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Abstract
Repetitive thoughts and motor programs including perseveration are bridge symptoms characteristic of obsessive com-

pulsive disorder (OCD), schizophrenia and in the co-morbid overlap of these conditions. The above pathologies are

sensitive to altered activation and kinetics of dopamine D1 and D2 receptors that differently influence sequence learning

and recall. Recognizing start and stop elements of motor and cognitive behaviors has crucial importance. During chunking,

frequent components of temporal strings are concatenated into single units. We extended a published computational model

(Asabuki et al. 2018), where two populations of neurons are connected and simulated in a reservoir computing framework.

These neural pools were adopted to represent D1 and D2 striatal neuronal populations. We investigated how specific neural

and striatal circuit parameters can influence start/stop signaling and found that asymmetric intra-network connection

probabilities, synaptic weights and differential time constants may contribute to signaling of start/stop elements within

learned sequences. Asymmetric coupling between the striatal D1 and D2 neural populations was also demonstrated to be

beneficial. Our modeling results predict that dynamical differences between the two dopaminergic striatal populations and

the interaction between them may play complementary roles in chunk boundary signaling. Start and stop dichotomies can

arise from the larger circuit dynamics as well, since neural and intra-striatal connections only partially support a clear

division of labor.
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Introduction

The basal ganglia and striatum are critically involved in

sensorimotor chunking, constructing performance units of

sequence representations that once learned, can be treated

as separate entities (Graybiel 1998; Solopchuk et al. 2016;

Jin and Costa 2010; Jin et al. 2014). What are the com-

putational advantages of the two parallel dopaminergic

receptor systems (D1 and D2 receptor families) in chunk

learning and recall? The classical view is that stimulation

of striatal dopamine D1 receptors of GABA-ergic principal

medium spiny neurons (MSN) facilitates the direct path-

way activity and movement, while dopamine D2 receptors

of MSNs influences the indirect pathway and inhibits

movement or competing actions (Gerfen and Surmeier

2011; Cruz et al. 2022; Cui et al. 2013). Imbalances in the

activity of the D1-expressing direct pathway and D2-ex-

pressing indirect pathway MSNs can contribute to basal

ganglia disorders (Krajeski et al. 2019).

Recurrent collateral connections among MSNs are not

symmetrical. D2 MSNs have additional and stronger inhi-

bitory connections on D1 MSNs than vice versa (Planert

et al. 2010; Taverna et al. 2008). Thus, the dominating

interaction between these two projection systems relies

mostly on collateral projections from D2 MSNs to D1

MSNs.

Phasic dopamine release primarily increases D1 occu-

pancy, whereas D2 occupancy is less affected (Dreyer et al.
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2010). Low-level baseline tonic dopamine release is suf-

ficient for altering D2 receptors (Schultz 2007; Durstewitz

and Seamans 2008). Dopamine can bias action selection by

modulating striatal direct and indirect pathways (Howard

et al. 2017).

Detection and marking of chunk boundaries over time

and adjusting the boundary detection threshold is a

dynamic and crucial process for adaptive habit formation

(Ramkumar et al. 2016; Barnes et al. 2005). Sequence

segmentation can rely on detecting boundaries between

events by transients (Asabuki et al. 2018). It is likely that

different mechanisms with increasing degrees of abstrac-

tion representing sequence knowledge can operate in par-

allel to each other and both chunking as well as

transitioning might benefit from recognizing start / stop

signals (Dehaene et al. 2015).

Dopamine in excessively repetitive behavior
in animals

OCD can involve highly complex stereotypies of action

and thought sequences (Taylor 2010). A rodent study found

that dopamine agonists and both D1 and D2 receptors can

modulate the duration of OCD behavior (Hoffman 2012).

A D2 agonist increased the total duration and frequency of

compulsive checking behavior (Hoffman 2012). The

excessive repetition of grooming sequences observed in the

D1 agonist-treated rat has been speculated to be a potential

model for complex tics observed in OCD and Tourette

syndrome (Taylor 2010). Concurrent stimulation of D1 and

D2 receptors in the dorsal caudate-putamen enhanced both

locomotor activity and stereotypy.

Rodent studies show that there are cycles of behavior,

which are relatively indivisible rigid behavioral units or

‘‘chunks’’. The decision of whether or not to enter a new

behavioral cycle is an important control point and could-

depend on D1 receptor dynamics. In rats, pharmacological

boosting by dopamine D1 agonists produces sequential

super-stereotypy of syntactic grooming chains (Berridge

et al. 2005).

Electrophysiological rodent data showed that the

response of dopamine neurons to the omission of an

expected reward depends on a phasic decrease in the

stimulation of D1 receptors (Joel and Doljansky 2003).

Such a decrease may disrupt switching to a different

behavior, thus resulting in a repeated emission of the same

behavior. Interestingly, the effect of a D1 agonist on

grooming in rodents was blocked by the D2 receptor

antagonist haloperidol (Joel and Doljansky 2003).

Another experimental rodent study showed that full

stimulation of the dopamine D1 receptor can increase the

rate of transition through a stereotyped behavioral pattern.

However, the mechanism through which dopamine

facilitates this chain shortening is not clear (Matell et al.

2006). The timing of syntactic grooming phase transitions

may involve a D1-mediated internal clock process that is

altered by full D1 agonist activation. Thus, a full dopamine

D1 agonist might increase the speed of the clock used for

the temporal control of grooming and shorten phase dura-

tions (Matell et al. 2006). The finding that dopamine

receptor antagonists decrease the time spent engaged in

repetitive behavior might help to explain why neuroleptics

can be effective in treating OCD-like conditions (Hoffman

2012).

Dopamine in repetitive thought and motor
programs in humans

Binding potentials of D1 receptors in caudate and puta-

men were found to be reduced in OCD patients compared

with healthy controls (Olver et al. 2009). Reduced D1

binding in the striatum of OCD patients may represent

agonist-induced down-regulation of D1 receptors sec-

ondary to an increased dopaminergic drive. These findings

suggest that meso-cortical dopamine inputs via D1 recep-

tors may play a role in the etiology of OCD (Olver et al.

2009, 2010) although there is some methodological debate

(Cervenka 2019).

Schizophrenia patients often have an impaired ability to

shift response sets. This impaired shifting is accompanied

by perseverative responses (Crider 1997). In some earlier

studies, schizophrenic perseveration was viewed as the

consequence of a task-inappropriate D2 receptor-mediated

re-selection of a previously activated cortico-striatal pro-

cess (Crider 1997), or a consequence of low D2 stimulation

(Avery and Krichmar 2015).

Dopamine agonists, like amphetamine are well-known

triggers of repetitive behavior, from simple motor move-

ments to definitive compulsive behaviors (Zike et al. 2017,

Denys et al. 2013). Atypical anti-psychotic medications,

which act in part as dopamine receptor antagonists,

may trigger obsessive-compulsive symptoms in some

patients. Anti-dopamine D1 and D2 receptor antibodies are

more frequent in patients with obsessive-compulsive

symptoms (Cox et al. 2015; Endres et al. 2022).

A study with a selective radiolabeled ligand found that

the total of D1 and D2 receptors in the caudate and puta-

men is not significantly different between schizophrenic

patients and healthy controls (Sedvall et al. 1995). How-

ever, there was a significant reduction in the D1 signal in

high-intensity regions of the basal ganglia when a selec-

tive D1 antagonist ([11C]SCH 23390) was used (Sedvall

et al. 1995). These results suggested reduced D1-receptor

density in the patch compartment of the basal ganglia in

schizophrenic patients (Sedvall and Karlsson 1999). The

low D1 receptor density in this compartment may result in
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altered activity of the D1/D2 regulatory feedback system to

limbic brain regions in schizophrenia (Sedvall and Karls-

son 1999; Sedvall et al. 1995).

Related references of D1 and D2 receptor-mediated

effects on stereotypy, action initiation and termination of

repetitive behavioral sequences are presented in Table 1.

Computational Experiments

To improve understanding of how D1 and D2 asymmetries

may contribute to the dynamics of sequence processing and

disorders, eight computational experiments were per-

formed with modifications to the reservoir computing

model described by Asabuki et al. (2018). The first

experiment investigated the effects of varying MSN

response time constants. The second set of simulations

explored the self-feedback to each MSN population. The

third experiment studied the effects of varying connec-

tion probabilities. The fourth simulation set examined the

effect of varying weights within the D1 and D2 recep-

tor mediated MSN populations. In the fifth experiment, we

investigated the effects of assymetric feedback between the

D1 and D2 receptor dominated MSN populations. The sixth

simulation set examined the effects of an increased input

chunk size. In the seventh experiment, a combination of 3

separate parameters were altered. Those parameters were

chosen from values which contributed separately to earlier

chunk recognition. Finally, in the eighth simulation set we

studied the effects of variations in learning rate and training

times on chunk recognition. Throughout the computational

experiments, time offset of the peak activity (TOPA) was

calculated, which can represent the recognition of the

chunk. The first five experiments are illustrated in Fig. 1.

1: Varying the time constants of the reservoir
units

There is an anatomical and physiological dichotomy

between D1 and D2 receptor expressing MSNs. Electro-

physiological measurements have demonstrated differential

single cell excitability and membrane time constants, as

well as differential channel composition and variations in

morphology (Gertler et al. 2008). D2 MSNs have a shorter

membrane time constant than D1 MSNs and it is accepted

that the D1 MSNs are less excitable than D2 MSNs. Iden-

tical synaptic events generate smaller excitatory post-sy-

naptic potentials (EPSPs) in D1 MSNs than D2 MSNs.

Injecting current into dendrites of D1 MSNs was also less

effective in generating repetitive spiking than in the D2

MSNs (Gertler et al. 2008). Given these motivations, we

investigated the effects of varying time constants in the

striatal D1 and D2 MSN populations (Fig. 1.A.).

2: Self-feedback within D1 and D2 MSN
populations

This simulation set explored the effects of collective self-

feedback within each MSN population (Burke et al. 2017)

(Fig. 1.B.). Cholinergic interneurons modulate the

excitability of spiny neurons. They span large regions of

the striatum and receive inputs from many MSNs. This

feedback control system allows cholinergic neuronal

dynamics to influence both the D1 and D2 MSNs.

3: Connection probabilities of the MSN reservoirs

The intra-striatal connectivity between striatal projection

cells modulates neuronal firing and shapes the output of the

circuit (Wickens et al. 2007; Burke et al. 2017). A striatal

study used a connectivity value of 20% based on mean

data from several different laboratories (Wickens et al.

2007). Intrastriatal MSN ! MSN connections have shown

asymmetries. Experimental rodent work showed a 7%

connection probability between D1 MSNs and a 23%

connection probability between D2 MSNs (Planert et al.

2010). Computational studies based on experimental

results used a weaker D1 MSN !D1 MSN than D2 MSN !
D2 MSN coupling (Bahuguna et al. 2015, 2019). We

examined the effects of simultaneously varying connection

probabilities within the two parallel reservoirs

(p) (Fig. 1.C.), input projections to reservoir units and non-

zero weights in the self-feedback weight matrices, repre-

sented collectively as p3.

4: Weights of the internal connections
within the MSN reservoirs

In the next set of simulations, internal coupling strengths

were altered in the reservoirs (gG), while keeping the

connection probabilities constant. The strength of the

intrastriatal synaptic connections are influenced by

dopaminergic input and pathologies. We investigated the

effect of varying the internal coupling strength on TOPA

during chunk presentation (Fig. 1.D.).

5: Feedback between D1 and D2 MSN
populations

There is an experimentally observed asymmetry of recur-

rent and mutual connections among the two types of MSNs

in the striatum (Planert et al. 2013; Taverna et al. 2008). In

the original modeling study, the teaching signals were

chosen to be symmetric with respect to the interchange of

the two readout units. This was determined such that the

two systems stop training when both readout units output
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similar response patterns (Asabuki et al. 2018). However,

the connection probability from D2 ! D1 MSNs is higher

(Planert et al. 2013; Taverna et al. 2008). Thus, the D1

MSNs receive a higher number of stronger synapses from

D2 MSNs than vice versa (Planert et al. 2010). High

amplitude GABA currents have been recorded for depo-

larized MSNs, which is coherent with a strong hyperpo-

larizing effect, but a depolarizing effect of GABA has also

been previously described in striatum (Mercuri et al.

1991), (Szalisznyó and Érdi 2000). GABA might have a

shunting inhibition effect also (Fino et al. 2018).

Accordingly, the effects of varying the teaching signal

coefficient (j) between the two populations was explored.

The activation function (implemented as tanh in the model)

is allowed to become both negative and positive. Negative

activation may correlate with shunting inhibition between

inhibitory populations as well. The teaching signal from

contra populations can then become inhibitory and result in

competitive dynamics (Fig. 1.E.).

6: Increasing the chunk size

To investigate the sensitivity of start and stop signaling on

chunk size, the length of the chunks were increased from

four to six characters. Other simulation parameters were

unchanged except for time constants, which were varied in

both reservoirs as in experiment 1.

7: Combining parameters from experiments 1, 2
and 4

Given the previously described separate parameter sensi-

tivities in experiments 1, 2 and 4, parameters were selected

for early chunk recognition and combined for this simu-

lation. The gG and hG values were chosen to be 0.5 and 0.4

respectively. The time constant parameter space was ex-

plored, as in experiments 1 and 6.

8: Effects of learning rate and training time
on chunk learning

The model learning rate (a) represents neural plasticity and

training time represents previous exposure to chunks dur-

ing learning. The TOPA z-score is a representation of peak

signal strength and an indication of how well the reservoirs

learned to recognize the chunks during training. The

training time and learning rate were independently varied

to investigate effects on TOPA z-score.

Model description

We adapted the modeling framework published and spec-

ified previously by (Asabuki et al. 2018). The following

equation was employed for the two reservoirs:

s
dxi
dt

¼ � xiðtÞ þ gG
XNG

j¼1

JGGij rjðtÞ þ hGJ
GZ
i zðtÞ

þ
XNI

l¼1

JGIil IlðtÞ þ rniðtÞ
: ð1Þ

where each reservoir is composed of NG neurons with

i=1,2,...NG. The dynamics of each reservoir neuron is

represented by x. IlðtÞ represents the activity of the

inputs and NI is the number of input neurons. niðtÞ denotes
the random (Wiener) process and r is the standard devia-

tion. JGG, JGZ and JGI describe the recurrent internal

connection matrix of the reservoir, the self-feedback matrix

and the matrix between input and the reservoir neurons,

respectively. The recurrent internal and self-feedback

connections are non-plastic. The parameter gG scales the

recurrent internal weight matrices. The parameter hG
scales the self-feedback weight matrices. The activation

function is defined as:

riðtÞ ¼ tanhðxiðtÞÞ: ð2Þ

The instantaneous output is given by z(t), where w is the

readout weight vector:

zðtÞ ¼ wTrðtÞ: ð3Þ

The readout unit is connected with n reservoir neurons by

the weight vector w, which is trained using the FORCE

learning algorithm (Sussillo et al. 2009). Weights w

undergo learning with a teaching signal given by the output

Table 1 Related references of D1 and D2 receptor-mediated effects on

the initiation and termination of repetitive motor and behavioral

programs. Animal studies are highlighted, while human studies and

reviews are not
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of the partner network. The teaching signal is described

according to:

fiðtÞ ¼ ½tanhðbzjðtÞ=bÞ�þ: ði; j ¼ 1; 2; i 6¼ jÞ ð4Þ

where bzjðtÞ is the normalized output of a readout unit (see

in methods in Asabuki et al.), the threshold linear function

½x�þ returns 0 if x 5 0, and ½x�þ ¼ x if x[ 0. Note that in

simulation set 5 this constraint was removed, such that

function f can go negative. The constant b = 3 was set as in

the original work (Asabuki et al. 2018). The error signal

was defined as:

eiðtÞ ¼ ziðtÞ � jfiðtÞ: ði ¼ 1; 2Þ ð5Þ

The parameter j was 1 in all experiments except in sim-

ulation set 5, where it was varied between �1 and 1. For

initial values of weight matrices, see methods in (Asabuki

et al. 2018). The connection probability p of reservoir

neurons is 1 in all experiments except 3, 4 and 5. In

experiments 3 and 4, the parameter p3 indicates a com-

mon connection probability in matrices JGG, JGZ and JGI.

Parameter values are summarized in Table 2 for each

experiment.

Definition of time offset of peak activity (TOPA)

The maximum post-training activity values (peak) of

readout units during the chunk presentation periods were

calculated for every simulation. The time position of

this peak activity after the start of the presented chunk was

determined for every simulation and is denoted as TOPA.

For example, Fig. 3 shows activity plots for each readout

unit with vertical lines marking TOPA. For experiment 5,

the minimum peak was also calculated.

Numerics

Simulations were performed on a compute cluster at the

UPPMAX supercomputer center at Uppsala University.

Simulations used python 3.8 and had a timestep of 1 ms.

Simulations were averaged over 10 different seeds for each

parameter regime.

Results

In simulation experiment 1, we examined the effects of

varying time constants (s) in the two parallel MSN net-

works (Fig. 1.A., Fig. 2., Fig.3.). The time constants of

each population were independently varied between 2 and

30 ms.

We found that neural activity often peaked earlier dur-

ing the chunk when the time constants of the reservoir were

shorter, perhaps similar to the response of Start cells

(Figs. 2.A., B, 3.A.). With increased time constant values,

the peak activity shifted more often towards the end of the

chunk, perhaps similar to Stop cells (Fig. 2.C., 3.B.). This

modeling result implies that asymmetric time constants of

the two parallel D1 and D2 dominated MSNs may con-

tribute to differential signaling at the start and stop posi-

tions in chunks. The distributions of peak activity

(TOPA) are represented as histograms in Fig 2. With short

time constants, TOPA may occur during leading chunk

segments, as can be seen with four clusters in the his-

togram, likely corresponding to presented chunk charac-

ters (Fig. 2.B). With longer time constants, TOPA occurs

most often at the end of chunk presentation (Fig. 2.C).

Table 2 Summary of the

parameters used in simulation

experiments

Parameter Exp.1

Fig.2.

Exp.2

Fig.4.

Exp.3

Fig.5.A.

Exp.4

Fig.5.B.

Exp.5

Fig.6.

Exp.6

Fig.7.

Exp.7

Fig.8.A.

Exp.8

Fig.8.B.

NG 300 300 300 600 300 300 300 300

n 300 300 300 300 300 300 300 300

r 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

b 3 3 3 3 3 3 3 3

s1; s2 2-30 2-30 10,10 10,10 10,10 2-30 2-30 10,10

hG 1 0.1-2.2 1 1 1 1 0.4 1

p 1 1 0.1-1.0 0.3 0.25 1 1 1

p3 1 1 0.1-1.0 0.3 1 1 1 1

gG 1.5 1.5 1.5 0.25-2.25 1.5 1.5 0.5 1.5

k 1 1 1 1 –1 to 1 1 1 1

chunksize 4 4 4 4 4 6 4 4

a 100 100 100 100 100 100 100 20-160
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Fig. 1 Schematic representation

of the two-pool D1 and D2

medium spiny striatal network

system. Parallel projections

from the cortex provide

sequenced input. Both striatal

populations compute output

which provides feedback

teaching signals to itself and the

other population (top panel). Z

represents the output of readout

units for each reservoir. (A)
Experiment 1 looks at the

effects of different time

constants (s) in the two

population sets. (B) Experiment

2 looks at the effects of self-

feedback within each population

(hG). (C) Experiment 3 explores

the effects of varying

connection probabilities (p) of

input connections, recurrent

connections within reservoirs

and the self-feedback matrix.

(D) Experiment 4

investigates the effects of

varying internal coupling

strengths (gG) in the reservoir

networks. (E) Experiment 5

shows the effects of varying the

coefficient (j) of the teaching

signal from the other reservoir
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In computational experiment 2, we altered the self-

feedback gain (hG) within the reservoir networks

(Fig. 1.B.). A monotonic increase was observed as the gain

hG increased. With lower self-feedback gain (or weaker

feedback coupling), the peak activity more often signals

the beginning of the chunk. As self-feedback gain

increased, peak activity shifted towards the end of the

chunk (Fig. 4.A.). Histograms show that with low feed-

back gain, TOPAs can occur earlier in chunks (Fig. 4.B.),

while with stronger feedback, TOPAs accumulate at the

end of chunks (Fig. 4.C.). This implies that TOPAs are

sensitive to the contributions of previous states, depending

on time constants. Note that in Fig. 4.A. TOPA was aver-

aged across both populations, but treated as separate

samples in Fig. 4.B and C.

In simulation experiment 3, the effects of varying

combined connection probabilities (p3) were examined

(Fig. 5.A.). The connection probability was varied between

0.1 and 1 on input projections to reservoir units, internal

recurrent connections within the reservoirs themselves and

the weights in the self-feedback matrix. When p3 is low,

TOPAs during chunk presentation occured with lower

z-scores, indicating a weaker signal strength. As p3

increases, TOPA z-scores gradually increase, indicating

higher statistical significance with denser connectivity

(Fig. 5.A.). The z-score represents the number of standard

deviations away from mean activity of the reservoirs.

In simulation experiment 4, the effects of scaling the

intrinsic weight matrix was analyzed (gG) (Fig. 1.D.). This

simulation used p3 = 0.3 for connection probabilities. A

non-monotonicity was observed as the gain of the intrinsic

weight matrix was varied (Fig. 5.B.), with higher values

the network is more likely to signal the end of the chunk.

The highest TOPA was observed at gG = 1.5 for both

populations, which also had the highest z-score (not

shown). These results suggest that weaker D1 MSN ! D1

MSN (Planert et al. 2010; Taverna et al. 2008) may result

in network activity which more often signals the beginning

of chunk while stronger D2 MSN ! D2 MSN connections

more often contribute to signaling the end of chunks

(Fig. 5.B.).

In simulation experiment 5, the reservoir teaching sig-

nals were investigated, which originate from the opposing

population. During training, the differences in activity

levels are used as error signals to adjust the readout

weights. This experiment included coefficients j for

teaching signals from the opposite reservoir and indepen-

dently varied them from -1 to 1. On activation peaks during

chunk recognition, a z-score was computed. In the baseline

case j is 1 on both teaching signals, which result in the

reservoirs seeking to achieve a consensus. When j is -1 on

both teaching signals, the reservoirs compete, perhaps as

go and no-go pathways do. Fig. 6.A. shows the positive

z-scores when activation peaks are positive and Fig. 6.B.

shows the negative z-scores when activation peaks are

negative. Low z-scores approach the mean population

activity levels. When the teaching signals have opposing

signs, the reservoirs do not learn properly, and the z-scores

Fig. 2 Varying the time constants (s in ms) of the neural units in the

two pools (Fig. 1.A). (A) Shows TOPA of readout units during chunk

presentation for values of s in both populations. (B) Shows a

histogram distribution of TOPA with s ¼ 2 in both populations. (C)
Shows a histogram distribution of TOPA with s ¼ 10 in both

populations

Cognitive Neurodynamics (2024) 18:217–232 223

123



are near the mean. The corners where the signs are the

same show either collaborative (j = 1) or competitive (j =

-1) activations. Fig. 6.C. is a single trial that shows one

population in red with j = 1 and the other in blue with j =

0.5. Fig. 6.D. is one emergent variation with j = -1 and

competitive dynamics. Fig. 6.E. is another emergent vari-

ation with j = -1 that shows one population in red peaking

at the beginning of the chunks and the other population in

blue peaking at the ending of the chunks. These dynamics

may indicate that some level of competition is necessary

between populations to achieve start/stop chunk signaling.

In simulation experiment 6, the size of the chunk was

increased from 4 to 6 characters. As in experiment 1, the s1
and s2 parameter space was explored. Small s values again
support early peak activity on partial chunk recognition

(Fig. 7.A.), which disappear with longer time constants

(Fig. 7.B., C.). The distribution histogam in Fig. 7.B. at

s ¼ 2 in both populations now shows 6 clusters rather than

the original 4, likely corresponding with the addi-

tional presented chunk characters. The histogram in

Fig. 7.C. has s ¼ 30 in both populations, showing a dis-

tribution gradient peaking at the presentation of the last

chunk character. These results indicate that time constants

(s) may contribute to start/stop signaling at least partially

independent of chunk size.

In simulation experiment 7, the combined parameter

space results in recognition of the earlier part of the chunk

while the basic structure of the previously observed ten-

dency is preserved, such that shorter time constants result

in earlier chunk recognition (Fig. 8.A.). The nonmono-

tonicity in the 2-dimensional surface reflects the chunk

segments, having 4 characters.

Simulation experiment 8 examined the learning prop-

erties of the model with s ¼ 10 in both populations, by

varying the training times from 1 to 10 s (baseline) and the

learning rate a from 20 to 160 (100 in baseline). Fig. 8.B.

shows that training converged to a maximum learning

capability at a learning rate of a = 100 and training time of

10 s.

Discussion

We propose that D1 and D2 receptor-dominated striatal

MSN dynamics can contribute to start and stop signaling

cues and thus enable a chunking strategy which improves

performance in sequence processing (Solopchuk et al.

2016). In OCD and schizophrenia, this chunking strategy is

altered, which can give rise to some of the overlapping

symptomatology. Chunking during sequence learning is a

dopamine-dependent process (Tremblay et al. 2010; Taylor

2010). In a rodent study, the D1 and D2 MSNs showed

different patterns of lick sequence-related activity and

different phases of oscillation time-locked to the lick cycle,

both at coarse and fine timescales (Chen et al. 2021). A D2

receptor antagonist has been shown to have deleterious

effects on the chunking of separate movements into inte-

grated motor sequences in monkeys (Tremblay et al. 2009).

Perseverative errors in schizophrenia result in continued re-

selection of previously activated outputs (Yogev et al.

2003; Szalisznyó et al. 2019). Over-switching is a coun-

terpart of perseveration, and both can be characteristic of

schizophrenia and OCD. The underlying D1 and D2

receptor pathology could contribute to parsing and

Fig. 3 Examples of post-

learning readouts of both

populations. Shaded intervals

indicate the chunk

presentation periods, which the

network was trained to

recognize. The red and

blue plots represent activity in

each population. Vertical red

and blue lines represent TOPA

for each population within

chunk periods. (A) Simulation

when the time constants s were

selected as 2 and 6 ms in

respective populations. (B)
Time constants s were 10 ms in

both populations
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concatenation error in these conditions (Fig. 9.) (Yogev

et al. 2003). Compared with normal performance of the

same motor tasks, OCD rituals are longer in duration and

comprise a greater repertoire of idiosyncratic (unnecessary)

acts (Eilam 2017). A human study showed that baseline

striatal D2/D3 receptor binding is decreased in OCD,

supporting the hypothesis of chronically increased

endogenous dopaminergic activity (Denys et al. 2013).

D1 receptors have been demonstrated to have a greater

sensitivity for phasic dopamine transmission (Dreyer et al.

2010). On the other hand, D2 activation might facilitate

switching between conflicting mental representations

(Bensmann et al. 2020; Agnoli et al. 2013). The literature is

controversial on whether the D1 and D2 MSNs signal more

initiation or termination of sequences. D1 neurons are more

relevant to cue perception and initiation of specific motor

action, whereas D2 neurons are more involved in post-

movement events (Sheng et al. 2019). One rodent study

(Jin et al. 2014) implicated that the initiation vs. execution

of actions involve different subsets of D1 and D2 MSNs.

When the MSN neurons were subdivided, a similar per-

centage of D1 MSNs signaled the sequence start vs. stop,

while the majority of D2 MSNs preferentially displayed

activity related to the start rather than the end of the

Fig. 4 Varying the recurrent self-feedback gain hG (Fig. 1.B.) in both

populations. (A) Shows that with higher feedback TOPA is shifted

towards later parts of the chunk. (B) Shows a histogram distribution

of peak activity with hG ¼ 0:2 for both populations. (C) Shows a

distribution with hG ¼ 1:8 for both populations

Fig. 5 (A) Shows simultaneously varying connection probabilities

(p3) of input projections, internal unit connections and self-feedback

matrices on both reservoirs (Fig. 1.C.). The z-score on the Z axis

represents the statistical significance of TOPA occurrence.

(B) Shows TOPA non-monotonicity when varying the strengths of

connections gG of internal units
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Fig. 6 Varying kappa j, the
teaching signal coefficient from

the contra reservoir. The z-score

represents the statistical

significance of TOPA

occurrence. A z-score

approaching zero is near

baseline (mean) readout activity

during a simulation trial.

(A) TOPA significance in

the population which emerges

as excitatory. (B) TOPA
significance in population which

emerges as inhibitory.

(C) Shows readout dynamics

with j ¼ 1 for one reservoir in

blue and 0.5 for the other in red,

showing a lower activation

amplitude. (D) An emergent

example with j ¼ �1 for both

reservoirs, producing

competitive effects.

(E) Another example with j ¼
�1 in both reservoirs, showing

possible activity similar to start/

stop cells

226 Cognitive Neurodynamics (2024) 18:217–232

123



sequence (Jin et al. 2014). Another rodent study demon-

strated that the major role of D2 MSNs is in action initia-

tion (Augustin et al. 2020). In the following sections,

related literature is discussed in the context of our model-

ing results.

Neuropathological correlates related
to the simulation results

Time constants and excitability

Dopamine has opposite effects on excitability of D1 and D2

MSNs (Planert et al. 2013). Phosphodiesterase 10A

(PDE10A) is a unique postsynaptic signaling molecule

located mainly in the striatal MSNs, regulating neuronal

excitability. Alteration of this striatal enzyme was associ-

ated with schizophrenia symptoms (Bodén et al. 2017). The

decreased striatal PDE10A concentration in schizophrenia

patients may correlate with increased MSN excitability. As

MSNs become more depolarized, even small inputs can

cause neurons to fire. The signal-to-noise ratio may drop,

making the system more susceptible to noise (Bodén et al.

2017; Persson et al. 2020). PDE10A mediates salience if

Fig. 7 Varying the time constants (s in ms) of neural units in the two

pools with an increased chunk length of 6 characters (from 4). (A)
Shows TOPA while varying s in both reservoirs during chunk

presentation. (B) Histogram distribution of TOPA with s ¼ 2 in both

populations. (C) Histogram of TOPA with s ¼ 30 in both populations

Fig. 8 (A) Varying the time constants (s in ms) of neural units in the

two pools while combining parameter values from experiment 2 and

4, selected for contribution to early chunk recognition hG ¼ 0:4,
gG ¼ 0:5. (B) Effects of varying the learning rate and training time on

the TOPA z-score during chunk recognition
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reward-predicting cues are impaired in PDE10A knockout

mice performing reinforcement tasks (Piccart et al. 2014).

In schizophrenia, elevation in D2 receptor density and

occupancy is observed in the striatum of drug-free and

drug-naive patients (Laruelle 1998; Simpson 2010). Rec-

ognizing chunks prematurely may contribute to positive

symptoms.

A rodent study demonstrated that chronic upregulation

of D2 receptors increases the excitability of MSNs via

downregulated expression of inward rectifier potassium

channels (Kir). Changes in excitability of MSNs may

impair filtering (Cazorla et al. 2012). These findings are in

agreement with our results in experiment set 1, where the

D2 mediated dynamics could more likely signal start pha-

ses, due to shorter membrane time constants, thus faster

single neuron dynamics. However, in vivo studies suggest

that D2 MSNs convey a powerful stop signal. This sig-

naling is most likely implemented via the sub-thalamic

Fig. 9 Schematic representation

of the hierarchical parsing and

concatenation of sequences.

(A) Shows D1 and D2 receptor

responses to varying dopamine

concentrations over activity and

time. It illustrates that D1

receptors are preferentially

stimulated by phasically

released dopamine, whereas

low-level baseline tonic

dopamine release is sufficient

for stimulating D2 receptors

(Schultz 2007). (B) Summarizes

some of the investigated

parameter contributions towards

recognizing beginnings and

endings of the chunks.

(C) Illustrates the signaling of

the chunk boundaries.

Sequences can be concatenated

into an single integrated

sequence or a single chunk can

be decomposed into

constituents. We suggest that D1

and D2 receptor mediated

dynamical boundary signaling

may influence hierarchical

chunk learning and processing
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nucleus to the substantia nigra pars reticulata, thus via

larger network effects (Garr 2019; Klaus et al. 2019),

which this current model cannot capture. Electrophysio-

logical properties differ between MSN subtypes, with D2

MSNs exhibiting increased intrinsic excitability compared

with D1 MSNs (Gertler et al. 2008). However, it should be

noted that electrophysiological properties (e.g. membrane

time constants), vary in the literature, depending on animal

species, striatal regions, the electrophysiological metric

and perhaps age (Willett et al. 2019; Planert et al. 2010;

Planert et al. 2013).

Altered self-feedback gain

We explored the effects of varying the self-feedback within

each population (Franklin and Frank 2015; Burke et al.

2017). The D1 and D2 receptors differently modulate the

cholinergic interneuron excitability (Szalisznyó and Müller

2009). Since cholinergic neurons receive inputs from the

MSNs and provide feedback by acutely modulating MSN

excitability and synaptic function, as well as controlling

striatal plasticity, we regard the feedback parameter to

represent the activity of these cholinergic interneurons,

which were not modeled explicitly. Experiment set 2

showed that with increased feedback the network is more

likely to signal towards the end of the chunk (Fig. 4.A.).

Intrastriatal connection strengths

MSN collateral axon terminals are under dopaminergic

regulation which can become dysfunctional when the

dopaminergic innervation changes. A rodent study

demonstrated that D1 and D2 MSNs form high-rate, one-

way collateral connections with a homotypic preference.

Physiologically, the D2 MSN ? D2 MSN coupling is

stronger than the D1 MSN ? D1 MSN connections.

Chronic D2 receptor activation results in a greater synaptic

efficacy via a coordinated increase of synaptic GABAA

receptor clusters and GABA release sites (Lalchandani

et al. 2013). However, another study demonstrated that

overexpression of dopamine D2 receptors in MSNs

decrease the complexity and length of their dendritic arbors

(Cazorla et al. 2012). Decreased arborization is further

associated with increased electrical excitability, due to a

reduction of inward rectifier potassium currents (Cazorla

et al. 2012). The methodological differences between the

above studies might contribute to the divergent results on

dendritic arborization changes. Simulation results in

experiment 4 are more consistent with this latter finding

that decreased arborization occurs from overexpression of

D2 receptors (Cazorla et al. 2012), which may be associ-

ated with decreased connection strength. This, together

with increased neural excitability, can shift the D2 MSN

population towards recognizing the beginning of the

chunks.

Other computational studies

A recent computational study found that when two parallel

reservoirs were operating while using identical parameters,

the performance of the system cannot be further improved.

By setting suitable mismatched parameters between the

two reservoirs, better prediction performance and higher

memory capacity could be achieved. The two parallel

reservoirs could increase the data processing rate as well

(Yue et al. 2021).

It has been suggested that setting leaking rates differ-

ently for different network units (e.g., by splitting them to

several sub-populations with constant value) can help in

multi-timescale tasks (Lukosevicius 2012; Szalisznyó

et al. 2017). Another computational study predicted that

both low D1 and/or high D2 states can result in persever-

ative errors (Avery and Krichmar 2015). It was shown in

cortical circuits that heterogeneous encoding of the input

allows flexible learning resulting from the variety of

timescales present in the reservoir (Bernacchia et al. 2011).

Our current study shows that having different parameters in

the two parallel MSN reservoir networks contributes to an

improved signaling of the beginning or end positions of the

presented and learned chunks.

Limitations of the study

We used an abstract and mechanistic model to represent the

D1 and D2 MSN population dynamics. We did not take into

account the certain overlap of these two neuronal pools.

Further, the feedback from the striatum to the cortex via the

cortico-striato-thalamo-cortical neural pathways is not

represented in the current study. We did not take into

account the fact that D1 receptor activation of working

memory in the prefrontal cortex occurs at lower concen-

trations than needed for the modulation of motor function,

thus the phasic or tonic distinction is an oversimplification.

The temporal dynamics of the dopaminergic input is also

excluded which carries an important dynamical modulation

and opens several other avenues for future work. A recent

modeling study challenged the view that differences in

receptor affinity introduce asymmetries in D1 and D2 sig-

naling and proposed that both pathways respond to the

whole range of dopamine signals and integrate the dopa-

mine signal over longer time scales (Hunger et al. 2020).

Further computational studies should investigate the

boundary signaling in light of these simulations. The

teaching signals between reservoirs in the utilized model

drove the populations towards consensus (similar
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TOPAs) when j = 1 for both populations, rather than

driving the populations towards opposite ends of the

chunks. Further work can explore additional mechanisms

on separating TOPAs for start/stop signaling. Our analysis

was based on network and single cell dynamical constraints

from animal (mostly rodent) data since human results are

still limited, even though animal properties are not always

directly translatable to human physiology. Both OCD and

schizophrenia are heterogenous diseases. We sought to

dissect the possible striatal D1 and D2 MSN and small

network effects on sequence processing and did not con-

sider possible larger circuit pathologies.

Conclusion

To summarize, this study provides a mechanistic compu-

tational framework for some aspects of the D1 and D2

receptor-mediated chunk learning. In our model, the

dopamine related modulation can contribute to chunk

boundary signaling. Our modeling results imply that

dynamical differences between the two segregated

dopaminergic striatal populations may be advantageous,

providing complementary functions for sequence start/stop

recognition and execution. Some aspects of the functional

dichotomy can likely be better explained by larger network

modulations. We related our computational predictions to

possible underlying neuropathophysiologies of OCD and

schizophrenia symptoms (Szalisznyó and Silverstein 2019).

Such biologically grounded approaches and diagnostics

will contribute to the development of better informed

dimensional taxonomies and classification systems of

psychopathology (Sharma and Acharya 2021; Szalisznyó

and Silverstein 2021).
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