60 s/120 TRs) (Wang et al. 2020). Detailed informa-

tion can be found in supplementary materials.

Results

Demographics and clinical characteristics

There were no significant differences in terms of age,

gender, years of education, systolic blood pressure

(Systolic BP), and diastolic blood pressure (Diastolic BP)

between the T2DM and HC groups. The HC group showed

significantly higher MoCA scores compared with the

T2DM group. Detailed demographic and clinical infor-

mation for the T2DM and HC groups are displayed in

Table 1.

Identification of functional networks

Twelve functional networks were ultimately summarized

from the 31 ICs extracted via ICA (Fig. 1), including the

auditory network (AUN: IC 20 and IC 25), visual network

(VN: IC 1, IC 2, IC 4, IC 5, IC 11 and IC 14), sensorimotor

network (SMN: IC 3, IC 7, IC 9 and IC 10), left executive

control network (LECN: IC 26 and IC 37), right executive

control network (RECN: IC 24, IC 30, IC 36 and IC 40),

dorsal default mode network (dDMN: IC 15), ventral

default mode network (vDMN: IC 21), precuneus network

(PCUN: IC 8, IC 19 and IC 31), salience network (SN: IC

22 and IC 34), dorsal attention network (DAN: IC 23, IC

33 and IC 38), ventral attention network (VAN: IC 27) and

cerebellar network (CB: IC 13 and IC 16). The dDMN,

vDMN and PCUN are the three subnetworks of the DMN.

Dynamic functional network connectivity
analysis

We used a sliding-window method to extract 862 windows

from the time courses of all subjects and applied k-means

clustering to group the dFNC matrices associated with

these windows into four states, which respectively

Table 1 Demographics and

Clinical Characteristics of the

participants

T2DM (N = 54) HC (N = 46) t /U /v2 P -Value

Gender 3.52 0.0607

Female 24 (44.4%) 30 (65.2%)

Male 30 (55.6%) 16 (34.8%)

Age (years) 46.0 (40.0, 54.0) 49.5 (35.5, 55.0) 1225.00 0.9091

Education (years) 12.0 (9.0, 14.0) 12.0 (9.0, 12.0) 1239.00 0.9859

Systolic BP (mmHg) 130 ± 17.4 125 ± 17.7 1.64 0.1046

Diastolic BP (mmHg) 85.2 ± 9.65 82.0 ± 8.86 1.74 0.0867

MoCA 27.0 (25.0, 28.0) 28.0 (27.0, 29.0) 838.50 0.0047**

T2DM Duration (years) 3.00 (2.00, 7.00) NA NA NA

HbA1c (%) 8.75 (7.10, 11.08) NA NA NA

FBG (mmol/L) 8.05 (7.05, 10.42) NA NA NA

FINS (lIU/mL) 8.59 (5.30, 13.35) NA NA NA

Data are presented as N (%), median (Q1, Q3) and mean ± SD. T2DM, Type 2 diabetes mellitus group;

HC, healthy control group; Systolic BP, systolic blood pressure; Diastolic BP, diastolic blood pressure;

MoCA, Montreal cognitive assessment; HbA1c, Hemoglobin A1c; FBG, fasting blood glucose; FINS,

fasting insulin. Chi-square test was used for statistical difference of gender. Two sample t-test was used for

statistical group differences of systolic blood pressure and diastolic blood pressure. Nonparametric Mann–

Whitney U test was performed for group comparison of the remaining variables. Two asterisks (**) indicate

the significant level with P\ 0.01
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Fig.1 Spatial maps of the 31 intrinsic connectivity networks (ICNs).

The 31 ICNs were grouped into 12 functional networks based on their

anatomical and functional properties. AUN, auditory network; SMN,

sensorimotor network; VN, visual network; LECN, left executive

control network; RECN, right executive control network; dDMN,

dorsal default mode network; vDMN, ventral default mode network;

PCUN, precuneus network; SN, salience network; DAN, dorsal

attention network; VAN, ventral attention network; CB, cerebellar

network. dDMN, vDMN and PCUN belong to default mode network.

The spatial maps of each domain are overlaid onto a standard

template and represented by color. (Color figure online)

Cognitive Neurodynamics (2023) 17:1525–1539 1529

123



accounted for 36%, 30%, 18% and 16% of the windows.

The centroids of the four states are shown in Fig. 2. State 1,

the most common state, exhibited extensively weak inter-

network and intra-network connectivity, but relatively high

positive local intra-network connectivity within primary

sensory networks (VN, SMN). State 2 was a hypocon-

nected state with weak inter-network and intra-network

connectivity except slightly positive connectivity within

the VN and SMN and between the SMN and SN. State 3

demonstrated strong positive inter-network and intra-net-

work connectivity within the primary sensory networks

(AUN, SMN, VN), as well as positive connectivity

between these primary sensory networks and the DAN, but

slightly negative inter-network and intra-network

Fig. 2 Four identified dFNC states using k-means clustering method

derived from ICA components. Each cluster represents a particular

dFNC state. The total number and percentage of the recurrence of

each state are listed above each cluster. The colors in the matrices

reflect positively correlations (green to red range) or negatively

correlations (green to blue range). (Color figure online)

Fig. 3 The dFNC matrices states of HC group. HC, healthy control

group. The total number of HC participants involved in each state are

listed above. The colors in the matrices reflect positively correlations

(green to red range) or negatively correlations (green to blue range).

(Color figure online)

Fig. 4 The dFNC matrices states of T2DM group. T2DM, Type 2

diabetes mellitus group. The total number of T2DM participants

involved in each state are listed above. The colors in the matrices

reflect positively correlations (green to red range) or negatively

correlations (green to blue range). (Color figure online)
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connectivity within the LECN, RECN, and dDMN. State 4

exhibited positive inter-network and intra-network con-

nectivity involving almost all the networks, except for the

slight negative connectivity between IC13 in CB domain

and other ICNs. The centroids of the brain states of the HC

and T2DM groups are shown in Figs. 3 and 4 respectively.

Few subjects in the HC group experienced state 4 and few

subjects in the T2DM group experienced state 3 (P\ 0.05)

(Table 2).

The significant differences in connectivity strength

between HC and T2DM individuals in dFNC states are

shown in Fig. 5 (two-sample t-test, P\ 0.05, pFDR =

0.05). We found that in state 2, the connectivity strength

between the RECN and AUN/ VN/ PCUN/ SN/VAN, and

between PCUN and VAN was significantly higher, but the

connectivity strength between PCUN and SMN and CB

was significantly lower in the T2DM group (Fig. 5a).

Although significant group differences that survived the

test were not as many as in state 2, state 3 showed a similar

Table 2 The number of

participants and temporal

properties of two groups in each

dFNC state

T2DM (N = 54) HC (N = 46) t /U /v2 P -value

NP-State1 46 (85.19%) 41 (89.13%) 0.08 0.7746

NP-State2 51 (94.44%) 40 (86.96%) 0.91 0.3403

NP-State3 31 (57.41%) 38 (82.61%) 6.24 0.0125*

NP-State4 35 (64.81%) 20 (43.48%) 3.75 0.0529

FT-State1 0.31 (0.04, 0.76) 0.17 (0.08, 0.60) 1309.50 0.6424

FT-State2 0.19 (0.07, 0.42) 0.18 (0.07, 0.61) 1202.00 0.7847

FT-State3 0.02 (0.00, 0.11) 0.20 (0.07, 0.41) 634.00 \ 0.001**

FT-State4 0.12 (0.00, 0.42) 0.00 (0.00, 0.09) 1712.50 \ 0.001**

MDT-State1 68.50 (23.88, 227.54) 54.60 (28.00, 111.25) 1355.50 0.4336

MDT-State2 47.00 (19.25, 76.30) 62.00 (20.75, 96.33) 1156.00 0.5543

MDT-State3 9.25 (0.00, 46.62) 72.80 (35.25, 107.75) 617.50 \ 0.001**

MDT-State4 50.60 (0.00, 90.96) 0.00 (0.00, 50.12) 1687.50 \ 0.01**

NT 8.39 ± 4.66 8.57 ± 4.31 - 0.20 0.8457

Data are presented as N (%), median (Q1, Q3) and mean ± SD. T2DM, Type 2 diabetes mellitus group;

HC, healthy control group; NP, number of participants; FT, fraction time; MDT, mean dwell time; NT,

number of transitions; Q1, the first quartile; Q3, the third quartile. Chi-square test was used for statistical

difference of number of participants. Two sample t-test was used for statistical group differences of number

of transitions. Nonparametric Mann–Whitney U test was performed for group comparison of the remaining

variables. One asterisk (*) indicates significance level P\ 0.05; Two asterisks (**) indicate significance

level P\ 0.01

Fig. 5 Significant group differences of dFNC in each state. T2DM,

Type 2 diabetes mellitus group; HC, healthy control group. A, B and

C illustrates significant group differences of dFNC between type 2

diabetes mellitus and healthy control group (T2DM - HC) in state 2,

3 and 4 respectively (two sample t-test, P\ 0.05, FDR corrected).

The results are displayed as -sign (t-statistic) 9 log10 (p-value). No

meaningful value survived state 1. The color reflects higher connec-

tivity (green to red range) or lower connectivity (green to blue range)

in type 2 diabetes mellitus than healthy control group. (Color

figure online)
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pattern: higher connectivity between RECN and VN/

PCUN, while prominent lower connectivity between

PCUN and SMN/ CB in the T2DM group (Fig. 5b). State 4

displayed higher connectivity between the VN and DAN in

the T2DM group than the HC group (Fig. 5c). No mean-

ingful value survived in state 1.

Temporal properties of dynamic functional
network connectivity states

Compared to the HC group, the T2DM group exhibited

significantly decreased FT and MDT in state 3 (Mann–

Whitney U = 634 and 617.5, respectively, P\ 0.001,

pFDR = 0.05) and remarkably increased FT and MDT in

state 4 (Mann–Whitney U = 1712.5 and 1687.5, respec-

tively, P\ 0.01, pFDR = 0.05). The FT and MDT in state

1 and state 2 showed no statistically significant group

differences (Fig. 6), as well as the NT. Detailed informa-

tion on the temporal properties is shown in Table 2.

Relationships between temporal properties
and MoCA scores

We found significant negative correlations between MoCA

scores and FT (R = - 0.229, P = 0.023) as well as between

MoCA scores and MDT (R = - 0.223, P = 0.027) in state

4. Slight positive correlations, but not statistically signifi-

cant, can be found between MoCA scores and FT

(R = 0.150) as well as between MoCA scores and MDT

(R = 0.163) in state 3 (Fig. 7). No significant correlation

Fig. 6 The comparisons between type 2 diabetes mellitus and healthy

control group in fraction time and mean dwell time in each dFNC

state. T2DM, Type 2 diabetes mellitus group; HC, healthy control

group. The top violin figure is a comparison of the fraction time for

each state of the two groups, the bottom violin figure is a comparison

of the mean dwell time for each state of the two groups. Two asterisks

(**) indicate significance level P\ 0.01 with Mann–Whitney U test.

(Color figure online)

Fig. 7 Correlations between MoCA scores and temporal properties of

dFNC. With age and education as covariates, we found significant

negative correlation between MoCA scores and the fraction time

(Spearman correlation, R = 0.229, P = 0.023) as well as between

MoCA scores and the mean dwell time (Spearman correlation,

R = 0.223, P = 0.027) in state 4. We also found slightly positive

correlations between MoCA scores and the fraction time as well as

between MoCA scores and the mean dwell time in state 3, but not

statistically significant (P[ 0.05). No meaningful correlation sur-

vived between MoCA scores and temporal properties of dFNC in state

1 and state 2 (R was close to 0). (Color figure online)
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can be found between MoCA scores and other temporal

properties in state 1 and state 2.

Discussion

In the current study, we investigated aberrant dynamic

connectivity in T2DM individuals. With GICA, we iden-

tified 31 ICN-related components and associate them with

12 brain networks. We estimated four recurring states via a

sliding window method together with k-means clustering

from the fMRI time courses. We analyzed the character-

istics of each state and revealed significant differences

between T2DM and HC groups in FT and MDT of state 3

and state 4. In addition, there was a significant negative

correlation between the MoCA scores and FT/ MDT in

state 4. In the T2DM group, the inter-network and intra-

network connectivity decreased and increased respectively

for the DMN and TPN. Our results also indicated enhanced

connectivity between the SN and TPN in the T2DM group.

Our findings shed light on the underlying neural basis of

cognitive decline in T2DM individuals.

Recurring brain states

Accordance with previous findings (Allen et al. 2014;

Viviano et al. 2017; Gu et al. 2020), the most frequent

recurring state, i.e., state 1, is a ‘sparsely connected state’

(Wang et al. 2020) with weak and diffused connectivity.

This state is associated with self-referential thinking and

sleepiness (Allen et al. 2018), is considered a steadier state

with increased interoceptive awareness and decreased

vigilance (Wang et al. 2020; Fu et al. 2019), and is

regarded as representing the baseline connectivity pattern

(Viviano et al. 2017). The frequent occurrence of this

condition may imply that, in order to conserve energy, the

human brain prefers to remain in a state with low infor-

mation transmission (Gu et al. 2020). Although previous

research showed that patients with brain disorders may stay

longer in this state (Wang et al. 2020), our study indicated

no inter-group differences in state 1 between T2DM and

HC groups, suggesting that this state is stable and unaltered

in T2DM.

State 2 was also associated with relatively weak and

diffused connectivity. State 3 was a ‘highly segregated

state’ (Wang et al. 2020) with greater modularity

(Bonkhoff et al. 2020). Growing evidence suggests that

Alzheimer’s disease (AD) (Brier et al. 2014), schizophrenia

(Yang et al. 2016a) and stroke (Siegel et al. 2018) are

potentially associated with abnormal modular properties.

Modularity is also associated with cognitive function

(Gallen et al. 2016; Wang et al. 2020) and learning

capacity (Bassett et al. 2011). Our results showed that the

FT and MDT of the T2DM group decrease remarkably in

state 3. State 4 was least frequently recurring but was most

connected. Strong connectivity was thought to be associ-

ated with cognitive function compensation (Voets et al.

2009; Yang et al. 2018). It is however also believed to be

linked with neuropsychiatric dysfunction (Centeno and

Carmichael, 2014; Liang et al. 2021; Tan et al. 2021). Our

results showed that the FT and MDT of the T2DM group

increased considerably in state 4. Both the FT and MDT in

this state were negatively correlated with MoCA scores.

Group differences

From the group differences in states 2, 3, and 4, we can

observe in the T2DM group that (1) the connectivity

strength between the DMN and the SMN/ CB, as well as

within the DMN was reduced; and (2) the connectivity

strength between the RECN and the AUN/ VN/ PCUN/

SN/ VAN, and between the DAN and the VN was

increased. The RECN, DAN and VAN all belong to the

TPN. The DMN, TPN and SN have crucial impact on

cognitive status (Kim and Kim, 2021; Hasenkamp et al.

2012).

The identification of DMN is considered as one of the

most prominent findings in cognitive neuroscience (Jenk-

ins, 2019). This network was originally regarded as the task

negative network (TNN) for its deactivation when the brain

is occupied by a task (Fox et al. 2006). In comparison to

other brain regions, the DMN is characterized by higher

activity in the resting-state, which hence constitutes

essential conscious experience (Smallwood and Schooler,

2006). Subsequent studies illustrate that the DMN is clo-

sely associated with sustaining the balance and steadiness

of internal states during rest, mind wandering, internal

recognition (such as autobiographical memory, perspective

memory, self-reflection and first-person perspective) and

social cognition (Buckner et al. 2008, Poerio et al. 2017,

Raichle, 2015, Andrews-Hanna et al. 2014, Jenkins, 2019).

Investigators recently suggest that the DMN is crucial for

integrating external and internal information, as well as

aligning thoughts and actions (Yeshurun et al. 2021). It has

been well documented that reduced activity in DMN is

related to cognitive damage (Jenkins, 2019; Bonnelle et al.

2011). Consistent with previous T2DM studies (Yang et al.

2016b; Cui et al. 2015; Musen et al. 2012; Tan et al. 2019;

Chen et al. 2015), we detected impaired functional inter-

network and intra-network connectivity of DMN in T2DM

patients. Due to the pivotal role DMN played in cognitive

function, we divided it into the dDMN, vDMN and PCUN

(Shirer et al. 2012) to investigate connectivity alteration in

each subnetwork. Recent studies suggested these three

subnetworks display heterogeneous functional connectivity

both in task state (Su et al. 2021) and resting state (Chen
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et al. 2017), while we did not find similar patterns in our

dFNC results. However, we noticed that the differences in

functional connectivity between T2DM and HC groups in

the DMN were mainly reflected by differences in the

PCUN. The PCUN is recognized as a key hub of the DMN,

contributing to abstract cognitive processes, episodic

memory retrieval, self-representation and conscious expe-

rience (Cavanna and Trimble 2006). Decreased connec-

tivity of precuneus has been observed in mild cognitive

impairment (MCI) (Mattioli et al. 2021), major depressive

disorder (MDD) (Zhu et al. 2012) and early AD patients

(Zhou et al. 2008).

The connectivity alterations were also detected in the

TPN and SN. The TPN is an integrated region, including

the executive control network (ECN), DAN and VAN

(Boyatzis et al. 2014). The TPN, in contrast to the DMN,

contains a series of areas that are activated during the goal-

oriented task (Fox et al. 2005) and working memory task

(Hampson et al. 2010), but deactivated in the resting state.

The relationship between the TPN and DMN is generally

regarded as anticorrelated, creating a fundamental neural

constraint for cognitive function (Boyatzis et al. 2014).

Hyper-activation in the TPN areas during tasks predicts

worse accuracy (Grady et al. 2010) and TPN hyper-acti-

vation can be seen in the patients with mild cognitive

impairment (Clement and Belleville 2010; Grady et al.

2003). The SN is a pivotal network for it can perceive and

filter external stimuli and recruit relevant functional net-

works (Menon and Uddin 2010). It plays a crucial role in

allocating attention, as well as switching between inter-

nally and externally directed cognition. Specifically, it can

mediate the activation balance between the DMN and the

ECN, depending on cognitive tasks or the resting state

(Seeley, 2019; Chand et al. 2017). Although a growing

number of studies on neurodegenerative diseases have

focused on SN connectivity, the conclusions are often

contradictory in different studies (Badhwar et al. 2017;

Kim and Kim, 2021). For instance, some studies find

increased SN connectivity in AD patients (Balthazar et al.

2014; Zhou et al. 2010), while other studies indicate

decreased connectivity (Filippi et al. 2013). To date, few

studies paid attention to the connectivity of the TPN and

SN in T2DM patients. Almost all these T2DM studies just

focus on alterations in static functional connectivity, and

the conclusions from different studies are not entirely

consistent. Some studies (Yang et al. 2016b) showed

impaired inter-network and intra-network connectivity of

the ECN, DAN and SN in T2DM patients, while other

studies observed decreased connectivity of the DAN, VAN

(Xia et al. 2015), and SN (Zhang et al. 2021). But another

study showed increased connectivity in the SN (Cui et al.

2016) of T2DM patients. Unlike previous studies, our

results indicated that the inter-network connectivity of the

RECN, DAN and VAN, which all belonged to TPN, was

increased in the T2DM group. Notably, our findings

demonstrated a typically opposite tendency between the

TPN and DMN, that is, enhanced inter-network connec-

tivity of the TPN but decreased inter-network connectivity

of the DMN in the T2DM group, corroborating the

antagonistic relationship between the TPN and DMN.

Furthermore, we also noticed increased connectivity

between RECN and SN in T2DM group. Hence, we

speculate that dFNC analysis approach can capture more

information that is meaningful for investigating the neural

mechanism of T2DM.

Validation analyses

Results obtained under different time window length and

number of clusters showed good similarity to those in our

main study. By summarizing the results of validation

analyses under different parameters, we found that com-

pared to the HC group, the T2DM group always occupied

lower proportion, shorter FT and MDT in the high segre-

gated connected state, but higher proportion, longer FT and

MDT in the fully connected state. Moreover, FT and MDT

in the high segregated connected state were positively

correlated with MoCA scores, while that in the fully con-

nected state were negatively correlated with MoCA scores.

These also consistent with our main research conducted

under a 44 s (88TRs) time window length and 4 clusters,

indicating the high segregated connected state and fully

connected state may the crux differences between T2DM

and HC, which might be related to cognitive impairment.

The inter-network and intra-network connectivity of DMN

decreased, while those networks belonging to the TPN

showed increased inter-network and intra-network con-

nectivity in T2DM group were also confirmed in the vali-

dation analyses. The above results illustrated the reliability

and repeatability of our dFNC analysis for T2DM and HC

individuals.

Limitations

Our research has several limitations. Firstly, the general-

izability of our findings might be constrained due to the

relatively small sample size of our investigation. To vali-

date our observations, we may enlarge the sample size in

subsequent research (by using, for instance, open data-

bases). Additionally, we did not evaluate T2DM patients’

treatment regimens in this study since they are complicated

and constantly changing. Future studies can take the ther-

apeutic interventions into account to assess their im-

pacts on the functional connectivity of T2DM patients.

Finally, our study is a cross-sectional study, we are con-

sidering longitudinal studies in the future to monitor the
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functional connectivity alterations before and after treat-

ment, it will be of great significance to establish the pivotal

point of cognitive function impairment in T2DM patients

and assess the clinical treatment effects, as well as to probe

sensitive imaging indicators for T2DM cognitive deficit.

Conclusion

In this study, we explored potential differences between

T2DM and HC individuals using dynamic FNC analysis.

We found that T2DM individuals occupied lower propor-

tion and shorter FT/ MDT in a high segregated connected

state, while longer FT/ MDT and significant negative

correlations with MoCA scores in a fully connected state.

In addition, our study revealed functional connectivity

alterations in three crucial cognition-related networks

including the DMN, TPN and SN in T2DM patients. We

uncovered the opposite connectivity patterns of the DMN

and TPN. We also determined the role of the PCUN as a

core region of the DMN in altered functional network

connectivity in T2DM. These findings confirmed that

dFNC analysis can capture additional information about

brain network connectivity alterations of T2DM patients,

providing novel insights into the underlying mechanisms of

neurocognitive impairment related to T2DM.
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