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Abstract
Recent experimental evidence suggests that oscillatory activity plays a pivotal role in the maintenance of information in

working memory, both in rodents and humans. In particular, cross-frequency coupling between theta and gamma oscil-

lations has been suggested as a core mechanism for multi-item memory. The aim of this work is to present an original

neural network model, based on oscillating neural masses, to investigate mechanisms at the basis of working memory in

different conditions. We show that this model, with different synapse values, can be used to address different problems,

such as the reconstruction of an item from partial information, the maintenance of multiple items simultaneously in

memory, without any sequential order, and the reconstruction of an ordered sequence starting from an initial cue. The

model consists of four interconnected layers; synapses are trained using Hebbian and anti-Hebbian mechanisms, in order to

synchronize features in the same items, and desynchronize features in different items. Simulations show that the trained

network is able to desynchronize up to nine items without a fixed order using the gamma rhythm. Moreover, the network

can replicate a sequence of items using a gamma rhythm nested inside a theta rhythm. The reduction in some parameters,

mainly concerning the strength of GABAergic synapses, induce memory alterations which mimic neurological deficits.

Finally, the network, isolated from the external environment (‘‘imagination phase’’) and stimulated with high uniform

noise, can randomly recover sequences previously learned, and link them together by exploiting the similarity among

items.

Keywords Working memory � Brain rhythms � Neural mass models � Theta-gamma phase coupling � Binding and

segmentation � Spatio-temporal memory

Introduction

Brain rhythms are large fluctuations in neuronal activity,

which are observed with scalp EEG and local field poten-

tial recordings, and reflect the synchronized activity of

large populations of neurons (Buzsáki and Draguhn 2004).

This synchronized activity plays a relevant role in cogni-

tion, since the execution of complex cognitive tasks

requires the co-ordinate participation of multiple neural

populations, which form a functional network and work in

synergy (Ward et al. 2003; Wang 2010; Fries 2015).

Synchronization of neural activity is also relevant for

memory consolidation and learning, favoring optimal

synapse reinforcement among neurons which fire together,

and depotentiation of synapses among neurons that do not

show any evident temporal correlation (Düzel et al. 2010).

The relevant role of brain rhythms in cognition is further

emphasized by the enormous amount of observations in

humans and animals, showing that the shape, power and

phase coupling of brain rhythms is altered in different

tasks, that these patterns are modulated by sleep and

attention, and reflect various aspects of human perception,

memory and behavior (Wang 2010; Roux and Uhlhaas

2014; Watson and Buzsáki 2015).

Among the different oscillations in brain activity, a

pivotal role in recent years is ascribed to the theta (4–8 Hz)
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and gamma ([ 30 Hz) rhythms, especially during memory

tasks which require storage and recall of multiple items.

Briefly, for memory to correctly function, the mainte-

nance, binding and ordering of perceptual information

within neuronal networks are fundamental. Hence, a neural

code that specifies how different elements of the same item

are joined together (binding problem) and separated from

elements of other items (segmentation problem) is

required. Moreover, since time is an essential element of

declarative memory, a code to order these items in a correct

temporal sequence is also needed.

An influential hypothesis is that the previous problems

are dealt with using the so-called theta-gamma code (Lis-

man and Jensen 2013). According to this coding scheme, a

subset of cells that fire in phase (i.e., synchronized) during

a gamma cycle would represent aspects of a same item

(they are often referred to as a cell assembly); conversely,

cells that fire at different gamma cycles would represent

aspects of different items. In this way, multiple items can

be maintained in memory simultaneously using a sort of

time division. A temporal order for the different items may

be realized with the support of the theta-band activity:

neurons representing different items are active at different

instants during the excitatory period of the theta cycle (ON

period), with the phase representing information on their

temporal arrangement. The same sequence can then be

repeated again and again, at each theta period. Since the

ratio between the theta and gamma periods is approxi-

mately between 6 and 8, this poses an upper bound on the

number of items maintained in temporal order (Lisman and

Jensen 2013).

Indeed, many experiments have investigated the role of

theta/gamma oscillations in past years, especially in

rodents, revealing that higher frequency gamma oscilla-

tions (40 Hz) are often nested within slower theta oscilla-

tions, fire at specific phases of the theta cycle (Soltesz and

Deschênes 1993; Bragin et al. 1995; Belluscio et al. 2012;

Colgin 2016) and exhibit a precession phenomenon

(Skaggs et al. 1996; Tsodyks et al. 1996; O’Keefe and

Burgess 2005). More recently, the study of theta-gamma

coupling has been performed in humans too, and now

represents a fundamental aspect in cognitive neuroscience

(Canolty et al. 2006; Sauseng et al. 2010, 2019; Chaieb

et al. 2015; Heusser et al. 2016).

While many results definitely demonstrate the presence

of this theta-gamma code in the hippocampus, where it is

especially involved in episodic and spatial memory (Lis-

man 2005; Colgin 2016), more recent results suggest that

this mechanisms also occur in various other parts of the

cortex (especially in fronto-temporal regions in humans)

where it can also be involved in semantic memory and

working memory (Canolty et al. 2006; Axmacher et al.

2010; Roux and Uhlhaas 2014; Alekseichuk et al. 2016;

Heusser et al. 2016; Bahramisharif et al. 2018; Köster et al.

2018; Vivekananda et al. 2021). A recent idea is that the

hippocampus can work in concert with fronto-temporal

regions, to realize relational networks useful for sematic

associations (Eichenbaum 2004) and to estimate current

time passing (Sakata 2006).

Furthermore, the mechanisms for brain rhythm genera-

tion can be altered in some neurological disorders, and

these changes may contribute to some of the characteristics

of the pathology (Buzsáki and Watson 2012). In particular,

various studies suggest that schizophrenia is associated

with a variety of abnormalities in gamma and theta oscil-

lations (Spencer et al. 2003; Spencer 2008; Kirihara et al.

2012; Senkowski and Gallinat 2015), and that theta-gamma

coupling is significantly and selectively impaired during

working memory tasks in schizophrenic patients compared

to healthy controls (Barr et al. 2017). Furthermore, com-

munication between brain areas as well as their oscillatory

activity can be altered in epilepsia (Froriep et al. 2012;

Inostroza et al. 2013; Laurent et al. 2015; Kitchigina 2018).

In humans with Alzheimer disease, an enhanced frequency

coupling was revealed between the gamma and theta bands

compared to healthy control (Wang et al. 2017), while

altered theta-gamma coupling was associated with working

memory deficits (Goodman et al. 2018; Kitchigina 2018).

Finally, but not less important, theta-gamma rhythms

play a role in memory consolidation during sleep (Boyce

et al. 2016; Bandarabadi et al. 2019), and can contribute to

inference reasoning and imagination of new concepts

beyond direct experience (Gupta et al. 2010; Backus et al.

2016).

All previous considerations emphasize the enormous

impact that knowledge on gamma-theta brain rhythms can

have for neuroscience, in many different cognitive

domains. However, despite the huge increase in experi-

mental and clinical studies on the subject in recent years, a

systematic comprehension of the mechanisms sub-serving

rhythm cooperation in the brain, and of their role in cog-

nition, is still lacking, especially for what concerns infor-

mation processing and integration in large brain networks.

Actually, the enormous amount of data and results risk

being insufficiently understood, if not summarized into a

more theoretical vision. In this regard, neurocomputational

models, inspired by biology, can play a relevant role to

condense information, to provide quantitative methods to

check new ideas and hypotheses, to suggest testable pre-

dictions for driving experiments and, more generally, as a

powerful repository of our knowledge in complex domains

where qualitative reasoning in often inadequate.

Indeed, several models of theta-gamma coupling have

been proposed in the past decades, emphasizing the

sequential organization of memory, especially with refer-

ence to the hippocampus.
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Two pioneering models are those by Levy, and by

Jensen and Linsman.

Levy (1989, 1996) proposed a model of the hippocampal

area CA3, in which a sparse recurrent connectivity com-

bined with rapid synaptic plasticity can produce asym-

metric connections, able to represent sequences of

information. Jensen and Lisman, in a series of papers

(Lisman and Idiart 1995; Jensen and Lisman 1996, 2005)

proposed a more complex recurrent model of the hip-

pocampus, including the dentate gyrus, CA3 and CA1;

their model is able to store multiple items via Long Term

Potentiation (LTP), thus realizing a temporal multiplexing

mechanism that is clocked by the theta and gamma

oscillations.

Other studies (Wallenstein and Hasselmo 1997; Cut-

suridis and Hasselmo 2012) are based on sophisticate

multicompartmental models of pyramidal neurons and

local inhibitory interneurons, laying particular emphasis on

the function of GABAergic mechanisms and on the role of

different excitatory and inhibitory hippocampal cell types.

With a same aim, Mysin et al. (2019) recently presented a

model which includes a detailed biophysical representation

of major cell types related to the theta rhythm emergence:

excitatory pyramidal cells and two types of inhibitory

interneurons.

Other models are more oriented to mathematical anal-

ysis: in the standard leaky integrate-and-fire model by

Chance (2012), CA1 pyramidal cells are driven by dual

input components arising from CA3 and from layer III of

entorhinal cortex; the author studied how manipulations in

these areas can affect the theta-phase of CA1 place field

spikes. Using a minimal computational model, Jaramillo

and Kempter (2017) modelled how phase precession of

place cells and of grid cells in the hippocampal formation

can be inherited by the prefrontal cortex and the ventral

striatum. Thurley et al. (2008). mathematically investigated

how phase precession can be produced by a threshold

model, which uses synaptic facilitation in combination with

oscillations of the membrane potential.

Finally, we can mention some other models able to

simulate not only phase precession during spatial naviga-

tion, but also the phenomena of replay and pre-play, i.e., an

offline sequential activity of place cells not driven by any

external stimulus. Buzsáki (1989) used a moving threshold

model, in which neurons receive a subthreshold activation

at rest, and threshold is lowered gradually. This model

predicted the existence of replay in both forward and

reverse order. The model by Hopfield (2010) is based on

continuous attractor dynamics, which can produce explo-

ration of trajectories never experienced before. Dockendorf

and Srinivasa (2013) recently presented a recurrent model

using spiking neurons, for learning new spatiotemporal

patterns.

All previous models, however, have some limitations.

Most of them are devoted to investigation of place cell

behavior and focus their attention only on individual neu-

rons in the hippocampus and on the problem of memo-

rization and retrieval of a spatial task. Our previous

summary, however, clearly suggests that theta-gamma

coupling may play a relevant role in many other cognitive

domains (including semantic memory and working mem-

ory) and may encompass other areas beside the hip-

pocampus, such as frontal, temporal and perhaps parietal

regions (Canolty et al. 2006; Colgin 2011). Hence, we need

more general models too, which can simulate rhythm

coupling and memory formation in a larger cognitive sce-

nario, exploiting the theta-gamma interaction in a wide

assembly of neural populations. In particular, in many

complex cognitive problems, integration of neural infor-

mation exploits a ‘‘distributed code’’, involving large

populations of neurons which fire together to represent

different aspects of memory.

An important class of models, useful to study interac-

tions among neural populations instead of individual neu-

rons, is represented by Neural Mass Models (NMMs). In

these models, the output of a computational unit describes

the activity of groups of neurons, which share the same

characteristics and exhibit a similar collective behavior.

This choice reduces the number of parameters and state

variables, allows better generalization, and facilitates the

analysis of results compared with more detailed models

based on spiking neurons.

Recently, we developed a model for the study of theta-

gamma coupling, exploiting the dynamics of neural masses

(Cona et al. 2012; Cona and Ursino 2013). The model was

able to store and reproduce sequence of events using

Hebbian and anti-Hebbian learning paradigms. A subse-

quent version (Cona and Ursino 2015) trained to reproduce

place cells behavior and rat’s navigation in a maze, simu-

lated not only phase precession, but also replay, reverse

replay and imagination of new paths in the offline

sequential activity.

The aim of the present work is to significantly improve

the previous multi-layer neural mass model to investigate

the role of theta and gamma rhythms in working memory.

The model aspires to summarize different aspects of

working memory into a single theoretical framework. In

particular, we will analyze the following problems: (i) how

a sequence of objects can be memorized in a network and

recovered in working memory, starting from an incomplete

cue of the first object only, by exploiting a theta-gamma

code. We call this ‘‘the sequence ordering working mem-

ory’’, since the major aim is to remember items in a correct

order; (ii) how different objects, previously learned, can be

simultaneously recovered in working memory, without any

specific order (that is, a segmentation problem) starting
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from partial cues of each object provided together. We call

this ‘‘the semantic working memory’’, since its aim is to

maintain task-relevant conceptual knowledge; (iii) to pro-

vide a preliminary analysis on the role of some parameter

changes, simulating possible pathological disorders (such

as Alzheimer Disease or Schizophrenia); (iv) to investigate

network behavior in an ‘‘imagination’’ or ‘‘dreaming’’

condition, when working memory is free to recover pre-

viously stored information without an external cue.

The present model wishes to represent a general

framework on the possible role of theta-gamma oscillations

in working memory, with potential application for different

brain areas. However, specific comparison with neuro-

physiological data are given with reference to the interac-

tions prefrontal cortex-hippocampus, which are highly

documented in the literature and are known to play a rel-

evant role in memory (Eichenbaum 2017). The final dis-

cussion focuses on the main virtues and limitations of the

model, and provides key elements for further improve-

ments and for future studies.

Method

In this section we present a qualitative description of the

model. A complete quantitative description, with all

equations and parameter’s numerical values, is given in the

Appendix.

The basic element of the model is a cortical column

(Fig. 1): its output activity oscillates thanks to the local

interaction among excitatory and inhibitory populations,

arranged in feedback. As a fundamental point, we assume

that the activity of a single cortical column represents an

individual feature of an object (or item). With the term

‘‘object’’ in the following we will indicate any represen-

tation in memory consisting of multiple features, not

necessarily a real object, but also a place, an event, a

concept or any other mental construct. Briefly, an object is

represented as a collection of features, each coded by the

activity of the corresponding cortical column.

The overall network consists of four layers (see Fig. 2),

arranged in a sequence (in the following, named layers

WM, L1, L2 and L3). A hypothesis on where these layers

may be located, and a partial justification of the connec-

tivity patterns proposed, is reported below, with reference

to the prefrontal cortex-hippocampus interactions, and

further summarized in Table 1. A critical analysis is pro-

vided in the Discussion session.

The same cortical columns (hence the same object) are

replicated in each layer. We assume that each of the layer

executes a computational step: to maintain the object in

working memory (layer WM), to reconstruct lacking

information (layer L1), to segment different objects in

gamma band (layers L2 and L3) and, in case of a sequential

order among objects, to reproduce the correct order of

objects with a gamma code nested in the theta rhythm

(layers L2 and L3). Fixed feedforward synapses (i.e., not

subject to training) exist from a cortical column in each

layer to the corresponding cortical column in the subse-

quent layer (as shown in Fig. 2), with the aim to propagate

information downstream. Furthermore, fixed synapses exist

from a column in L1 and the corresponding column in

WM, to help working memory maintenance and to send

reconstructed information back. Feedback synapses (either

within the same layers L1, L2 and L3 or from a down-

stream layer L3 to the upstream layer L2) are subject to

training, and are used to store and recover objects, thus

realizing auto-associative and hetero-associative memories.

We are aware that the use of fixed feedforward synapses

may appear as a limitation of the model, in contrast with

what is done in modern neural networks. However, this

choice has been adopted for the sake of parsimony and to

Fig. 1 Scheme of the neural mass model simulating the dynamics of a

single column. Blue continuous lines with arrows indicate gluta-

matergic excitatory synapses, red lines with open triangles indicate

GABAergic faster inhibitory synapses, while green lines with open

triangles indicate GABAergic slower inhibitory synapses. Symbols

Cij denote the synaptic contacts among the neural populations, where

the first subscript and the second subscript designate the post-synaptic

population and pre-synaptic population, respectively
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simplify the analysis of results. First, we assumed that each

element in a layer describes a specific feature of the object,

and we use the same features in all layers. Hence, our idea

is that each feature transmits information of its status (ac-

tive or silent) to the subsequent layer to instantiate a further

processing without modifying the features. Conversely, in

several biologically inspired networks, training of feed-

forward synapses allows the extraction of more complex

features in subsequent layers, starting from simpler features

in previous layers; in other words, a more basic object

representation in initial layers is translated into a more

abstract representation downstream (Aggarwal 2018). Of

course, our choice is parsimonious, thus reducing the

number of parameters subject to training. For a similar

reason, the synapses from L1 to WM are fixed, since they

only have the function to maintain a closed loop self-sus-

tained memory between WM and L1, without any further

processing step.

Of course, a network in which feedforward synapses can

also be trained may exhibit more complex patterns of

activity and more powerful behavior; this can be the sub-

ject of future model extensions. By the way, we are not

aware whether this abstraction processing schema (from

simpler to more complex features), which is typical of the

visual temporal pathway, can also occur in the hippocam-

pus processing stream.

The model of a single cortical column

A column consists of the feedback arrangement of four

neural populations, according the schema depicted in

Fig. 1. These are pyramidal neurons, excitatory interneu-

rons, GABA-ergic inhibitory interneurons with slow

synaptic dynamics, and GABA-ergic inhibitory interneu-

rons with fast synaptic dynamics. A more detailed

description of the column is provided in previous papers of

the authors (Ursino et al. 2010; Cona et al. 2011, 2012). It

is worth noting that we adopted the same parameters for

each cortical column in each layer, i.e., differences in

rhythms between one layer and another originate from the

presence of feedback synapses among the columns, pro-

duced by the training procedure. Indeed, with the present

parameter values a single column, if isolated from the

others, and stimulated by a constant external input, pro-

duces an intrinsic oscillation in the alpha band (see Fig. 3).

Just in the case of layer WM, which implements

working memory (possibly located in a structure of the

frontal lobe) we added a further auto-excitation loop for

pyramidal neurons (i.e., a group of pyramidal neurons can

auto-excite themselves via parameter Cpp in Fig. 1). This

loop is necessary to keep information in memory during the

maintenance period of a working memory task, and is reset

to zero whenever a new input updates the memory content.

From a neurophysiological perspective, the excitatory

closed loop among pyramidal neurons included in WM

(and not used in the other layers) can be ascribed either to

reverberations within local cortical circuits, or to long-

range circuits (Guo et al. 2017; Zylberberg and Strow-

bridge 2017).

Finally, it is worth noting that each cortical column can

receive two different inputs, the first directed toward

pyramidal neurons, with an excitatory function, and the

second toward fast inhibitory interneurons, with an inhi-

bitory role. Both inputs can be affected by noise. The

output of each column is the spike density of pyramidal

neurons (ranging between 0 and 5, as in previous models,

see Jansen and Rit (1995)).

The individual layers

We used a four-layer structure in our model, arranged as in

Fig. 2, but with two possible alternative uses: the first,

named ‘‘sequence ordering working memory’’, aims to

Fig. 2 Schema of the different layers used in the present model, in

which cortical columns representing different features are shown with

an open circle. For the sake of simplicity, the features are arranged in

a monodimensional chain in each layer. The simplified figure assumes

two different objects, each composed of three features, denoted with

different filling colors (orange and green). Continuous blue lines and

dash-dotted violet lines represent long-range glutamatergic synapses

of type W, connecting pyramidal to pyramidal neurons (hence

excitatory); dash-dotted red lines represent synapses of type K,
connecting pyramidal neurons to fast inhibitory interneurons in the

same object (hence inhibitory via a bi-synaptic connection). Cyan

lines represent fast synapses of type A, connecting pyramidal neurons

to fast inhibitory interneurons in different objects (hence inhibitory

via an ultrafast bi-synaptic connection). Note that, to make the plot

simpler, we used large arrows to summarize a vector of synapses

connecting the three columns in one object to three columns in

another object (hence, the cyan fast inhibition line vectors connect

three columns in one object to the three columns of another object

within layer L2 and within layer L3; the blue excitatory line vector

connects three columns of one object in layer L3 to three columns of

the subsequent object in layer L2, assuming that the green object

precedes the orange object in a stored sequence)
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Table 1 Mechanisms included in the model and their possible neurobiological counterparts

Layer Functions modeled Possible location Necessary model components Possible biological mechanisms/ pathways

WM Maintainance of

information in working

memory

Resetting of information

Medial prefrontal

cortex ? thalamic

loop

External input

Reentrant connections with L1

Resettable positive feedback

Bidirectional connections between the PFC and

the perirhinal cortex or lateral entorhinal

cortex (Eichenbaum 2017)

Connectivity with the mediodorsal thalamus

(Bolkan et al. 2017; Nir-Cohen et al. 2020)

L1 Memorization of objects

Reconstruction of

objects with lacking

information

Generation of the theta

rhythm (sequence

modality only)

Help WM to maintain

information in memory

Transmission of the

reconstructed objects

to L2

Entorhinal cortex

and CA3

Reentrant connections (not

trained) with the WM

Reentrant excitatory connections

within an object, which are

trained with the Hebb rule

Output feedforward connections

(not trained) to L2

Bidirectional connections between the PFC and

the perirhinal cortex or lateral entorhinal

cortex

(Place et al. 2016; Eichenbaum 2017)

Existence of Hebbian plastic excitatory

synapses in the hippocampus (especially

CA3)

(Bliss and Collingridge 1993; Li et al. 1994)

Existence of a feedforward connectivity from

the entorhinal cortex to CA3

(Eichenbaum 2017)

L2 Generation of the

gamma rhythm

Segmentation of

multiple objects with

gamma temporal

division

Synchronization of the

gamma and theta

rhythms

CA3 ? external

loop (Papez’s

circuit, septum)

Input (not trained) from L1

Local reentrant inhibitory

connections within an object

trained with the Hebb rule

Local very fast inhibitory

connections among different

objects, trained with a anti-

Hebbian mechanism

Feedback mechanism which

disinhibits neurons and

synchronizes the theta rhythm

Feedforward output (not trained)

to L3

Input (trained with Hebbian

mechanims) from L3

Existence of reentrant connections in CA3 with

Hebbian plasticity

(Bliss and Collingridge 1993; Li et al. 1994)

Existence of gap junctions among pyramidal

neurons in the hippocampus

(Schmitz et al. 2001; Ixmatlahua et al. 2020)

Demonstration of training mechanisms among

gap junctions

(Cachope et al. 2007; Turecek et al. 2014;

Wang et al. 2015)

Existence of a feedback mechanism between

the hippocampus and external structures

(Papez’s’s circuit, septum) causing a resonant

theta rhythm

(Vertes et al. 2001; Kocsis and Kaminski 2006;

Salib et al. 2019; Dillingham et al. 2021)

Schaffer collateral

(Hongo et al. 2015; Kwon et al. 2018)

Feedback synapses from CA3 to the entorhinal

cortex

(Craig and Commins 2005; Sandler et al. 2015;

Eichenbaum 2017)

L3 Improving

synchronization and

desynchronization with

the gamma rhythm

Reconstruction of a

temporal ordered

sequence

CA1 Input (not trained) from L2

Local reentrant inhibitory

connections within an object

trained with the Hebb rule

Local very fast inhibitory

connections among different

objects, trained with a anti-

Hebbian mechanism

Trained feedback synapses to L2,

trained with Hebbian mechanism

Output toward other brain

structures

Schaffer collateral from CA3 to CA1

(Hongo et al. 2015; Kwon et al. 2018)

Plasticity of synapses in CA1 (Tetteh et al.

2019)

Existence of feedback connections from CA1 to

the entorinhal cortex (and from there to CA3)

(Craig and Commins 2005; Sandler et al. 2015;

Eichenbaum 2017)

Role of CA1 in the memorization of temporal

aspects

(Hoge and Kesner 2007; Mankin et al. 2012)
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recover a previously learned sequence of items in an

assigned temporal order, by exploiting a theta-gamma

coupling mechanism. The second, named ‘‘semantic

working memory’’, aims to maintain several objects

simultaneously in memory, by desynchronizing them in the

gamma range. Since some works in the literature (see

Discussion) suggest that the theta rhythm is important

especially in sequence ordering, in the second model use

we do not generate the theta rhythm. In other words, we

implement two different networks in this work, to solve

two distinct problems. However, the two networks exhibit

the same topology and share most internal parameters, and

differ only for what concerns a few synapses. It is possible

that these networks represent processing in different parts

of the hippocampus. Indeed, some experimental evidences

suggest that the hippocampus is functionally differentiated

between the dorsal (posterior) and ventral (anterior) areas

(Moser and Moser 1998) and that distinct hippocampal-

cortical connections are one mechanism by which the

hippocampus can represent different kinds of knowledge

(Frank et al. 2019).

The two kinds of networks differ only for what concerns

two aspects: first, the synapses between WM and L1 are

three-times stronger in the ‘‘semantic’’ modality than in the

‘‘sequence ordering’’ modality: in this way, the pyramidal

neurons in L1 are excited to saturation and a theta rhythm

is not produced. This difference agrees with the presence of

two parallel streams in the hippocampus (one named

‘‘what’’ stream and other ‘‘where’’ stream) as described in

Preston and Eichenbaum (2013). In particular, the latter

authors assert that the medial prefrontal cortex, in the

‘‘what’’ streams, is positioned to influence the retrieval of

specific object representations via its particularly strong

connections to perirhinal and lateral entorhinal cortex,

whereas connections are smaller in the ‘‘where’’ stream

(see Fig. 1 in their work). Second, feedback synapses from

L3 to L2 are trained only in the ‘‘sequence ordering’’

modality, to produce a sequence of items from an initial

cue, but are set at zero in the ‘‘semantic’’ modality. All

other aspects of the model are equal in the two modes.

Each layer consists of an array of LxM identical cortical

columns (hence, we can have LxM different features)

arranged in a regular lattice. As said before, the only dif-

ference among the columns is the presence of an auto-

excitatory loop in pyramidal neurons of layer WM. In the

present simulations we used L = M = 20 (hence, we have a

total of 400 distinct features).

In the following, three different kind of synapses will be

used, to connect columns within a layer or among different

layers:

i. glutamatergic excitatory synapses (named W) from

pyramidal to pyramidal neurons;

ii. glutamatergic excitatory synapses (named K) from a

pre-synaptic pyramidal population to a post-synaptic

fast-inhibitory population. Since these synapses

target inhibitory interneurons, their overall effect is

inhibitory on the pyramidal population of the post-

synaptic column;

iii. synapses (named A) from a pre-synaptic pyramidal

population to a post-synaptic fast-inhibitory popu-

lation, but with much faster dynamics. The overall

effect is still inhibitory, but occurs almost immedi-

ately (much earlier than the effects in points i and

ii).

Values of the time constants for these three synaptic

mechanisms are about 7.7 ms, 6.8 ms and less than 1 ms,

respectively.

The different speeds of the synaptic mechanisms in

points i and ii, compared with point iii, can be ascribed to

the presence of differences in AMPA receptors in the

postsynaptic membrane. Another stronger possibility is that

faster dynamics are mediated by gap junctions.

Layer WM

Even though the present network does not aspire to

reproduce individual regions of the brain-rather, it pro-

vides a general framework for the role of brain rhythms in

memory—it is thinkable that the first layer represents a

region in the prefrontal cortex, which starts implementing

working memory. Indeed, several results in the literature

suggest that memory tasks are characterized by synchro-

nized neural activity between hippocampus and ventro-

medial prefrontal cortex (vmPFC) (see Eichenbaum

(2017)), that the vmPFC activity leads that of the hip-

pocampus (Barry et al. 2019) and that both regions are

critical for simulation of future episodes, hence to memo-

rize temporal order (Campbell et al. 2018).

Each cortical column receives an external excitatory

input: the latter may be zero (i.e., there is just noise)

Fig. 3 Example of the activity (spike density) in the population of

pyramidal neurons when a column is not connected with any other

column, and is stimulated with a white noise input. The oscillations

belong to the alpha range (about 10 Hz)
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signifying that the particular feature is absent, or may have

a high value, signifying that the feature is present. The aim

of layer WM is to maintain one or more objects (previously

learned) in memory, even after the corresponding inputs

have been removed. To this end, besides receiving auto

excitation via synapses Cpp (see Fig. 1), pyramidal neurons

in layer WM also receive an excitatory feedback (not

trained) from the corresponding columns in layer L1 (see

Fig. 2). This has two functions: to reinforce the content

maintenance in working memory, with an additional

excitatory loop, and to allow the restoration of an entire

object, by recovering its lacking elements. In fact, recon-

struction is realized in layer L1 (which works as an auto-

associative memory and may be located in the hippocam-

pus, see below) and the resulting information is transmitted

back to WM. Hence, WM maintains in memory both the

information received from the external inputs, and the

information reconstructed in L1, even when the external

output is set to zero. The presence of bilateral connections

between the PFC and the hippocampus, playing a role in

oscillatory synchronization and learning is well docu-

mented (see Eichenbaum (2017), pp. 550–552).

However, as soon as a new external input is presented to

the WM layer, the previous content must be reset. The idea

that working memory must receive a reset signal whenever

its content has to be adjourned found wide support in the

recent literature (Balaban and Luria 2017; Balaban et al.

2018). In particular, working memory needs to protect its

current content from interference, and simultaneously must

be able to update this information rapidly. As described in

Nir-Cohen et al. (2020) a possibility is that these opposing

requirements are met via a Basal Ganglia-Thalamus posi-

tive feedback loop.

In our model, the mechanism proposed by Nir-Cohen

et al. (2020) for selective updating of PFC working mem-

ory representations is implemented through the connection

Cpp, assuming that these schematize the Thalamic-Basal

ganglia mechanism. Indeed, action channels in the Basal

Ganglia are generally segregated, which justifies the use of

several parallel reentrant loops. Hence, as soon as a new

external input is presented to the WM layer, the auto-

feedback synapses of the pyramidal neurons, Cpp, are set to

zero to allow a refresh of the working memory content. Of

course, this is a simplification. A more complete Thalamic-

BG circuit, similar to that described in Baston and Ursino

(2015) can be added in future model developments.

The output of layer WM is directed toward the corre-

sponding cortical column (i.e., the column in the same

position) in layer L1, with constant synapses. It is worth

noting that no synapse is trained within layer WM, i.e., this

layer only aims to maintain information for a short period,

and does not implement any form of long-term memory.

We are aware that synapses within the PFC are plastic, and

their plasticity contributes to the role of the PFC in plan-

ning and control. A top-down control of the PFC over the

hippocampus for organization of memory and planning is

well documented (Eichenbaum 2017). However, since

these functions are not included in our simplified model,

we do not incorporate plasticity within the PFC. This may

be added in future works, if trials involving a top-down

control are simulated.

Layer L1

Layer L1 works as an auto-associative memory, to restore a

complete object in memory starting from an incomplete

cue. Moreover, after training this layer also produces the

theta rhythm.

Each cortical column in L1 receives its excitatory input

from the corresponding column in layer WM. During a

training phase (see below), when individual objects are

presented for long-term storage, further excitatory synapses

of type W are created via a Hebbian mechanism, linking

columns simultaneously active in the same object. Like in

classical auto-associative networks, the synapse matrix so-

created is symmetrical (Hopfield 1984). The presence of

these synapses causes a prolonged excitation in the pyra-

midal population, which is then transmitted to the popu-

lation of slow inhibitory interneurons; the latter, in turn,

transiently inhibit the pyramidal population inducing a

slow theta rhythm. The presence/absence of such a rhythm

can be controlled acting on the strength of the synapses

(both lateral synapses, and those arriving from WM).

However, in order to allow the generation of a similar

rhythm independently of the object size (i.e., we wish that

objects containing a different number of features exhibit

the same rhythm) we assumed that the sum of the synapses

entering into a given cortical column is constant: hence,

during training the sum of synapses is normalized to a

given saturation level. This is a physiological mechanism,

often adopted in previous neural network models (Ursino

et al. 2015). Thanks to this normalization, objects with

different dimensions receive a similar input and oscillate at

the same frequency.

The output of pyramidal neurons from L1 is sent back to

WM, to instantiate working memory, and transmitted to

layer L2 (as described below) with fixed (i.e., not trained)

synapses.

Since in our model the layer L1 is connected with the

PFC and realizes an auto associative memory, it probably

involves the entorhinal and/or perirhinhal cortex and the

CA3 region, where feedback synapses are known. Actu-

ally, the presence of bidirectional connections between the

PFC and the lateral entorhinal cortex/the perirhinal cortex

are well documented (see Eichenbaum 2017). Moreover,

several results support the idea that these connections
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bidirectionally exchange theta information (Siapas et al.

2005; Place et al. 2016) as in the present model.

Layer L2

This layer, together with the downstream layer L3, realizes

a desynchronization of different objects in the gamma band

and, in case of a sequence of objects, nests the sequence

within the ON phase of the theta rhythm. Each column in

this layer receives a fixed excitatory synapse from the

corresponding unit in L1. Moreover, as explained below, in

case of a temporal sequence, L2 also receives feedback

excitatory synapses from columns in L3.

We think this layer may be located in CA3. In fact, as

reported in Zemankovics et al. (2013) gamma frequency

oscillations can be generated intrinsically in the CA3

region of the hippocampus from where they can propagate

to the CA1 area. Montgomery and Buzsáki (2007) propose

that gamma oscillations may serve as a physiological

mechanism by which CA3 output can coordinate CA1

activity to support retrieval of hippocampus-dependent

memories. Conversely, as described in Eichenbaum (2017)

a feedback from CA3 to the entorhinal/perirhinal cortex

does not seem to play a relevant role, thus justifying the

absence of a feedback from L2 to L1 in our model.

Clearly, in order to realize a correct segmentation of

different objects in the gamma band, two fundamental

conditions must be met: (i) synchronization of the activity

for all features belonging to the same object: i.e., all units

in the same object must oscillate with approximatively the

same phase; (ii) desynchronization of activity of features in

different objects: i.e., units belonging to different objects

must oscillate out of phase.

Previous works (Terman and Wang 1995; Campbell and

Wang 1996; Ursino et al. 2009) demonstrated that, in order

to produce a robust synchronized activity, reciprocal inhi-

bition between units is more appropriate than a reciprocal

excitation. Hence, we assumed that, during training,

synapses of the type K (thus producing inhibition), are

reinforced in layer L2 via a Hebbian mechanism, linking

cortical columns in the same object (see section below). It

is worth noting that, thanks to the presence of this recip-

rocal inhibition, units in this layer start oscillating with a

frequency in the gamma range (about 30 Hz) and in a

highly synchronized way. The mechanism is as follows: a

group of units in a given object is initially excited from the

input coming from layer L1 to layer L2; these units inhibit

reciprocally, causing a rapid reduction in their excitation;

once the excitation has faded away, also the reciprocal

inhibition falls down, and the cycle starts again. Since the

dynamics of the fast inhibitory interneurons is in the same

range as the gamma rhythm, this mechanism causes an

oscillation in this frequency band.

Several papers support the idea that GABAergic

interneurons play a relevant role in maintaining network

oscillations, especially in controlling the precision of spike

timing (Lasztóczi and Klausberger 2014; Geng et al. 2018).

However, using this mechanism only, multiple objects

simultaneously in memory would be superimposed, i.e.,

they would oscillate with the gamma frequency but without

achieving a correct segmentation. In order to segment

objects, we used further synapses of type A (i.e., causing

inhibition, but with much faster dynamics). These are

trained with an anti-Hebbian mechanism. This means that

these synapses are reinforced when the presynaptic popu-

lation (pyramidal neurons) is active and the post-synaptic

population (fast inhibitory interneurons) is silent. In this

way, a very fast inhibition is created from units in one

object to all units in different objects. Thanks to this rapid

mechanism (that we assumed almost instantaneous) as soon

as an object emerges in layer L2, all other objects are

inhibited, thus realizing a good segmentation.

Various data in the literature suggest the presence of

distinct inhibitory mechanisms working in the hippocam-

pus. Although some of these mechanisms have been ana-

lyzed especially with reference to CA1 cells, in our model

they work in a similar fashion both in L2 and L3 layers,

hence we discuss them here. In particular, results by

Balakrishnan and Pearce (2015) indicate that multiple

distinct local circuits generate c-oscillations in the CA1

region of the hippocampus. Jang et al. (2015) analyzed the

role of diverse variety of hippocampal interneurons, which

provide either feedforward or feedback inhibition to CA1

pyramidal cell and observed that they differentially mod-

ulate the gain, the spike precision, the neural code trans-

formation and the information capacity. Results by Butler

et al. (2018) indicate that a fast excitatory-inhibitory

feedback loop underlies the generation of gamma oscilla-

tions in the hippocampal regions. Data by Klausberger and

Somogyi (2008) suggest that distinct GABAergic cell types

interact with glutamatergic pyramidal cell inputs and sup-

port synaptic temporal dynamics, network oscillations and

selection of cell assemblies.

Nevertheless, although the results mentioned above

support the presence of multiple circuits, exploiting fast

interneurons to produce gamma rhythms, the presence of

type A synapses remain one of the most hypothetical

aspects of the present model. This mechanism is essential

to desynchronize the gamma oscillations in different

objects and so represent a strong prediction for future

studies. A strong candidate can be the presence of gap-

junctions. Various authors recently demonstrated the

presence of an ultra-fast electrical communication mecha-

nism in the hippocampus, and related it with network

oscillations (Schmitz et al. 2001; Ixmatlahua et al. 2020).
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The synapses K and A described above are also nor-

malized after training, so that the sum of synapses entering

into a column is constant.

Finally, results in the literature (Colgin et al. 2009;

Lisman and Jensen 2013) suggest that, during the recovery

of a list of objects from memory, a gamma-sequence is

nested within the ON phase of the present theta period, then

breaks down during the OFF phase, to start again at the

beginning of the subsequent theta period (see also the

phase precession phenomenon (O’Keefe and Recce 1993;

Skaggs et al. 1996; Tsodyks et al. 1996)). To realize this

theta-gamma coupling, we need another mechanism. To

this end, we assumed that all units in layer L2 are normally

silenced: this is achieved with a strong external input sent

to fast inhibitory interneurons in all columns. This inhibi-

tion is then removed, with very fast dynamics, as soon as

the global activity coming from layer L1 overcomes a

given threshold, a condition occurring in the sequence

order modality with the theta frequency. As a consequence,

neurons in layer L2 are active only during the ON phase of

the L1 theta rhythms.

The presence of an external mechanism operating on

theta finds several support in the literature. In particular,

there are at least two external circuits active on CA3 which

may serve this role. The first is the so-called Papez’s cir-

cuit, which involves the hippocampal formation, mam-

millary bodies, anterior thalamus, cingulate cortex,

parahippocampal gyrus, hippocampal formation. It has

been shown that cells of mammillary body fire in synchro

with the theta rhythm of the hippocampus (Kocsis and

Vertes 1994; Bland et al. 1995; Kirk et al. 1996) and that

this rhythmical activity is dependent upon the action of the

hippocampus on the mammillary bodies (Kocsis and Vertes

1994; Bland et al. 1995). It has been hypothesized that a

theta-rhythmic signal may resonate throughout Papez’s

circuit, possibly involved in the control of mnemonic

functions of the circuit (Vertes et al. 2001). Several data

suggest that lesions of the mammillary bodies, mammillo-

thalamic tract and anterior thalamic nuclei all produce

severe impairments in temporal and contextual memory

(Dillingham et al. 2021) thus supporting the idea that

mammillary bodies are important for coordinating hip-

pocampo-cortical activity. A second alternative circuit may

involve the medial septum: Salib et al. (2019) proposed a

mechanism involving septal low-rhythmic GABAergic

firing neurons which innervate interneurons mostly in the

dentate gyrus (DG) and CA3. The preferred firing phase of

these septal neurons during theta oscillations matched the

highest firing probability phase of principal cells in the DG

and CA3, inducing a transient disinhibition of principal

cells. It is worth-noting that this mechanisms strongly

resembles the mechanism proposed in our model.

Layer L3

Briefly, all columns in layer L3 receive an excitatory input

from the corresponding column in layer L2 (note that this

input is already partly segmented and oscillates in the

gamma ? theta range). Lateral synapses among columns

within layer L3 are trained with exactly the same mecha-

nisms used to train layer L2; i.e., we reinforce synapses

K among features within a given object via Hebbian

mechanisms, and reinforce fast synapses A among features

of different objects via anti-Hebbian mechanisms. This

interaction in layer L3 strongly improves the previous

segmentation (see results).

The presence of feedforward connections from CA3 to

CA1, called Schaffer collateral, is well documented, and

constitutes an important route for the information flow in

the hippocampus. Hongo et al. (2015) observed that CA3

axons innervate CA1 neurons in a highly topographical

fashion. Furthermore, while synaptic plasticity has been

well documented in CA3 cells for many decades, several

recent results suggest that synapse long-term potentiation

occurs in CA1 too (Tetteh et al. 2019).

However, layer L3 is not only useful to improve seg-

mentation, but it also plays an essential role to store a

sequence of items in the correct order. To this end, when a

list of objects must be memorized with a given temporal

order (that is, only in the network used for sequence

ordering), we create hetero-associative excitatory synapses

(of the type W) from L3 back to L2. These link all features

in L3 coding for the previous object (for instance the (k-

1)th object in a list), to the features in L2 coding for the

subsequent object (i.e., the kth object of the same list). In

this way, after training, the activity of one object in layer

L3 spontaneously evokes activity of the subsequent object

in layer L2. The latter, in turn, is feedforwarded to layer

L3, to continue scanning the list. These steps continue

again and again, until the overall sequence of objects is

terminated and/or the ON phase of the theta rhythm is over.

Several results support the presence of feedback infor-

mation from CA1 to CA3 (whereas a similar feedback is

lacking or less important from CA3 to the entorhinal cor-

tex, at least to our present knowledge). In particular,

anatomical connection from CA1 to CA3 exist via the

Entorhinal Cortex (EC) and through backprojecting

interneurons (Eichenbaum 2017). Sandler et al. (2015)

applied Granger causality to spike activity recorded in the

CA3 and CA1 areas of the rodent hippocampus, and found

a causal relationship not only from CA3 to CA1 but also

from CA1 to CA3. Furthermore, it has been shown that the

CA1 ? EC pathway is able to undergo long-term poten-

tiation, suggesting a role for this pathway in learning and

memory (Craig and Commins 2005).
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Training the network

As specified above: (i) lateral excitatory synapses of type

W are created among cortical columns within the same

objects in layer L1, via Hebbian potentiation, to allow

reconstruction of lacking information; (ii) lateral inhibitory

synapses of type K are created among units within the same

object in layers L2 and L3, via Hebbian potentiation, to

allow synchronization in the gamma range; (iii) faster

lateral inhibitory synapses of type A are created among

columns in different objects in layers L2 and L3, via anti-

Hebbian potentiation, to allow desynchronization; (iv) in

case of a sequence of objects, excitatory synapses of type

W are created from units in one object in layer L3 to units

of the subsequent object in layer L2, via Hebbian poten-

tiation, to allow the reconstruction of a sequence starting

from the first item.

Training consists in the presentation of the objects to the

layers, one after the other, as specified below, with exci-

tatory inputs so strong that all cortical units reach a satu-

ration level (i.e., the columns do not oscillate during

training). The Hebb and anti-Hebb rules are then applied

after the units have reached a steady state level.

To realize the connections described above, we imple-

mented two different training steps, the first valid for both

networks, to memorize individual objects, the second for

the sequence ordering network only, to memorize those

objects in an assigned sequence.

(i) During the first step we provided each object sepa-

rately to layers L1, L2 and L3; this is obtained by stimu-

lating the corresponding pyramidal neurons in layer L1,

and both the pyramidal neurons and the fast inhibitory

interneurons in L2 and L3. Synapses of type W are then

created in L1 using the Hebb rule (see Eqs. (11) and (12) in

the Appendix), synapses of type K are created in L2 and L3

using the Hebb rule (see Eqs. (13) and (14) in the

Appendix), whereas synapses of type A were formed with

an anti-Hebbian rule (see Eqs. (15) and (16) in the

Appendix). This procedure required 2000 epochs.

After this training, the network can be used in a

modality named ‘‘semantic working memory’’. The

objective here is to maintain different objects simultane-

ously in memory, each segmented in the gamma band.

(ii) Only if a sequence of N objects must be memorized

in an assigned temporal order (i.e. one needs to store and

recover an ordered list of items) a further training step was

performed, involving layers L2 and L3 together. This is

coherent, thinking to a task in which first we memorize

some items, and then memorize a particular sequence for

the same items. In particular, naming the objects in the list

as: Obj_1, Obj_2, …, Obj_N during each training step the

following inputs are provided:

layer2: Obj_k; layer3: Obj_(k-1) (with k = 2, 3, …N).

To this end, an input was provided to the corresponding

pyramidal neurons in the two layers. By applying the Hebb

rule (see Eqs. (17) in the Appendix) hetero-associative

synapses are created from Obj_(k-1) in layer L3 to Obj_k in

layer L2. This procedure required 1000 epochs.

After the step ii, the network can be used in a modality

named ‘‘sequence-ordering working memory’’. The

objective here is to recover an entire sequence, starting

from a first incomplete item, and to nest this sequence

within the ON phase of each theta cycle.

To recapitulate all previous considerations, a list of the

main functions introduced in the model, the necessary

model components for these functions, and possible neu-

robiological evidences in the literature, with reference to

the PFC-hippocampus interactions, is presented in Table 1.

Results

Two different collections of objects have been used to train

the network and to test its behavior. The first, shown in the

upper panel of Fig. 4 and named collection 1, is composed

of nine objects (or patterns) with different dimensions:

each object is orthogonal to the others, i.e., objects have no

common pixel. The second collection, represented in the

bottom panel and named collection 2, is composed of ten

objects with identical dimensions but now with up to 20%

common pixels. In particular, the object 6 is partially

superimposed to object 4, and object 10 to object 2. All

results are repeatable with both collections of objects in the

sequence order modality, whereas in the semantics

modality only orthogonal objects were used. In the fol-

lowing, results in the figures will be shown with reference

to collection 1; only in case of the last section (‘‘dream-

ing’’) results are presented with reference to the second

collection, to exploit the partial superimposition among

objects. It is worth noting that we used connected objects

just for simplicity, but this assumption is not essential.

Features of an object can be at any positions in the net-

work, without any change in the model behavior.

Finally, as illustrated above, all objects have been

trained in layers L1, L2 and L3. Moreover, in the config-

uration ‘‘sequence ordering’’ the model was further trained

to memorize an ordered sequence: in the first configuration

all nine objects are included in a single sequence, with

order ‘‘1–2–3–4–5–6–7–8–9’’; in the second configuration,

two separate sequences, with a partial overlapping, were

trained, i.e., the sequence ‘‘1–2–3–4–5’’, and the sequence

‘‘6–7–8–9–10’’.

Finally, although objects are presented in Fig. 4 in a

two-dimensional lattice, in order to simplify the imple-

mentation all matrices were converted into one-
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dimensional vectors. For this reason, in the Appendix each

cortical column is described with one subscript, while all

synapses are described with two subscripts.

Working memory

In order to illustrate how an object can be maintained in

working memory, even after removal of the corresponding

input, Fig. 5 shows the input to the network, and the

activity of pyramidal neurons in layers WM and L1, after

the separate presentation of two objects (in this particular

example object 1 is presented per 50 ms between the

instants 0.005 and 0.055 s, and the object 2 is presented

between 0.405 and 0.455 s, upper panel). Both objects are

incomplete, i.e., they lack 30% of their pixels. The second

and third panels of the figure represent the average activity

of all pyramidal neurons coding for the object 1 (blue line)

and for the object 2 (red line). Since the maximal activity in

the model saturates at a value 2e0 = 5 (see the Appendix),

an average activity as great as 5 means that all neurons are

simultaneously active in a given object, while an average

activity as large as 4 means that 80% of neurons in that

object are excited, and a value close to zero means that all

neurons are silent. As it is clear form Fig. 5, 70% of neu-

rons in the object 1 are initially excited in response to the

input and this information is transmitted to layer L1

through the feedforward synapses. Thanks to the presence

of auto-associative synapses in L1, trained with the Hebb

rule, layer L1 is able to recover all lacking information.

The activity in layer L1 oscillates with a theta rhythm

(approximately 5 cycles/s) and during each cycle the

overall object is reconstructed in this layer. It is worth

Fig. 4 Combinations of objects

used during the present

simulations. The combinations

presented in panel a includes

nine different objects, with

different dimensions but

orthogonal (i.e., without any

common feature). The

configuration in panel b presents
ten different objects, with the

same dimensions but

overlapping features. In

particular object 2 has 20% of

feature overlapping with object
10, and object 4 has 20% of

features overlapping with object
6
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noting that information is permanently maintained in

memory in layer WM, thanks to the presence of auto-ex-

citation between pyramidal neurons. At the presentation of

the second object (instant 0.405 s) this auto excitation is

reset to zero, thus allowing a refresh of the memory, so that

a second object is reconstructed in L1 and maintained in

memory in WM.

Reconstruction of a sequence of events
and phase precession

Figure 6 shows how the model can work in the ‘‘sequence

ordering’’ modality, i.e. after a sequence was learned dur-

ing the step iii of the training procedure. After a brief

50 ms presentation of object1 (between the instants 0.005

and 0.055 s), the network is able to reconstruct the initial

portion of the sequence, from object 1 to object 6: each

object is coded by an individual period in the gamma cycle

(note the different colors, representing activity within dif-

ferent objects) nested within the lower-frequency theta

cycle. The sequence is then maintained in memory, and

repeated periodically, until a new input is given to the

network to refresh the WM content. In particular, the brief

presentation of the second object (between the instants

0.605 and 0.655 s) allows the reconstruction of the

sequence from object 2 to object 8, and the quick presen-

tation of the object 3 (between the instants 1.205 and

1.255 s) produces the reconstruction of a sequence from

object 3 to object 9. The well-known phenomenon of phase

precession (similar to that observed in the rat’s spatial cells

during movement) is evident looking at the phase of the

different objects within the theta cycle.

From the figure the role of the different layers is evident:

just a single object is reconstructed in layer L1 (by

recovering all lacking information), where the theta rhythm

is formed. A noisy gamma sequence is first produced in

layer L2, and significantly polished in L3, where the

reconstruction of all subsequent objects in the sequence

turns out almost perfect.

Desynchronization of several simultaneous
objects

The previous simulation illustrated the functioning of the

model in the ‘‘sequence ordering’’ modality, when a

sequence of events can be reconstructed in the correct

order, starting from the first element of the list (and,

moreover, the first element can shift in time). Figure 7

shows the model working in the ‘‘sematic memory’’

modality (i.e., step ii was not performed in the training

procedure, and synapses between L1 and WM are stron-

ger). In this particular example, four objects are simulta-

neously given as an input, and the model is able to

desynchronize their activity in the gamma range, so that

objects appear separately (that is, in time division) in layer

L3.

Fig. 5 An example of the behavior in the WM and L1 layers in

feedback. The simulation presents the effect of two separate inputs,

provided to the WM layer per 50 ms, between the instants 0.005 and

0.055 s (70% of features are excited in object 1 blue line), and

between 0.405 and 0.455 s (70% of features excited in object 2, red

line). The variables zp in layers WM and L1 represent the average

spike density of all columns in that object (a value 5 means that 100%

of features are excited in the object, a value 3.5 means 70% of

features excited). Simulation shows that the activity in layer WM is

maintained also when its input is zero, and is reset at the presentation

of a new object. The activity in L1 oscillates with the theta rhythm,

reconstructing all lacking features in the object during the ON phase of

the rhythm, and sending this information back to WM
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Fig. 6 Recovery of a list of objects and phase precession in the

modality ‘‘sequence ordering memory’’. During the simulation a brief

50 ms excitatory input is given to 70% of features of object 1 in WM

layer between the instants 0.005 and 0.055 s. As a consequence, the

network in L3 reconstructs the initial sequence of objects ‘‘1–2–3–4-

5–6’’ nested within the theta cycle, and maintains this sequence even

after the cessation of the input stimulus, until a new stimulus is given.

Subsequently, a brief presentation of 70% of features of object 2 is

given between the instants 0.605 and 0.655 s, causing the appearance

of the sequence ‘‘2–3–4–5-6–7-8’’ nested within the theta cycle.

Finally, a brief presentation of 70% of features of object 3 between

the instants 1.205 and 1.255 s recovers the sequence ‘‘3–4–5–6–7–8–

9–10’’. Note the occurrence of phase precession when the input shifts

from 1 to 3

Fig. 7 Simulation in the modality ‘‘semantic memory’’. Note that, in

this modality, thanks to the use of greater synapses between WM and

L1, the activity in L1 does not oscillate with a theta rhythm. An

excitatory input is given to 70% of pixels in four different objects

(object 1, object 2, object 3 and object 4) in WM per 50 ms. The

network can maintain all objects in memory; the activity in L3

exhibits a desynchronization of all features in the four objects,

assigning a constant temporal sequence (in this particular case the

sequence is object1—object 2—object 4—object 3, but it can change

from one simulation to the another due to noise realization). It is

worth noting that, in this modality, this sequence was not learned by

the network, i.e. we do not have feedback synapses from L3 to L2
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An aspect deserves attention. In this modality no

sequence order was previously memorized (i.e., we did not

train the feedback synapses from L3 to L2), and so we were

not requiring any particular order to be reproduced. Nev-

ertheless, the model ‘‘devises’’ a particular order (in the

specific example, the order is ‘‘object 1—object 2—object

4—object 3’’) and repeats this order constantly, after a

brief transient. This order can change as a consequence of

the particular noise realization.

This kind of behavior (i.e., a correct desynchronization

with a fixed although arbitrary order) can be observed, with

the assigned synapse values, when either two, three or four

objects are simultaneously given as input. We also tried to

desynchronize a greater number of simultaneous objects

with the same values of synapses, but, if the number of

objects was greater than four, not all objects could be

desynchronized correctly.

However, we observed that the capacity to desynchro-

nize objects improves significantly if the strength of the

synapses A in layers L2 and L3 (i.e., synapses AL2;L2 and

AL3;L3 see the Appendix) is increased. In particular, up to

nine objects could be desynchronized rather often by

multiplying the previous synapse values by a factor in the

range 1.25–1.7 (Amax = 0.15–0.20). Some examples, con-

cerning the desynchronization of 5, 6, 7, 8 and 9 objects,

given simultaneously as inputs, is illustrated in Fig. 8,

where we used Amax = 0.20 for all simulations. In this

figure, for brevity, only the average activity in layer L3 is

presented. As it can be seen, all objects appear at least once

during the simulation period. However, there is no fixed

sequence; the objects emerge in an unpredictable order and

with a different occurrence. Furthermore, the greater the

number of objects given as input, the lower the frequency

of the emerging rhythm, which decreases to approximately

20 Hz (i.e., in the beta range) when nine objects must be

desynchronized together. We ascribe this reduction in

frequency to an increased competition among the objects,

which requires more time to be resolved. However, objects

were not always recognized perfectly even when using the

increased values of A synapses: in some occasions, espe-

cially concerning the desynchronization of eight or nine

objects, one object failed to appear during the overall

simulation period.

Summary of the results and metrics

The previous figures show some typical examples of model

behavior, which can be found in almost all trials, also by

changing noise and the different objects in Fig. 2. A

summary of all performed simulations concerning the

semantic network using orthogonal objects (obtained by

changing the object representations and the seed of noise,

so as to obtain 20 different simulations per each case) is

reported in Table 2, where we use three metrics to sum-

marize the results: the number of successes (i.e., all objects

Fig. 8 Simulation in the modality ‘‘semantic memory’’. In this figure,

only the average spike density of the different objects in layer L3 is

presented for brevity. The five panels represent model response when

5, 6, 7, 8 or 9 objects are simultaneously used as input in WM per

50 ms. The network maintains all objects in memory and desynchro-

nize them, but without maintaining any constant order (the frequency

and positions of the objects can change with time). Note that, in these

simulations, the strength of the fast synapses AL2 ;L2
ij and AL3 ;L3

ij has

been increased by a factor as high as 1.7 compared with the value

used in Fig. 7, which justifies the smaller frequency as a consequence

of an increased competition among objects

Cognitive Neurodynamics (2023) 17:489–521 503

123



recognized correctly at least twice), the frequency of the

gamma rhythm and the time required to recognize all

objects at least twice (see the legend of the table for more

details). Furthermore, we tested also the dependence of the

results on the strength of the inhibitory synapses, AL2;L2 ,

and AL3;L3 (by acting on the maximum value Amax, see the

Appendix) to point out the dependence of the results on this

crucial parameter. It is worth noting that the gamma fre-

quency decreases the higher the number of objects, while

the time for recognition obviously increases. Up to 7

objects can almost always be recognized (with only 1

exception with 5 objects). The percentage of successes is

still high with 8 objects, and becomes problematic with 9

objects if Amax is too high. Increasing Amax increases the

time required for object recognition and also reduces the

gamma frequency (higher competition) but makes the

solution with 9 objects less reliable.

Analysis of pathological conditions

Some recent experimental studies report that, in subjects

affected by Alzheimer disease, an anomalous behavior of

Table 2 Metrics which summarize the results of 20 trials per case

(obtained by changing the objects and/or the noise) concerning the

semantic modality. Results with different values of the parameter

Amax are shown for two different set of objects (with fixed and

variable dimensions, respectively). We consider a success if the

network recognizes each object given as input at least two times

during the 1.5 s simulation window. We show the percentage of

successes, the frequency of the gamma rhythm, the minimum,

maximum and mean time required to have success during the 20

trails. Only in some cases with 8 or 9 objects, when the network fails

to recover each objects two times, we provide the percentage of

successes if each object is recovered at least one time. The pattern 1

considers a case of 9 objects with orthogonal fixed dimensions (not

shown in Fig. 4). The second pattern corresponds to the case of 9

orthogonal objects with variable dimensions (i.e., case a in Fig. 4)

% successes (2 times) % successes (1 time) Gamma frequency Tmin (s) (2 times) Tmax (s) (2 times) Tmean (s) (2 times)

Amax = 0.15

Pattern1: orthogonal fixed dimensions

4 objects 100% (20/20) ‘‘ 69.46 0.14 0.22 0.17

5 objects 100% (20/20) ‘‘ 51.22 0.22 0.57 0.36

6 objects 100% (20/20) ‘‘ 49.87 0.30 1.05 0.50

7 objects 100% (20/20) ‘‘ 38.79 0.54 1.41 0.83

8 objects 85% (17/20) 100% (20/20) 26 0.63 1.29 1.05

9 objects 80% (16/20) 100% (20/20) 21.76 0.71 1.30 1.07

Pattern2: orthogonal variable dimensions

4 objects 100% (20/20) ‘‘ 69.08 0.12 0.26 0.18

5 objects 95% (19/20) 95% (19/20) 51.69 0.17 0.59 0.38

6 objects 100% (20/20) ‘‘ 50.80 0.32 1.02 0.62

7 objects 100% (20/20) ‘‘ 37.93 0.47 1.41 0.81

8 objects 75% (15/20) 95% (19/20) 27.93 0.68 1.39 1.08

9 objects 75% (15/20) 95% (19/20) 25.09 0.72 1.32 1.04

Amax = 0.20

Pattern1: orthogonal fixed dimensions

4 objects 100% (20/20) ‘‘ 34.21 0.17 0.43 0.27

5 objects 100% (20/20) ‘‘ 22.93 0.36 0.68 0.43

6 objects 100% (20/20) ‘‘ 22.95 0.48 0.54 0.50

7 objects 100% (20/20) ‘‘ 21.83 0.58 0.89 0.67

8 objects 100% (20/20) ‘‘ 21.28 0.70 1.26 0.87

9 objects 15% (3/20) 70% (14/20) 19.66 0.54 (1 time) 1.41 (1 time) 1.08 (1 time)

Pattern2: orthogonal variable dimensions

4 objects 100% (20/20) ‘‘ 33.51 0.17 0.56 0.31

5 objects 100% (20/20) ‘‘ 23.50 0.37 0.53 0.44

6 objects 100% (20/20) ‘‘ 22.98 0.47 0.67 0.51

7 objects 100% (20/20) ‘‘ 22.24 0.58 0.88 0.68

8 objects 65% (13/20) 100% (20/20) 21.36 0.81 1.21 0.91

9 objects 5% (2/20) 25% (5/20) 20.29 0.54 (1 time) 1.11 (1 time) 0.77 (1 time)
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the neural networks related to memory (hippocampal

neural networks) is linked to dysfunctions of the

interneurons—in particular, the inhibitory interneurons

involved in the generation of gamma oscillations

(GABAfast) (Verret et al. 2012; Palop and Mucke 2016).

Furthermore, some results prove that, starting from the

pathological condition, correcting the activity of these

neurons impacts on the state of the hippocampal network,

making its activity more similar to that found in healthy

subjects (Park et al. 2020). In order to analyze these con-

ditions, we simulated the recovering of a sequence (i.e., the

same situation as in Fig. 6) after a reduction of parameter

Cff, which represents the auto-inhibition of the fast

GABAergic interneurons. This parameter, as demonstrated

in our previous works (Ursino et al. 2010) is closely

involved in the generation of the gamma rhythm. Results,

shown in the upper panel of Fig. 9 (concerning the layer L3

only) show that, after a reduction of this parameter to 1/4 of

its basal value, the network becomes unable to recover a

correct sequence. Just the initial two or three patterns in the

list are recovered, and they occur repeatedly inside the

same theta cycle.

The second test concerns schizophrenia. It has been

reported in the literature that subjects suffering from this

pathology exhibit alterations in the AMPA receptors

(Zeppillo et al. 2020) (in the present model these may be

associated with the synapses named A), as well as an

anomalous coupling between theta and gamma rhythms in

the prefrontal areas during working memory (Barr et al.

2017). To simulate a similar pathological condition, we

used the network in both its modalities (‘‘sequence order-

ing’’ and ‘‘semantic’’), after a reduction in the strength of

synapses A to 1/4 of their original value. Results shown in

the mid panel of Fig. 9 demonstrate that, in this condition,

the network is unable to recover a correct sequence of

objects: unlike the previous case, however, now we can

observe too many objects superimposed together; in par-

ticular, the first items of the sequence restarts again within

the same theta cycle, superimposing with the subsequent

items of the sequence in a confusing way. A similar

superimposition of items is evident also in the modality

‘‘semantics’’ (bottom panel of Fig. 9), where we gave five

objects as input to the network.

Fig. 9 Three examples of model behavior in pathological conditions.
In this figure, only the average spike density of the different objects in

layer L3 is presented for brevity. The upper panel shows model

behavior in the modality ‘‘sequence ordering memory’’ after presen-

tation of the object 1, after a reduction of parameter Cff (which

represents the auto-inhibition of the fast GABAergic interneurons) to

1/4 of its normal level. This change can simulate alterations in

Alzheimer disease. The second and third panels show model behavior

in the modality ‘‘sequence ordering’’ after presentation of the object 1,
and in the modality ‘‘semantic memory’’ after presentation of five

objects simultaneously. These simulations have been performed after

a reduction in the strength of synapses A to 1/4 of their original value

(an alteration which can mimic that occurring in schizophrenic

patients). Note that the network can neither correctly recover the

sequence nor correctly desynchronize objects
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Imagination or dreaming modality

As a last simulation, we analyzed the model behavior when

the network does not receive any external input, but just a

uniform noisy excitation is given to layer L1. This condi-

tion wishes to simulate a circumstance in which the subject

is isolated from the environment, but can ‘‘imagine’’ or

‘‘dream’’ autonomously, by spontaneously recovering and

recombining the information stored in layers L1, L2 and

L3. In particular, we analyzed the network in the modality

‘‘sequence recovering’’, i.e., when the synapses from L3 to

L2 were previously trained to memorize a list of items.

The simulation in Fig. 10 refers to a condition in which

all pyramidal populations in layer L1 receive an input noise

with uniform distribution ranging between 80 and 160.

This signifies that layer L1 is disconnected from the

working memory, and is ‘‘over excited’’ uniformly. As it

can be seen from the figure, which represents a typical

simulation, thanks to the presence of much noise the net-

work can spontaneously recover several patterns in L1 (it is

worth noting, however, that now the dynamics in L1 is

slower, down to approximately 2 Hz). Just one of these

patterns, however (generally, the first active in L1), wins

the competition in L2, causing a sequence to start. Some

aspects deserve attention. First, the sequence ‘‘imagined’’

can change from one moment to another. Second, in these

simulations we used the objects in the second configura-

tions of Fig. 4 (bottom panel), and the network was pre-

viously trained to independently learn two list of objects:

‘‘1–2–3–4-5’’ and ‘‘6–7–8–9–10’’. Moreover, the object 6

in the second list has a portion in common with object 4 of

the first list, and the object 10 in the second list has some

elements in common with object 2 of the first list. We can

see that sometimes the network links the two lists in L3 to

form a longer hybrid list. In particular, we can observe that

sometimes object 7 in the second list is evoked with a small

delay after object 5 in the first list, and object 3 in the first

list is evoked with a small delay after object 10 in the

second list, i.e., a different list is linked at the end of the

previous one. For instance, the first gamma sequence in the

simulation is composed of the objects ‘‘3–4–5’’ ? ‘‘7–8–

9’’ (the first three items belonging to the first list, the other

three to the second list) and the third gamma sequence is

‘‘4–5’’ ? ‘‘7–8–9–10’’. We can explain this behavior if we

assume that the appearance of object 4 in the first list

evokes a small activity for the object 6 in the second list

too (since these two objects have some common features).

This is not sufficient to evoke the entire object 6 in layer

L3, but its partial activity favors the excitation of object7 in

L2 (which is the subsequent object in the second list). As a

consequence, when the first list terminates, this object is

facilitated to appear. Similarly, the last sequence in the

simulation consists of the objects ‘‘7–8–9–10’’ ? ‘‘3–4–5’’

(the first four items belonging to the second list, the other

three to the first list). In this case, the appearance of object

10 in the second list evokes a small activity for the object 2

in the first list, and the residual activity of object 2 in L3

favors the emergence of object 3 in L2.

Fig. 10 Simulation of model behavior, in the modality ‘‘sequence

ordering memory’’, when the network is disconnected from the

external world, and layer L1 receives a uniform excitation noise

(‘‘imagination’’ or ‘‘dreaming’’ condition). In this case the network

was previously trained with two alternative sequences of objects

taken from Fig. 4b (sequence ‘‘1–2–3–4-5’’ and sequence ‘‘6–7–8–9–

10’’). Note that the network can autonomously recover some portions

of the previously learned sequences, in a random fashion, and

sometimes link together the end of one sequence with a portion of the

other sequence
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The previous considerations can explain most of the

combinations observed during our simulation. However, it

is also possible that a list emerges after another in a more

independent and less predictable way, as in the case of the

second gamma sequence of Fig. 10 (‘‘4–5’’ ? ‘‘8–9–10’’

which is a delayed version of the third sequence lacking the

object 7), or the case of the fourth gamma sequence (‘‘6–7–

8–9–10’’ ? ‘‘1–2’’ which can only be explained by a ran-

dom appearance of object1 at the end of the other list).

These patterns are representative of what is occurring in

most simulations.

Briefly, the following main conclusions can be drawn:

(i) the network, deprived from any external input and

disconnected from the WM layer, in the presence of a small

uniform excitation and much noise, can autonomously

evoke some of the learned lists; (ii) even more important,

the network can link some lists together, frequently

exploiting the similarity among items; (iii) in any case, it is

necessary that one list terminates to allow the concatena-

tion with another one. These aspects will be further com-

mented in the Discussion and lines for future

improvements will be given.

Discussion

General considerations

Working memory denotes the ability to maintain infor-

mation in the brain during short time periods for immediate

use: it involves the initial encoding of information, the

retrieval of WM items from external cues or stimuli, and

their maintenance during a delayed time until a goal is

achieved. WM is crucial for many goal-directed cognitive

functions and exhibits different characteristics, depending

on the specific problem that has to be dealt with. Tradi-

tional models assume that WM is based either on persistent

firing of some neurons in the prefrontal cortex (PFC),

whose activity is maintained via recurrent positive con-

nections until a new stimulus reset them (Funahashi et al.

1989; Compte et al. 2000) or via short-term potentiation of

synaptic connections (Sandberg et al. 2003; Mongillo et al.

2008). However, data collected in the last decade evoke a

much more complex scenario. First, the interaction

between working memory and long term memory has

become a topic of much current interest (Burgess and Hitch

2005). As argued by Burgess and Hitch (2005), models of

short term memory and long term memory exhibit a crucial

link, so that a complete separation among them is often not

possible. Second, there is a wide consensus that WM does

not only implicates the PFC, but involves several different

areas, in particular the hippocampus and the parieto-oc-

cipital regions (Johnson et al. 2017). Finally, and more

important, many experiments, both in rodents and humans,

suggest that WM activity crucially depends on brain

rhythms, in the theta, alpha and gamma bands. The role of

neural oscillations in memory has become a crucial topic in

recent neuroscience research.

Aim of the present work was to develop an original

mathematical model to investigate the role of theta and

gamma rhythms in memory. Our attention was especially

focused on WM, although it is not always possible to

distinguish between long term and short term memory

within the present theoretical framework. Indeed, as poin-

ted out by Manohar et al. (2019) whether a model describes

short term or long term memory (hence WM, or semantic

or episodic memory) depends on the duration of the

synaptic changes incorporated on the Hebbian rules, i.e. on

short term vs. long term potentiation, a problem that we do

not explicitly address in the present model. Actually, a

preponderant role of gamma-theta coupling has been

demonstrated not only in studies concerning WM tasks

(Lundqvist et al. 2011; Chaieb et al. 2015; Rajji et al. 2017;

Tamura et al. 2017; Bahramisharif et al. 2018; Reinhart and

Nguyen 2019), but also associative tasks (Köster et al.

2018), long term spatial memory (Vivekananda et al.

2021), and episodic memory (Hsieh and Ranganath 2014),

thus stressing the probable presence of similar underlying

mechanisms for different memory types.

Our model is based on a few basic assumptions which,

although realistic, still require a future validation. What is

important in the present study is the proposed architecture

and the basic mechanisms incorporated, while individual

details can be the subject of future improvements. Funda-

mentally, we demonstrated that a single multilayered

structure, which makes use of neural mass models and

Hebbian mechanisms, can solve different kinds of working

memory problems, either involving an ordered sequence of

items or segmentation of several independent items,

exploiting theta and gamma oscillatory patterns. Moreover,

we demonstrated that some alterations in synaptic mecha-

nisms can potentially induce anomalies in the way memory

is restored and managed, simulating pathological condi-

tions. Finally, the free network, isolated form the envi-

ronment in the presence of much superimposed noise can

exhibit a dreaming or imagination behavior. All these

aspects indicate that the model can represent a promising

tool to investigate several fundamental problems in cog-

nitive neuroscience, within a single theoretical framework.

At present we have not a unique indication on where the

individual layers of the model can be located, but some

hypotheses can be formulated on the basis of the present

knowledge.
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Basic model assumptions and layers

The Layer WM implements the core of working memory,

where the different items are initially evoked and auto-

sustained and is likely located in the PFC. This region has

been traditionally considered a fundamental location for

the short-term goal oriented memory (Fuster and Alexan-

der 1971). A basic assumption in our model is that the

memory content is maintained thanks to a positive rever-

berating loop, which is reset as soon as the memory content

must be updated. This idea finds some support in the lit-

erature, and can be explained via a BG-thalamus gating

mechanism (Bolkan et al. 2017; Nir-Cohen et al. 2020).

Layer L1, where the theta rhythm originates and the

items are reconstructed, could be ascribed to the hip-

pocampus, for instance involving the lateral entorhinal

cortex and CA3. There are various aspects in the literature

that support this model subdivision. The hippocampus is an

evident candidate for the generation of theta rhythm

(Bastiaansen and Hagoort 2003; Mitchell et al. 2008), as

also shown by a large literature on hippocampal theta

oscillations in rats (Vinogradova 1995; Buzsáki

2002, 2005). The medial PFC is bilaterally connected to the

hippocampus through the perirhinal and lateral entorhinal

cortex. Experiments in which neural activity is simultane-

ously recorded in the rodent mPFC and in the hippocampus

have demonstrated that mPFC neuronal spiking occurs at a

specific phase of hippocampal theta oscillations (Hyman

et al. 2003; Siapas et al. 2005; Jones and Wilson 2005;

Gordon 2011; Kim et al. 2011) that this phase relationship

is especially prominent after learning (Kim et al. 2011),

and that PFC spiking activity is best phase-locked to hip-

pocampal theta oscillations occurring in approximately the

past 50 ms (Siapas et al. 2005). The latter results agree

with the patterns shown in Fig. 5, where, in the ‘‘sequence

ordering’’ modality, the network exhibits a theta phase-lock

between the WM and L1 after learning: the theta rhythm

originates in L1 and is transmitted back to WM with a

40–50 ms time delay. A bidirectional flow of information

between the PFC and the hippocampus has been recently

observed in context-driven memory trials (Place et al.

2016). Moreover, the hippocampus CA3 region has been

traditionally considered an ideal place for auto associative

completion (Marr 1971; Treves and Rolls 1994; Hasselmo

et al. 1995) due to the presence of abundant recurrent

collaterals (Li et al. 1994) and Hebbian synaptic modifi-

cation (Bliss and Collingridge 1993). Of course, alternative

hypotheses can also be viable, and can be tested in different

future models. For instance, theta rhythms may be gener-

ated in multiple sources of the brain, not just in the hip-

pocampus, and are known to propagate through the Default

Mode Network (see Hsieh and Ranganath 2014). The latter

observation however does not contradict our simulations:

in our model theta rhythm actually propagates from L1 to

downstream layers and, likely, spreads toward other brain

areas too (not included in the model), where the evoked

memory patterns are utilized and manipulated (but see also

Zhang et al. 2020; Yuan et al. 2021 for recent studies on

the subject).

A particular aspect of our model is that the theta rhythm

is generated directly within the L1 auto associative layer as

a consequence of strong Hebbian learning. A more tradi-

tional hypothesis is that the theta rhythm is generated in the

septum, which possibly acts as a pacemaker for theta

activity (Pignatelli et al. 2012) and from there is trans-

mitted to hippocampal neurons (Roux and Uhlhaas 2014).

However, more recent data have shown that oscillations in

the theta range can be recorded in hippocampal prepara-

tions in vitro, thus confirming that the hippocampus itself

can act as a theta oscillator (Cataldi and Vigliotti 2018).

Basically, in our model two conditions are necessary to

generate a clear theta rhythm: a moderate external input (in

our case coming from the WM layer) and excitatory auto-

associative synapses induced by Hebbian learning. As

consequence, a group of pyramidal neurons in the same

item is maximally excited, and strongly excites GABAer-

gic inhibitory interneurons with slow synapse dynamics.

The latter, in sequence, inhibits pyramidal neurons causing

a decrease in the overall activity to zero. This model

mechanism agrees with the ideas (Roux and Uhlhaas 2014;

Colgin 2016) that ‘‘In the hippocampus, theta oscillations

are generated by an interplay of glutamatergic and

GABAergic neurons’’ and represents an important

testable hypothesis of our model, requiring further

verification.

However, an important characteristic of our theoretical

framework is that theta rhythms are generated only when

the network works in the modality ‘‘sequence ordering’’. In

the ‘‘semantic memory’’ modality the theta rhythm is

practically absent. Of course, this implies the existence of

two alternative circuits linking WM and L1: the first, with

weaker connections, devoted to temporal sequencing,

based on a robust theta, and the other, with stronger con-

nections, devoted to the segmentation of items and their

semantics recognition without any assigned order. This is a

further model prediction requiring future analysis. Cohen

(2011) suggests that the relationship between theta activity

and memory encoding might depend on connectivity

between the hippocampus and PFC. The possibility of a

different connectivity weight between the PFC and two

alternative pre-processing hippocampal pathways (named

‘‘what’’ and ‘‘where’’ by the authors) is discussed in Pre-

ston and Eichenbaum (2013).

Several works support the existence of alternative cir-

cuits in the PFC-hippocampus pathways functionally
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differentiated along its dorsoventral axis and the ventral

(anterior) hippocampal formation (Moser and Moser 1998;

Hoge and Kesner 2007; Farovik et al. 2010). Furthermore,

recent data suggest that the theta rhythm is prominent only

during WM problems which involve temporal order, but

plays a less important role in tasks which do not require

any temporal sequencing (Roux and Uhlhaas 2014; Hsieh

et al. 2011; Heusser et al. 2016).

The layer L2 in our model, probably located in the

hippocampus CA3 area, is essential for the production of

the gamma rhythm, involving GABAergic interneurons

with faster kinetics. This modeling requisite is confirmed

by several studies which underline the critical role of fast-

spiking parvalbumin (FS) interneurons in the emergence of

cortical gamma activity (Bartos et al. 2007; Cardin et al.

2009; Whittington et al. 2011). In the present model, the

gamma code is generated downstream of the theta rhythm

(specifically in layers L2 and L3), and involves both

Hebbian and anti-Hebbian mechanisms. The Hebbian

mechanism produces strong glutamatergic synapses from

pyramidal neurons in an object to fast GABAergic

interneurons in the same object, generating a gamma

rhythm and solving the binding problem. Anti Hebbian

mechanisms are used to create much more rapid connec-

tions from pyramidal neurons in an object to fast inhibitory

interneurons in other objects, to solve the segmentation

problem.

An important question concerns the nature of the rapid

synapses (named A in the model) working with a very fast

time scale: they might involve very fast AMPA receptors

or more probably gap junctions. Schmitz et al. (2001)

provided evidence that axons of hippocampal principal

cells are electrically coupled, and can represent a mecha-

nism for very fast electrical communication. The idea that

principal cells in the hippocampus establish electrical

synapses with each other, implicated in network oscilla-

tions and synchronization, is further supported by addi-

tional recent studies (Molchanova et al. 2016; Ixmatlahua

et al. 2020). Furthermore, recent experiments suggest that

the strength of gap junctions can be modified in an activity-

dependent manner, similar to that of chemical synapses

(Cachope et al. 2007; Turecek et al. 2014; Wang et al.

2015). Pernelle et al. (2018), using a computational model,

demonstrated that gap-junction plasticity can play a role to

regulate oscillations and transmit information in a network

of inhibitory and excitatory neurons. These results confirm

several assumptions of the present model but, of course,

require further analysis.

However, we must mention a further alternative

hypothesis for fast desynchronization in L2 and L3. In fact,

Kwon et al. (2018) showed that Schaffer collateral from

CA3 to CA1 innervate both excitatory pyramidal cells and

inhibitory interneurons, but with different connectivity

rules. Hence, it is also possible that a very fast inhibition, to

desynchronize objects, is provided by a feedforward link

from a previous layer to inhibitory interneurons in a

downstream layer. This may represent an alternative

desynchronization mechanism which requires attention in

future work.

Finally, a feedback external loop has been introduced in

L2, to synchronize the gamma rhythm with the on phase of

the theta rhythm originating in L1, as observed in hip-

pocampus place cells. Evidence for a similar loop can be

found in the literature, in particular involving the so-called

Papez’s circuit which involves the hippocampal formation,

the mammillary bodies and the anterior thalamus. There is

large evidence that the theta rhythm resonates throughout

this circuit and that this circuit can have a role for coor-

dinating hippocampo-cortical activity and to control mne-

monic functions (Vertes et al. 2001; Dillingham et al.

2021). A further similar mechanism may involve the

medial septum, which acts through a dishinibition of the

hippocampus, i.e., a mechanisms very similar to the one

proposed in the present work (Kocsis and Kaminski 2006;

Salib et al. 2019).

Layer L3 in our model has two functions: to further

improve segmentation and, in the sequence ordering mode,

to produce a sequence of items via Hebbian feedback

connections. It is not easy and probably not unique to

determine the relative location of layers L2 and L3. In the

classic model by Lisman et al. (2005), where however the

position of the hetero- and auto-association networks are

inverted compared with ours, a similar mechanism was

ascribed to the dentate gyrus and CA3. According to an

hypothesis developed in Yamaguchi et al. (2007) (see

Fig. 1 in that paper), a similar mechanism may involve

CA3, CA1 and the superficial layers of the entorhinal

cortex. In our opinion CA1 is a good candidate for the

sequential order modality. In fact, the existence of feed-

back from CA1 to CA3 neurons is well documented, via

the participation of the entorhinal cortex (Eichenbaum

2017). Sandler et al. (2015) demonstrated the presence of a

Granger causality not only from CA3 to CA1 (feedforward)

but also from CA1 to CA3 (feedback). Hoge and Kesner

(2007) observed that rats with CA1 lesions displayed a

profound deficit in remembering the order of the visual

object presentations, suggesting that the CA1 is critical for

processing temporal information. Other studies suggesting

that CA1 area is selectively required for temporal coding

are summarized in Mankin et al. (2012).

Model working in alternative conditions

An important aspect of our model is that it can be used to

investigate, although at a preliminary stage, additional

important neurocognitive problems directly connected with
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memory. In particular, we focused attention on two main

questions: the role of gamma rhythms during imagination

and dreaming, and the alterations in the memory encoding

and retrieval occurring as a consequence of synaptic

alterations (mimicking pathological conditions such as

Alzheimer or schizophrenia).

The present network, isolated from the external world

and stimulated with noise in the L1 layer, can randomly

replay some of the sequences previously memorized.

Moreover, if some of these sequences exhibit a few

superimposed features (i.e., items are not completely

orthogonal) they can be recombined in a new and creative

manner, so that the terminal portion of a sequence is linked

to portions of another one. This result opens interesting

perspectives for comprehension of some fascinating neu-

rocognitive problems, such as those involved in dreaming

or imagination. For instance, place cells in the rat hip-

pocampus not only fire during an experience, but also later

‘replay’ sequences in a similar order or in reverse order

during sleep (Skaggs and McNaughton 1996; Dragoi and

Buzsáki 2006; Foster and Wilson 2007) or can even con-

struct never-experienced new path-sequences (Gupta et al.

2010).

Finally, with the present model we simulated two dif-

ferent alterations in model synapses, which can have

implications in neurological disorders. Indeed, results in

the literature suggest that theta-gamma coupling is

impaired in schizophrenic subjects, and this modification

can determine WM dysfunctions (Cho et al. 2006; Basar-

Eroglu et al. 2007; Barr et al. 2010, 2017; Berger et al.

2016). A common hypothesis is that these alterations

depend on a deficiency in GABAergic parvalbumin

interneurons (Lewis et al. 2012): these findings suggest a

new model of cortical dysfunction in schizophrenia in

which inhibition is decreased. Accordingly, we tested two

different dysfunctions concerning fast inhibitory interneu-

rons in our model. First, we decreased the strength of the

synapses A, that target into fast interneurons and are

essential for correct desynchronization of items, thus pro-

ducing a smaller inhibition in the network compared with

the normal case. The consequence is that the model, in the

‘‘sequence ordering’’ modality, becomes unable to recover

a sequence correctly, producing a complex and confused

mixing of various items (Fig. 9 middle panel) with evident

alterations in sequential WM; in the ‘‘semantic’’ modality,

the network cannot segment items correctly (Fig. 9 bottom

panel), thus producing a confused superimposition of fea-

tures in different objects. Although still at an oversimpli-

fied stage, these preliminary simulations can provide some

cues on the origin of some positive symptoms in

schizophrenia, such as hallucinations, incoherent thinking,

distortions. Another possible alteration simulated with the

model concerns a reduction of parameter Cff, which rep-

resents the auto-inhibition of the fast GABAergic

interneurons. After this change, the network loses the

capacity to evoke a sufficient number of items (Fig. 9

upper panel when only three items are recalled), i.e., it

works in a condition of memory deficiency. This behavior

can simulate some aspects of Alzheimer disease. Various

recent studies underline the existence of deficits in the

GABA–ergic interneurons in the Alzheimer too (Xu et al.

2020).

Of course more sophisticate combinations of parameter

changes can be performed in future works, with a more

detailed comparison with the neurobiology, to emphasize

the possible use of the model in the comprehension of

neurological deficits.

Testable predictions

Our model makes use of various hypotheses which,

although justified by the present knowledge on the pre-

frontal cortex-hippocampus interactions, still need a vali-

dation. Based on these hypotheses, the results lead to some

testable predictions, which can be verified in future studies.

(i) the model assumes the presence of very fast inhibi-

tory mechanisms, working on a time scale smaller than

gamma, essential to desynchronize objects. In the ‘‘se-

mantic modality’’ the model can segment three or four

objects simultaneously quite easily, using a phase desyn-

chronization in the gamma band. This agrees with the

classic number of items assumed in WM. A weakening of

this mechanism is associated with poor segmentation and

confusion among objects; an increase in this mechanisms

can allow the solution of more complex segmentation

problems (involving up to nine objects). It is possible that a

control in the strength of synapses incorporates a sort of

attentional mechanism: the higher the number of items, the

stronger the attention devoted to that particular task. The

synapse arrangement of these mechanisms is anti-Hebbian.

A test should study the presence of ultra-fast inhibition, the

effect of its impairment and possible the arrangement of

these synapses (anti-Hebbian).
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(ii) The theta rhythm plays a different role in sequence

ordering problems and in scene segmentation problems.

Different WM tasks would exhibit a different dependence

on this rhythm. A test can analyze the dependence of the

theta power on the role of temporal ordering in the assigned

task.

(iii) The model assumes that brain rhythms in the hip-

pocampus are affected by Hebbian (and anti-Hebbian)

mechanisms, hence by past experience and by the process

of object storage. Hence, the storage of objects can modify

these rhythms, by strengthening or weakening them. An

alternative hypothesis is that these rhythms are intrinsic

(i.e., independent of previous memorization). These alter-

native hypotheses can be checked by studying the depen-

dence of rhythm power and frequency on the task and the

storage requirements.

(iv) Model results show that the frequency of the gamma

rhythm decreases when a greater number of objects must

be simultaneously segmented in a given semantic problem.

The dependence of frequency on the task complexity can

be tested.

(v) The same structure (in our case the pre-frontal cortex

– hippocampus complex) can solve different memory

problems in different segregated circuits, as a consequence

of a different learning of feedback synapses and different

potentiation of feedforward synapses.

Future study

In the present work we made use of a neural mass model

which, although largely used in practice, is of course a

simplification of the real dynamical behavior of spiking

neurons. A fundamental problem, which requires detailed

analysis in future work, is the relationship between the

sigmoidal formulation in the NMM and a biophysical

description of spiking neurons. Briefly, the capacity to

produce oscillations, their frequency content and ampli-

tude, and transmissibility in a NMM crucially depend on

the position of the various populations on the sigmoidal

relationship. It will be worthwhile in future work to sim-

ulate the same connections and possibly similar waves with

populations of spiking neurons to test similarities and dif-

ferences. Spiking neurons offer the advantage of a greater

physiological reliability and likely the possibility of more

complex pieces of behavior, at the cost of increased com-

putational time and, above all, of a greater difficulty to

summarize the results into a simple synthetic frame. The

possibility to work out with multiscale models, which

move from the neuronal level to the population levels and

back to neurons will be an essential subject of research in

future studies.

In this work we demonstrated that the model can solve

different problems in WM using brain rhythms and a four

layer structure. However, this general framework is quite

flexible and can be modified in future work to meet addi-

tional data and accommodate new ideas. For instance, a

frequent idea is that a gamma rhythm is generated in the

brain upstream of the prefrontal region (and not in down-

stream layers as in our model) and transmitted to the PFC

from the input connections (for instance from occipital

visual regions to frontal regions, which in turn exhibit a

top-down influence, (see Fries 2015). However, this choice

would require a modification of the present auto-associa-

tive net, since in this case auto-association would neces-

sitate that the gamma cycles are synchronized before the

involvement of a theta rhythm.

A problem in our model is that, if a given object or item

appears entirely in two different sequences, the model has

no mechanism to choose whether to continue on one path

or on another. For this reason, we never simulated such a

condition: all the objects memorized in this paper, although

not orthogonal, exhibit only a limited percentage of com-

mon features (less than 20%). As suggested by Alexander

et al. (2020), the possibility to disambiguate multiple

overlapping spatiotemporal trajectories requires the pres-

ence of more sophisticate cells, which differentially code

the context of prior or future behavior. This important

question may be the subject of future model improvements.

In particular, the possibility to manage overlapping tra-

jectories can strongly improve the model’s ability to sim-

ulate dreaming, imagination and pathological behavior.

Appendix: Equations and parameters

In this appendix, we present the model’s equations, the

training rules and all related parameters.

Figure 11 summarized the main relationships among

quantities, in a more complex form compared with Fig. 1

of the main text.
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Synapses

All synapses in the model are described by the following

second order differential equation:

d2yn tð Þ
dt2

¼ Gn

sn
zn tð Þ � 2

sn

dyn tð Þ
dt
� yn tð Þ

s2n
ð1Þ

where Gn is the gain, sn is the time constant and zn is the

input to the synapse, i.e. the presynaptic spike density. The

Fig. 11 Panel A: Scheme of the neural mass model simulating the

dynamics in a single column. Blue continuous lines with arrows

indicate glutamatergic excitatory synapses, red dash-dotted lines with

open squares indicate GABAergic faster inhibitory synapses, while

brown dotted lines with open circles indicate GABAergic slower

inhibitory synapses. Symbols Cij denote the synaptic contacts among

the neural populations, where the first subscript and the second

subscript designate the post-synaptic population and pre-synaptic

population, respectively. up and uf represent inputs to the pyramidal

neuron population and to the fast inhibitory interneuron population,

respectively. These inputs can come from the external environment

(E and I respectively), from noise (np and nf, respectively) or from
synapses from pyramidal neurons in other ROIs. Panel B: an example

of excitatory connections between two ROIs, via a direct link from

the pyramidal neurons of the source ROI to the pyramidal neurons of

the target ROI. Panel C: an example of a bi-synaptic inhibitory

connection, from the pyramidal neurons of the source ROI to the fast

inhibitory interneurons of the target ROI (which, in turn, inhibits

pyramidal neurons in the target ROI). In the present model the latter

connection may be either of type K (with glutamatergic dynamics) or

type A (with almost instantaneous dynamics)
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subscript n is a generic one; it stands for either p, e, s, or f,

depending on the neural population the equation is refer-

ring to: p for pyramidal neurons, e for excitatory

interneurons, s for slow inhibitory interneurons, f for fast

inhibitory interneurons. All second order differential

equations of type A1 are equivalent to the two first order

differential equations that follow.

dyn tð Þ
dt
¼ xn tð Þ

dxn tð Þ
dt
¼ Gn

sn
zn tð Þ � 2

sn
xn tð Þ � yn tð Þ

s2n

8
>><

>>:

ð2Þ

Model of a single cortical column

For each neuronal population, we first computed the mean

membrane potential v(t), which is influenced by synaptic

connections. Then we computed the average firing rate of

the population, z(t), through a sigmoidal activation func-

tion, S(v(t)). Finally, a normalized post-synaptic potential,

y(t), can be computed using the Equations (A2); the latter

must be multiplied by the synaptic weight to determine the

actual contribution to the post-synaptic membrane

potential.

Both pyramidal neurons and fast inhibitory interneurons

can receive an external input—labeled up and uf, respec-

tively. These are random variables with normal distribu-

tion, mean value mp (or mf) and standard deviation rp (or

rf). Both reach the target population through an excitatory

synapse. In the case of up, we implemented a common

mathematical procedure to reduce the number of differ-

ential equations (and therefore, the number of state vari-

ables). Specifically, we processed up through the excitatory

synapse that goes from excitatory interneurons to pyrami-

dal neurons (see Eqs. (A4) below), instead of processing

the input separately. The other external input, uf, reaches its

target population through a dedicated synapse (Eqs. (A6)).

The membrane potential of pyramidal neurons and fast

inhibitory interneurons is also influenced by long-range

synapses, which connect different cortical columns. Such

contributions are labelled E(t) and I(t) and will be dis-

cussed in the next paragraph.

Equations for all populations

Pyramidal neurons:

vpðtÞ ¼ Cpeye tð Þ þ Cppyp tð Þ � Cpsys tð Þ � Cpf yf tð Þ þ E tð Þ

S vpðtÞ
� �

¼ zp tð Þ ¼ 2e0

1þ erðs0�vpÞ
dyp tð Þ
dt
¼ xp tð Þ

dxp tð Þ
dt
¼ Ge

se
zp tð Þ � 2

se
xp tð Þ �

yp tð Þ
s2e

8
>>>>>>>><

>>>>>>>>:

ð30Þ

It is worth noting that we assumed Gp ¼ Ge and sp ¼ se
in Eq. (3’), since both pyramidal neurons and excitatory

interneurons exploit the same type of glutamatergic

synapse. Moreover, it is worth noting that the self-loop Cpp

of pyramidal neurons has been used only in the WM layer,

and is set to zero in the other layers. Hence, we can write.

In layers L1, L2 and L3: Cpp ¼ 0

In layer WM Cpp tð Þ ¼ Ĉpp; if mp tð Þ ¼ 0 maintainance period

0; ; if mp tð Þ 6¼ 0 reset period

ð300Þ

Excitatory interneurons:

veðtÞ ¼ Cepyp tð Þ

S veðtÞð Þ ¼ ze tð Þ ¼ 2e0
1þ erðs0�veÞ

dye tð Þ
dt
¼ xe tð Þ

dxe tð Þ
dt
¼ Ge

se
ze tð Þ þ up

Cpe

� �

� 2

se
xe tð Þ � ye tð Þ

s2e

8
>>>>>>>>><

>>>>>>>>>:

ð4Þ

Slow inhibitory interneurons:

vsðtÞ ¼ CspypðtÞ

S vsðtÞð Þ ¼ zs tð Þ ¼
2e0

1þ erðs0�vsÞ

dys tð Þ
dt
¼ xs tð Þ

dxs tð Þ
dt
¼ Gs

ss
zs tð Þ �

2

ss
xs tð Þ �

ys tð Þ
s2s

8
>>>>>>>>><

>>>>>>>>>:

ð5Þ

Fast inhibitory interneurons:

vf ðtÞ ¼ Cfpyp tð Þ � Cfsys tð Þ � Cff yf tð Þ þ yl tð Þ þ IðtÞ

S vf ðtÞ
� �

¼ zf tð Þ ¼ 2e0

1þ erðs0�vf ðtÞÞ

dyf tð Þ
dt
¼ xf tð Þ

dxf tð Þ
dt
¼ Gf

sf
zf tð Þ � 2

sf
xf tð Þ �

yf tð Þ
s2f

dyl tð Þ
dt
¼ xl tð Þ

dxl tð Þ
dt
¼ Ge

se
uf tð Þ � 2

se
xl tð Þ �

yl tð Þ
s2e

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

ð6Þ
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where the subscript l is used to represent the quantities in

the additional synapse, introduced to describe the effect of

the input uf via glutamatergic dynamics. All related

parameters’ values are listed in the Table 3.

Long range connections

As previously mentioned, long-range synapses connect two

different cortical columns, either belonging to the same

layer or to different layers. These contributions appeared in

the previous equations as the variables E(t) and

I(t) (Eqs. (3’) and (6)), which stand for long-range Exci-

tation and long-range Inhibition, respectively. For a more

detailed qualitative description of the synaptic architecture

(structure of feedforward and feedback long-range con-

nections) we refer to the main text of the present article.

In the following, we will use subscripts (i or j) to denote

the position of a cortical column within a layer, and

superscripts (either WM, L1, L2 or L3) to represent a layer.

It is worth noting that, although in Fig. 4 cortical columns

are represented in a two-dimensional lattice for clarity, in

the following we will assume that this two-dimensional

structure is converted into a vector. Hence, just one sub-

script is used to represent a column, while we need two

subscripts to represent synapses linking two columns.

Generally, the first subscript (or superscript) will be used to

represent the post-synaptic column (or the post-synaptic

layer) whereas the second subscript (or superscript) will

represent the pre-synaptic column (or the pre-synaptic

layer). For instance, the symbol WL1;WM
ij in the following

represents an excitatory synapse from a pre-synaptic neu-

ron at position j in layer WM to a post-synaptic neuron at

position i in layer L1.

Briefly, WM receives an excitatory feedback signal from

L1, through the synapses WWM;L1 . L1 receives information

on the external input from WM through WL1;WM , and

implements an auto-associative network through the lateral

synapses WL1;L1 . L2 receives an input from L1 through

WL2;L1 , and can further receive a feedback from L3 through

WL2;L3 (this term implements the hetero-associative net-

work, and is absent when the model is operating in the

‘‘semantic working memory’’ modality), and is subjected to

synchronizing and desynchronizing lateral synapses (KL2;L2

and AL2;L2 ). L3 also has synchronizing and desynchronizing

lateral synapses (KL3;L3 and AL3;L3 ). Moreover, it receives

an input from L2 through the synapses WL3;L2 . Finally, it is

worth noting that the values of the synapses WWM;L1 and

WL1;WM are higher in the modality ‘‘semantic memory’’

compared with the other modality.

For each layer, E(t) and I(t) are therefore calculated as

follows. The subscripts i, j = 1, …, 400 identify a single

cortical column within the specified layer.

WM:

EWM
i tð Þ ¼

P
jW

WM;L1
ij � yL1p;j tð Þ

IWM
i tð Þ ¼ 0

ð7Þ

L1:

EL1
i tð Þ ¼

P
j W

L1;WM
ij � yWM

p;j tð Þ þ
P

jW
L1;L1
ij � yL1p;j tð Þ

IL1i tð Þ ¼ 0
ð8Þ

L2:

EL2
i tð Þ ¼

X

j
WL2;L1

ij � yL1p;j tð Þ þ
X

j
WL2;L3

ij � yL3p;j tð Þ

IL2i tð Þ ¼
X

j
KL2;L2

ij � yL2p;j tð Þ þ
X

j
AL2;L2
ij � zL2p;j tð Þ þ Inhibitor

Inhibitor ¼ R � T �
X

j
zL1p;j

� �þ

ð9Þ

L3:

EL3
i tð Þ ¼

X

j
WL3;L2

ij � yL2p;j tð Þ

IL3i tð Þ ¼
X

j
KL3;L3

ij � yL3p;j tð Þ þ
X

j
AL3;L3
ij � zL3p;j tð Þ

ð10Þ

The Eq. (9), which refer to L2, contain the definition of

the term Inhibitor, where the function ()? stands for the

operator ‘‘positive part’’. This term receives the overall

Table 3 Parameters describing the dynamics of the populations

within a cortical column

Synapses Fuction S(v(t))

Ge (mV) 5.17 se (ms) 7.7 e0 (Hz) 5

Gs (mV) 4.45 ss (ms) 34 r (mV-1) 0.7

Gf (mV) 57.1 sf (ms) 6.8 s0 (mV) 10

Inputs Intra-column connections Cpp 300

mp (Hz) See text Cep 31.7 Cfp 66.9

mf (Hz) See text Cpe 17.3 Cfs 100

rp
2 (s-2) 5 Csp 51.9 Cpf 16

rf
2 (s-2) 5 Cps 100 Cff 18

Table 4 Parameters describing the long range synapses among layers.

All these arrays are diagonal in type

WL1 ;WM* 100 WL2;L1 120

WL1 ;WM** 300 WL3 ;L2 186

WWM;L1 * 100 T 20

WWM;L1 ** 300 R 1000

*If the network is operating in the ‘‘sequence-ordering working

memory’’ modality
** If the network is operating in the ‘‘semantic working memory’’

modality
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activity from layer L1 and compares this activity with a

given threshold, T. If the global activity in L1 is below

threshold, the inhibitor silences all cortical columns in

layer L2 by acting on the inputs of the fast inhibitory

interneurons. This inhibition is then retracted as soon as the

global activity in L1 rises above threshold. In other words,

Inhibitor is the term we used to implement the modulation

of L2 (and subsequently L3) by L1, to facilitate the cou-

pling between theta and gamma rhythms.

The values of parameters pertaining to the equations

above, as well as the values of fixed synapses, are pre-

sented in the Table 4.

Training rules

We used Hebbian and anti-Hebbian rules to train the

synapses. For a more detailed description of the training

procedures, we refer to the section ‘‘Training the network’’

of the present article.

Synapses within layer L1

Hebb rule (long term potentiation)

DWL1;L1
ij tð Þ ¼ cW

zL1p;i tð Þ
2e0

� hlow1

 !þ
zL1p;j tð Þ
2e0

� hlow1

 !þ

WL1;L1
max �W

L1;L1
ij tð Þ

� �

WL1;L1
ij t þ Tsð Þ ¼ WL1;L1

ij tð Þ þ DWL1;L1
ij tð Þ

; i 6¼ j

ð11Þ

where cW represents a learning factor, 2e0 is the maximum

firing rate (hence, all activities are normalized to the

maximum), ()? is the function ‘‘positive part’’. It is worth

noting that the pre-synaptic and post-synaptic activities are

compared with a threshold hlow1, and the synapse is

increased only if both activities are above threshold. This

means that DWL1;L1
ij tð Þ can only be positive, i.e. the synaptic

weights cannot decrease over time and the network is

unable to forget—a limitation that could be overcome in

future projects. Finally, the last term in Eq. (11) means that

the synapse cannot overcome a maximum saturation value,

WL1;L1
max , and so that the overall learning rate decreases

approaching saturation.

Normalization to a maximum After application of the

Hebb rule, we checked that the sum of the synapses

entering into a cortical column cannot overcome a global

maximum, named Wmaxsum. This allows objects with dif-

ferent dimension to receive the same amount of global

excitation; moreover, this choice corresponds to a physio-

logical limitation of the overall neurotransmitter available.

We have

SWi ¼
X

j

WL1;L1
ij :

If SWi [Wmaxsum ) WL1;L1
ij  WL1;L1

ij �Wmaxsum

SWi

ð12Þ

Synapses within layers L2 and L3

The procedures to train the lateral connections within these

two layers are exactly the same, however by considering

that the post-synaptic population consists of fast inhibitory

interneurons. Therefore, for the sake of brevity, we present

only the equations pertaining to the training of KL2;L2 and

AL2;L2 , Analogous equations can be written as to KL3;L3 and

AL3;L3 if superscripts are properly changed.

DKL2;L2
ij tð Þ ¼ cK

zL2f ;i tð Þ
2e0
� hlow2

 !þ
zL2p;j tð Þ
2e0

� hlow2

 !þ

KL2;L2
max �K

L2;L2
ij tð Þ

� �

KL2;L2
ij t þ Tsð Þ ¼ KL2;L2

ij tð Þ þ DKL2;L2
ij tð Þ

; i 6¼ j

ð13Þ

SK2i ¼
P

j K
L2;L2
ij :

If SK2i [Kmaxsum ) KL2;L2
ij  KL2;L2

ij � Kmaxsum

SK2i

ð14Þ

DAL2;L2
ij tð Þ ¼ cA hhigh2 �

zL2f ;i tð Þ
2e0

 !þ
zL2p;j tð Þ
2e0

� hlow2

 !þ

AL2;L2
max �A

L2;L2
ij tð Þ

� �

AL2;L2
ij t þ Tsð Þ ¼ AL2;L2

ij tð Þ þ DAL2;L2
ij tð Þ

; i 6¼ j

ð15Þ

SA2i ¼
P

j A
L2;L2
ij :

If SA2i [Amaxsum ) AL2;L2
ij  AL2;L2

ij � Amaxsum

SA2i

ð16Þ

Table 5 Parameters describing

the training procedure
Parameter Value

Ts (s) 10–4

h low1 0.12

h low2 0.8

h high2 0.6

h low3 0.7

cW 0.1

cK 1

cA 1

cWb 10

WL1 ;L1
max

10

KL2 ;L2
max , KL3 ;L3

max
8

AL2 ;L2
max , AL3 ;L3

max
0.12

WL2 ;L3
max

11

Wmaxsum 130

Kmaxsum 160

Amaxsum minðSAi Þ
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Equations (13) and (15) have the same meaning as

Eqs. (11). Equations (14) and (16) describe the same global

normalization as Eq. (12).

As shown in Eq. (15), however, synapses of type A are

trained with an anti-Hebbian rule. This signifies that the

synapses are reinforced when the normalized activities in

the pre-synaptic and post-synaptic populations (
z
L2
p;j tð Þ
2e0

and

z
L2
f ;i

tð Þ
2e0

, respectively) are anti-correlated; in particular, the

activity of pyramidal neurons in the presynaptic popula-

tion, representing a stimulated object, must be above

threshold, while the activity of the fast interneurons in the

post-synaptic populations must below threshold, to have a

synapse reinforcement.

Feedback synapses from layer L3 to layer L2

The training rule that we used to compute the weights of

the feedback connections from L3 to L2 (17) uses a Hebb

rule similar to Eqs. (12). In this case, however, we did not

adopt any normalization, assuming that this does not hold

for long range synapses among different layers.

DWL2;L3
ij tð Þ ¼ cWb

zL2p;i tð Þ
2e0

� hlow3

 !þ
zL3p;j tð Þ
2e0

� hlow3

 !þ

WL2;L3
max �W

L2;L3
ij tð Þ

� �

WL2;L3
ij t þ Tsð Þ ¼ WL2;L3

ij tð Þ þ DWL2;L3
ij tð Þ

; i 6¼ j

ð17Þ

All parameters’ values are shown in Table 5.
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