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Abstract
Different brain areas, such as the cortex and, more specifically, the prefrontal cortex, show great recurrence in their

connections, even in early sensory areas. Several approaches and methods based on trained networks have been proposed to

model and describe these regions. It is essential to understand the dynamics behind the models because they are used to

build different hypotheses about the functioning of brain areas and to explain experimental results. The main contribution

here is the description of the dynamics through the classification and interpretation carried out with a set of numerical

simulations. This study sheds light on the multiplicity of solutions obtained for the same tasks and shows the link between

the spectra of linearized trained networks and the dynamics of the counterparts. The patterns in the distribution of the

eigenvalues of the recurrent weight matrix were studied and properly related to the dynamics in each task.
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Introduction

Recurrent neural networks (or RNN) are used to model

different areas of the brain such as the cortex. These areas

have high recurrency in their connections, even in early

sensory areas that receive stimuli from subcortical areas

(Murphy and Miller 2009). Several approaches have been

proposed considering RNNs to model these regions,

including different network’s topologies, connectivity

models, architectures and training methods (Sussillo 2014;

Barak 2017; Maheswaranathan et al. 2019a). The advances

made in the field have been guided by results obtained in

different experiments such as multiple single-unit record-

ing or neuroimaging data (Durstewitz 2017; Pandarinath

et al. 2018).

Other models, as ORGANICs, Oscillatory Recurrent

GatedNeural Integrator Circuits (Heeger andMackey 2019),

have been inspired by the progress in the field of Machine

Learning (Hassabis et al. 2017). In this field, architectures

such as LSTM (Long Short Term Memory units) and GRU

(Gated recurrent units) are widely spread and have been used

to process temporal sequences since they do not have the

same limitations as RNN to process long time dependencies

(Chung et al. 2014; Shi et al. 2015; Pascanu et al. 2013;

Bengio et al. 1994; Gudowska-Nowak et al. 2020).

However, the simple RNN model still constitutes a vast

field of study. The main reason is that it is used to under-

stand neural computation in terms of collective dynamics,

which is involved in motor control, temporal tasks, deci-

sion making, or working memory (Vyas et al. 2020).

Understanding the dynamics behind such models allow

us to construct different hypotheses about the functioning

of the brain areas and explain the observed experimental

results (Barak 2017; Kao and Hennequin 2019). For

example, recurrent trained networks have also been

recently used to transfer the learned dynamics and con-

straints to a spiking RNN in a one-to-one manner (Kim

et al. 2019).

It has long been known that network’s dynamics is

strongly influenced by the eigenvalues spectrum of the

weight matrix that describes synaptic connections, there-

fore the significance of studying such distribution is to

elucidate the different aspects of the dynamic behaviour of

the system.

For example, the existence of spontaneous activity is

related to the synaptic weight matrix and depends on
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whether the real parts of any of the eigenvalues of its

decomposition are large enough to destabilize the silent

state in a linear analysis. Also, the spectrum of eigenvalues

with larger real parts provides signs about the nature of the

spontaneous activity in full nonlinear models (Rajan and

Abbott 2006).

The correlation between eigenvalue spectra and

dynamics of neural networks has been previously studied in

Zhou et al. (2009), relating the design of networks with

memory face with the eigenvalues outside the unit circle in

the complex plane, which means networks that have

attractor states (or memories) according to Zhou et al.

(2009).

This spectrum has been the subject of study under dif-

ferent hypotheses and connectivity models (Rajan and

Abbott 2006; Garcı́a et al. 2013; Zhang and Nelson 2019;

Zhou et al. 2009; Goldman 2009).

In present work, the focus is the study of the dynamics

of recurrent neural networks trained to perform Boolean-

type operations with temporal stimuli at their input that

simulate sensory information represented in the brain. In

particular, the network’s recurrent weights have been

trained starting initially from matrices with weights given

by a normal distribution with zero mean and variance 1
N by

using backpropagation through time with the Adam

method (Kingma and Ba 2014). This will be explained in

more detail in Sect. ‘‘Model and methods’’.

In our previous work, whose preliminary version can be

found in Jarne and Laje (2020), we have illustrated a set of

properties of these networks. We studied how the perfor-

mance degrades either as network size is decreased,

interval duration is increased, or connectivity is damaged.

We started a study on the eigenvalue’s distribution, but

without classifying the behavior. The main focus of such

work was the connectivity properties related to the scale

and network damage. In the present work, the different

aspects of dynamics have been studied in-depth. An

interpretation is provided for the results of the numerical

simulations corresponding to networks trained for the

AND, OR, XOR temporal tasks, and a Flip Flop. Here the

focus is the study of the eigenvalues spectrum of the

recurrent weight matrices of trained networks and the

classification of the obtained attractor states of the required

output. The aim is to show the link between the spectra in

such tasks and dynamics.

The motivation for the selection of these tasks is double.

On the one hand, to simulate flow control processes that

can occur in the cortex when receiving stimuli from sub-

cortical areas. In Gisiger and Boukadoum (2011), the

notion of gating was discussed as a mechanism capable of

controlling the flow of information from one set of neurons

to another. In the present work, the gating mechanisms are

modeled using networks with a relatively small set of units.

On the other hand, these tasks are the basic and the lowest

level for computation in any digital system. It has been

previously proposed that some sets of neurons in the brain

could roughly function as gates (Gisiger and Boukadoum

2011).

In the case of the Flip Flop, it is the simplest sequential

system that one can build (Floyd 2003). It is also inter-

esting the dynamics of trained networks for the Flip Flop

task, which is generally related to the concept of working

memory. It has been previously studied in Sussillo and

Barak (2013) and Sussillo (2014), but in this case, with a

more complex task referring to a 3-bit register called in the

paper a 3-bit Flip Flop.

So far, there are few detailed studies on the eigenvalues

of the matrix of recurrent weights performed in trained

networks. For example, the work of Rivkind and Barak

(2017) stands out. Although, the framework of this work is

Reservoir Computing. Present work shares some of the

observations made by the authors on the results. Other

previous works considered matrices with partially random

and partially structured connectivity, such as the works

described in Garcı́a et al. (2013), Ahmadian et al. (2015)

and Landau and Sompolinsky (2018). The results of these

works were also considered in the present analysis.

Most of the existing literature on eigenvalues and

dynamics is regarding the study of networks with random

connections (Girko 1985; Rajan and Abbott 2006; Martı́

et al. 2018). Besides, older works on dynamics considered,

for example, other constraints such as symmetric matrices

(Vibert et al. 1994).

For these reasons, the present analysis represents a

significant contribution through the study of eigenvalues

when considering non-normal matrices and trained net-

works. The variability on the dynamics that can be

observed on trained networks is surprising. The study

presented here sheds light on the multiple solutions

obtained for the same tasks and shows the links between

the spectra of trained networks and the dynamics. Also,

different properties of the model and the tasks were

studied.

The rest of the paper is organized as follows. The model

and methods are presented in Sect. ‘‘Model and methods’’.

Section ‘‘Long term dynamics’’ shows how to obtain the

linearization of the system. In Sect. ‘‘Results’’, results are

shown and how to classify the realizations obtained after

training (network’s simulations). In Section 5, the different

aspects that arise from the realizations and the dynamics

are discussed. Finally, in Sect. ‘‘Discussion’’, some

remarks and further directions are presented.
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Model and methods

The dynamics of the interconnected units of the RNN

model is described by Eq. (1) in terms of the activity hiðtÞ,
where units have index i, with i ¼ 1; 2:::;N (Hopfield

1984).

dhiðtÞ
dt

¼ � hiðtÞ
s

þ r
X

j

wRec
ij hjðtÞ þ

X

j

win
ij xj

 !
ð1Þ

s represents the time constant of the system. rðÞ is a non-

linear activation function. xj are the components of the

vector X of the input signal. The matrix elements wRec
ij are

the synaptic connection strengths of the matrix WRec and

win
ij are the matrix elements of Win from the input units.

The network is fully connected, and matrices have recur-

rent weights given from a normal distribution with zero

mean and variance 1
N, as already mentioned in Sect. 1.

The readout in terms of the matrix elements wout
ij from

Wout is:

ZðtÞ ¼
X

j

wout
ij hjðtÞ ð2Þ

For this study it was considered rðÞ ¼ tanhðÞ and

s ¼ 1mS. The nonlinear function was chosen following

models used in experimental works such as Russo et al.

(2020), Williams et al. (2018) and Remington et al. (2018),

but it could be changed without loss of generality, as well

as the time scale. The model is discretized through the

Euler method for implementation folowing Bondanelli and

Ostojic (2020), Ingrosso and Abbott (2019) and Bi and

Zhou (2020), with a step time of 1 mS obtaining Eq. 3,

which is expressed in matrix form.

Hðt þ 1Þ ¼ rðWRecHðtÞ þWinXðtÞÞ ð3Þ

It was implemented in Python using Keras and Ten-

sorflow (Chollet et al. 2015; Abadi et al. 2015), which

allows making use of all current algorithms and opti-

mizations developed and maintained by a large research

community. This procedure has previously been used in

Jarne and Laje (2020).

Networks were trained using backpropagation through

time with the adaptive minimization method called Adam.

Initial spectral radius g, which is defined as the maximum

absolute value of eigenvalue distribution of the matrix

WRec, is equal to 1. If the initial condition is far away from

this value (with the proposed variance of g 1
N), the training

is not successful with few epochs.

Although the training method is not intended to be

biologically plausible, in a recent publication, arguments

were presented regarding that, under certain approaches,

this phenomenon could be plausible (Lillicrap et al. 2020).

The authors argued that the brain has the capacity to

implement the core principles underlying backpropagation.

The idea is that the brain could compute effective synaptic

updates by using feedback connections to induce neuron

activities whose locally computed differences encode

backpropagation-like error signals.

The stimuli presented at the input of the networks,

corresponding to the training sets, are time series con-

taining rectangular pulses with random noise correspond-

ing to 10% of the pulse amplitude. The possible

combinations presented are: two simultaneous pulses at

each input, a single stimulus in one or the other, or no

pulse, constituting the four possible binary combinations.

These are shown on the right side of Fig. 1, where also a

representation of the model is presented. The target output

completes the set, and it depend on which of the functions

is selected to teach the network (AND, OR, XOR, or Flip-

Flop).

Networks of two different sizes were considered for the

study: 50 and 100 units, the latter as a control case. The

tasks can be learned in reasonable computational time, and

with good accuracy, with 50 units. Two types of initial

conditions were considered for the recurrent matrices:

Random Normal distribution and Random Orthogonal

(Jarne and Laje 2020). The second case is an additional

constraint. It means that the matrix is initialized with an

orthogonal matrix obtained from the decomposition of a

matrix of random numbers drawn from a normal

distribution.

Although successfully trained networks can also be

obtained using the identity matrix for initialization, this

initial condition is far from the random connectivity

paradigm previously used.

Networks were trained to carry out all the mentioned

tasks (AND, OR, XOR, and Flip Flop). More than 20

networks were trained for each initial condition and task.

Simulations and code to perform the analysis of present

work are available in electronic supplementary material.

To summarize, Table 1 contains the parameters con-

sidered for training, such as the size of the network, data

set, noise and regularization terms that are appropriate for

the tasks.

For each realization, the distributions of the recurrent

weights pre and post-training were plotted. The distribution

moments were estimated in each case. Then, the decom-

position of Wrec in their eigenvectors and eigenvalues was

obtained. An example of one network is presented in the

upper part of Fig. 2. In panel a), the distribution of the

weight matrix is shown. In panel b), the distribution of the

eigenvalues in the complex plane is presented. The beha-

viour is described in detail in Sect. 4.4.

The realizations obtained were studied and classified

one by one. To do this, a noise-free testing set,
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corresponding to the four possible binary options, was used

to study the response of each network. The behaviour of

some k units was plotted as a function of time for each of

the possible stimuli combinations. The panel c) of Fig. 2

shows the response of the set of units hkðtÞ, corresponding
to a network trained for the AND task with a stimulus at

one of its inputs. In this case, input A is elicitated. After the

stimulus of one input only, the network’s output must

remain in a ‘‘Low’’ state as expected, since in the task

AND the output goes to a ‘‘High’’ state only when both

inputs receive a stimulus.

A decomposition into singular values was performed

with the entire set of the output’s units hiðtÞ. It was done for
each input combination, using the single value decompo-

sition method from the scientific library Scickit Learn

Pedregosa et al. (2011). These are Python open source

libraries based on Numpy that allows us to perform

dimensionality reduction, feature extraction, and normal-

ization, among other methods for predictive data analysis.

The behaviour of the system was plotted into the 3 axes

of greatest variance. This is shown in panel d) of Fig. 2, for

one example.

Long term dynamics

To interpret the results obtained in the realizations, which

were classified and presented in the following sections, let

us begin by making some approximations regarding the

system. These will allow us to understand the behaviour of

the hiðtÞ. In this way, we can perform one analysis of the

connectivity matrix and another on the activity.

If the units operate away from the saturation regime, we

could perform a linearization of the system to make an

approximate description of the long-term dynamics. That

will allow us to associate our observations with some well-

known results.

From Eq. (1) we can consider the linear model given by

Equation (4), using the first order Taylor expression for

tanh().

dhiðtÞ
dt

¼ �hiðtÞ þ
XN

j¼1

wRec
ij hjðtÞ þ IðtÞ � w0;i ð4Þ

In the absence of external input, the system has a single

fixed point that corresponds to hi ¼ 0 for all units i. We can

write the external input as a time variable component IðtÞ
and a term w0;i that corresponds to the activation of each

unit. Let us then consider a vector h0 N-dimensional, and

let’s approximate the input pulse IðtÞ by the delta function.

This means that the duration of the pulse is short relative to

the length of the time series considered, as is in our case. In

Fig. 1 Model. In the training stage, the time series are introduced into

the network in the four possible combinations constituting a set with

15,000 samples with noise. The training algorithm adjusts the weights

according to the target function, to obtain the trained matrices Win,

WRec and Wout for each task

Table 1 Model’s parameters and criteria for the network’s imple-

mentation and training

Parameter/criteria Value

Units 50

Input weights 2� 50

Recurrent weights 50� 50

Output weights 50

Training algorithm BPTT ADAM

Epochs 20

Initialization Ran Orthogonal- Ran Normal

Regularization None

Input Noise 10%

260 Cognitive Neurodynamics (2023) 17:257–275
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addition, the norm of w0 is 1, which is equivalent to saying

hð0Þ ¼ w0.

The solution, given by the Eq. (4) and following Stro-

gatz (2015), Dayan and Abbott (2005) and Bondanelli and

Ostojic (2020), is obtained by diagonalizing the system and

making a base change of the vector h, such that:

h ¼ V�h ð5Þ

where the columns of V are the eigenvectors of W. Then, it

is possible to write the connectivity matrix, WRec, in a

diagonal base containing the eigenvectors vi as columns,

and the matrix K that has the eigenvalues ki on the diagonal
as shown in Equation (6).

WRec ! K ¼ V�1WRecV ð6Þ

This is used to decouple the equations. Now we can write

the decoupled equations of ~hi for the vector in the new base

as in Eq. (7):

d ~hiðtÞ
dt

¼ � ~hiðtÞ þ ki ~hi þ dðtÞ: ~w0;i
ð7Þ

In this way we obtained the solution for h in terms of the ~hi

hðtÞ ¼
XN

i¼1

~hiðtÞvi ð8Þ

with

~hiðtÞ ¼ etðki�1Þ ð9Þ

Thus, the long-term dynamics is governed by the eigen-

modes with the eigenvalue (or eigenvalues) with the largest

real part.

Linearization performed in this section has some limi-

tations to interpret the results of trained networks. In par-

ticular, when eigenvalues satisfy that ReðkÞ[ 1.

Considering the linearization, one would expect that the

system diverges with exponential growth, but in the case of

trained networks it won’t. The reason is that, by design, the

network is trained for a task, then the activity can not

diverge to archive the considered task. In the end, the non-

linearity conspires in favour. Based on this situation, the

eigenvalues outside the unit circle are finally associated

with oscillatory or fixed-point behaviours. The hyperbolic

tangent flattens the amplitude of the activity in such cases,

and the units activity reaches a fixed value, which is given

by the hyperbolic tangent of the product of the amplitude of

eigenvectors and the exponential function. When

Fig. 2 Methods. Panel a shows

the weight distribution of WRec.

Panel b shows the eigenvalue

distribution in the complex

plane, corresponding to the

decomposition of the WRec

matrix. Panel c is a possible

combination of stimuli (High-

Low) presented to the network

with its output and the temporal

response of some units. Panel d
presents the decomposition into

singular values in the three main

components (C1, C2, C3) or

axes, performed for the 50

unites states hkðtÞ and the

temporal evolution of the main

components shown for the

considered period
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eigenvalues are complex, there are oscillations, as we

observed with the frequency given by Eq. 11 in Sect.

‘‘More about dynamics inferred from WRec’’.

This is true for all the realizations obtained in this work

since the output’s state always corresponds to one of the

responses to the combinations of the stimuli, being the

active or passivated, oscillatory, or fixed-point output.

Results

The results of the numerical studies are shown in this

section. The first study is regarding the statistics on the

recurrent weight matrix and is presented in Sect. 4.1. The

second is on the activity of trained networks (shown in

Sects. 4.2 and 4.3). The third is on the distribution of

eigenvalues (Sect. 4.4), where it is shown the link between

eigenvalue distribution and dynamics considering the

analysis presented in Sect. ‘‘Long term dynamics’’. Finally,

Sect. ‘‘More about dynamics inferred from WRec’’ shows

more details on the dynamics infered from the recurrent

weights matrix.

The distribution of the weight matrix of trained
networks

It is possible to compare the differences in the distribution

of the weight matrix of trained networks by studying the

pre and post-training moments. The changes between the

initial and final states of the parameters of the distributions

during training were studied using linear regression. The

variation with respect to the identity function (meaning no

parameter’s change) was considered. The percentage

variations are reported in Appendix A.

It was observed that the variation of the post-training

mean value is less than 6% for all the tasks, with a ten-

dency to decrease with respect to the initial condition.

Regarding the standard deviation, the variations are less

than 0.5%. In the case of Skewness and Kurtosis, they

increase slightly by a maximum of 15% in the worst case,

and in the case that least varies, the variation is less than

0.5%. For tables and full details, see Appendix A.

The distributions of the recurrent weights matrix of

trained networks do not differ significantly with respect to

the pre-training ones. Therefore, studying the differences

purely in the parameters of the distributions due to the

training does not yet allow us to understand aspects related

to dynamics, which also motivated the study of the

eigenvalue distribution presented in Sect. 4.4.

Classification of the tasks

AND, XOR and OR tasks considered in this study compute

temporal stimuli. They are different from the binary

operations in feed-forward networks. These tasks presented

here are a class of decision-making tasks and are consid-

ered for the first time to describe their dynamical

behaviour.

From inspecting the different realizations obtained,

some general observations of these systems emerge when

tasks are compared. It is possible to group the tasks with

respect to the number of minimum modes or states that the

system needs to have to accomplish the tasks. AND and

XOR as similar tasks, OR as a simpler one, and Flip Flop

as a slightly more sophisticated task related to AND and

XOR.

First, let us consider the case of the AND and XOR

tasks. There are three general states of the system for both.

Each state is shown in Fig. 3. The resting state is shown in

panel (c). A second state, where the stimuli at the inputs

produce a high-level state at the output, is presented in

panels (a) and (b). The other, where the stimuli elicited

activities hiðtÞ that produces the output’s passivated state

despite the stimuli at the inputs, is shown in panel (d). The

difference between the AND and XOR task is which

combination of stimuli at the inputs elicitate each output

state.

The OR task is simpler, in the sense that for any com-

bination of stimuli presented at the input, the state of the

output must be high-level. In the case of not having a

stimulus at any input, the output must be zero. For this task,

there is no combination of stimuli that leads the output to

be passivated, as in the case of the AND and XOR func-

tions. There are only two possible general states for the

system: The resting state and the state that activates the

output.

In the case of the 1-bit Flip-Flop, one stimulus at the

input called ‘‘S’’ brings the system to the high-level state,

while another in input ‘‘R’’ takes it to the passivated state.

Two consecutive stimuli at input ‘‘S’’ or input ‘‘R’’ does

not generate changes in the system. This task is more

complex since the changes depend on one specific input. It

is necessary to consider also that the system has to remain

in the same state when applying two consecutive stimuli,

meaning that the system must ignore a second activation of

the same input of each one.

It is possible to summarize these ideas as follows: AND

and XOR need to have at least three modes. Two general

modes, in terms that each state of hiðtÞ elicited by the input

associated with the possible states of the system, and other

for the resting state. The same is true for the Flip Flop,

which also needs to remain unchanged when consecutive
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stimuli are applied. OR task needs to have two modes at

least. One is associated with the high-level state, and the

other is the resting state.

The classification made corresponds to the observation

that certain binary decisions require a passivated state

while others do not. This is related to the eigenvalue dis-

tribution shown in Sect. 4.4.

When training the networks for AND, OR, XOR, and

Flip Flop tasks, similar configurations arise for the distri-

butions of the eigenvalues. They will also be described in

more detail later in Sect. 4.4 and is related to the minimum

number of eigenvalues outside the unit circle.

It is observed that for the same task it is not unique how

each network manages to maintain the state of the output

for which it was trained, as we have previously observed in

Jarne and Laje (2020). There are different ways to combine

the network weights to have different internal states that

result in the same required output rule. These lead to dif-

ferent behaviour in the dynamics. This is shown in Sect. 4.3

and discussed in more detail in Sect. 5.

Classification of the realizations

Section 4.2 allows classifying the obtained realizations into

different groups. In this section, we will observe the vari-

ations in the activity that occurs within the same class of

tasks. The behaviour of the activity hiðtÞ is used to

understand what happens when each network’s input is

elicitated with the four possible different combinations at

the inputs.

The trained networks have been labelled to follow the

examples shown in this section and the next one. The labels

include the name of the task for which the network was

trained, a number to identify the realization, and the initial

condition of the weight distribution. These labels allow

also identifying the data in the Supplementary Information

to view additional examples and to have the corresponding

raw data available. For example, ‘‘XOR #id10 Ortho’’,

shown in Fig. 3, is an example of a network trained for the

XOR task, with the orthogonal initial condition and the id

number 10.

Let’s start describing the activity in the case of the AND

and XOR tasks. First, the passivated output mode is

described. The following situations may occur:

1. When the stimulus arrives, the hiðtÞ activities start a

transitory regime that ends in a sustained oscillation,

each with a different phase and amplitude. The

superposition is given by Wout and allows to passivate

the output. An example of this behaviour is shown in

panel c) of Fig. 2.

2. When the stimulus arrives, hiðtÞ start a transitory

regime that leads to a fixed level other than zero for

each unit, and whose superposition, given by Wout,

allows to passivate the output.

Fig. 3 Example of the four different stimuli for the XOR task. Upper

panels a and b show high-level output states (fixed-point states) for

either input stimulus. Panel c shows the resting state. Panel d presents

a passivated oscillatory state of the output in response to the presence

of two simultaneous stimuli. These results correspond to realization

with label XOR #id10 Ortho in the dataset

Cognitive Neurodynamics (2023) 17:257–275 263
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3. When the stimulus arrives, hiðtÞ, passes to a transitory

regime that attenuates to zero, and the output is null as

a result of the attenuation of the hiðtÞ activity.
If we consider now the mode of the excited output-state,

we have situations similar to (1) and (2), leading to a high-

level output state, but is not possible to have (3). Also, it is

observed in the numerical simulations that the sustained

oscillatory mode is more often associated with the passi-

vated state of the output, as shown in Fig. 2 (See also

Supplementary Information).

Let’s illustrate this situation with the realization with

label XOR #id10 Ortho, represented in Fig. 3. In this

case, the excited output-state appears as a fixed point final

state, while the passivated output appears as an oscillatory

state.

The possible combinations listed above correspond to

the observation for the different realizations. Thus it is

possible to have either an excited state with oscillatory

behaviour for the hiðtÞ or an excited state with a fixed point

(See Supplementary Information). The same is true for the

passivated state of the output.

Now let’s consider the OR task. In this case, there is

only one active mode corresponding to any combination of

stimuli. The situations that can occur are:

1. With any stimulus of the inputs, hiðtÞ passes from a

transient to a fixed point.

2. With any stimulus of the inputs, hiðtÞ goes from a

transient to a sustained oscillation regime.

The case of zero output for the OR tasks corresponds only

to zero stimuli at the inputs. Additional examples for this

task are shown in the Fig. 2 of Supplementary information

illustrating all stimuli situations.

A second stimulus

The networks of each task have not been trained to respond

in a particular way to a second stimulus (or stimuli) tem-

porarily delayed from the first.

A study was carried out to test if it is possible to gen-

eralize the behaviour of the trained networks when they

receive a second stimulus at the input. It was considered

two cases: identical stimuli to the first one, and opposite

stimuli. The case of two identical stimuli was studied with

the aim to link the response of the trained networks with

the Flip Flop task. In the second case, the opposite stimulus

was used to test if it can act as a restitutive response of the

system to return to the initial state.

We have observed that the behaviour cannot be fully

generalized, however, useful observations from this study

have emerged and are presented in this section.

If, after a certain time, the network receives a second

stimulus equal to the previous one (in one or both inputs), it

is possible to classify the response of the system according

to which was the previous input state and what is the task

for which it was trained.

For example, let’s consider the situation where the

network is trained for the AND task and presents the

passivated output state, such as the example considered in

panel c) of Fig. 2. In the case of receiving a second stim-

ulus at both inputs, the network migrates to a new state, so

the output goes to a high-level state (as seen in panel a) of

Fig. 4), where the additional stimuli are indicated with a

dashed circle. If it receives a single second stimulus, the

system is disturbed, but it returns to the passivated condi-

tion (generally an oscillatory state) so that the output is set

at zero level, as seen in panel b) of Fig. 4.

Now let’s consider the case where the output is in a

high-level state, and the system receives two simultaneous

stimuli again. In this case, the system is disturbed, but it

remains at the high-level state, as shown in panel c) of

Fig. 4. If the network receives a new stimulus (in one of the

inputs only), the state to which it migrates depends on each

particular realization, and it is not possible to classify the

response in a general way. For the realization shown in

panel d) of Fig. 4, the system goes to the passivated state.

In all cases, it can be observed how the trajectory in the

low-dimensional space defined by the three axes with the

highest variance becomes more complex when the second

input stimulus is induced.

To train a network for the Flip Flop task, it is necessary

a configuration in which its response is similar to Fig. 4b

when two consecutive stimuli at the same input are pre-

sented. Indeed, when reviewing the realizations obtained

for said task, they behave like those AND implementations

that present a response like the one in Fig. 4b.

We can analyze if there is any restorative response of

the system when considering a second stimulus at the input

with the opposite sign to the first one. Again, the network

has not been trained to respond in a particular way to this

situation.

If the network receives the second stimulus with the

opposite level of the first one (in one or two of its inputs), it

is possible again to classify the response of the system

according to the previous state. This is illustrated in Fig. 5,

where it is considered again the AND task. One possible

state is to have the output at a low-level, corresponding to

the passivated state produced by a single previous stimulus

(panels a) and b) of Fig. 5). As shown in panel a), if the

network receives two stimuli, the output migrates to a

negative level. If it receives a single negative stimulus, the

system is disturbed, but it remains in the passivated state,

shown in panel b) of Fig. 5.
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Now, lets consider the output of the system being in a

high-level state when receives one negative stimulus

(panels e) and f) or two negative stimuli at the input (panel

c)). In both cases, the state of the output depends on the

realization, and it is not possible to classify the response in

a general way.

If the network output is at a low level and receives two

negative stimuli at the inputs, it migrates to a negative

state. This case is shown in panel (d). If the network

receives a single negative stimulus, it migrates to the

passivated state, shown in the lower central panel of Fig. 5

(panel g).

Finally, we achieved passivated states only in the case of

stimulating a single input with a negative pulse, while

when the stimulus is in both inputs, the output migrates to a

negative state.

In this way, producing a stimulus of the opposite sign at

the inputs, as shown in the cases of Fig. 4, does not allow

the system to return to the state before the first stimulus

(restorative response), but rather it takes it to a new dif-

ferent state or disturbs it and continues in the same state as

panel b) of Fig. 4.

The Flip Flop

The case of the Flip Flop is different and interesting

because the dynamics of trained networks for the Flip Flop

task is related to the concept of working memory. The Flip-

Flop activity is also more difficult to analyze, because the

output state is designed to be transitory. However, when

observing the response of the AND networks to a second

positive stimulus, it is possible to detect the different sit-

uations that could arise in favor of having a Flip Flop (See

Fig. 4). Depending on the input stimuli combination that

follows the first, the output state could migrate to a low

level or remain in high state. The low-level state can cor-

respond to either a fixed point or a sustained oscillation of

the activity hiðtÞ. This state will continue until the next

stimulus on the inputs changes its value again. When sys-

tem remains in the seame state it is possible that the

stimulus on the same input disturbs it a little with noise but

still allows the system to maintain a sustained state.

This situation is shown in Fig. 6, where the output result

is presented for one of the realizations, corresponding to

the network with label FF id#05 Ortho. Here it is shown

two consecutive stimuli at the ‘‘S’’ Input, and then another

at the ‘‘R’’ input.

In the Flip Flop task it is necessary that, when stimu-

lating the ‘‘R’’ input, the system migrates to a fixed-point

or an oscillatory state, corresponding to the passivated

output state. By stimulating the ‘‘S’’ input, the system must

migrate similarly to an active state. The system must also

have a mechanism that allows ignoring consecutive stimuli.

The realizations obtained for this task show a great diver-

sity of behaviours (See Supplementary Information).

The eigenvalue distributions of the realizations

There are regular patterns in the distribution of the eigen-

values of the recurrent matrix for all considered tasks. This

situation happens for the matrices of the trained networks

that have been initialized before training with the random

Fig. 4 Trained network for the AND task corresponding to the

realization with label AND #id15 Ortho considered in Fig. 2.The

network is elicitated with a second stimulus in one or two inputs,

identical to the first one. Each of the panels shows the different

relevant situations described in Sect. 4.3.1, and the behavior of the

system in low dimensional space according to each case
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normal condition as well as for that trained starting from

the orthogonal random normal condition.

These patterns can be characterized. They are very

similar to the initial condition (pre-training), but with a set

of eigenvalues outside the unit circle.

Let’s consider, for example, the initial condition of the

case previously presented in Fig. 3 of the XOR function,

and let’s compare it with the trained network. This is

shown in Fig. 7.

The figure shows that, except for a small group of

eigenvalues that migrated out of the unit circle, the rest

remain inside. This situation is repeated in all the simula-

tions obtained [See Supplementary Information]. From this

observation, it is proposed that the eigenvalues outside the

unit circle are directly related to the modes of hiðtÞ that

configure the possible states of the output. We have sug-

gested it previously in Jarne and Laje (2020), which is also

compatible with the observations made in Zhou et al.

(2009).

Fig. 5 Trained network for the AND task considered in Fig. 2 with a

second negative stimulus in one or two inputs (corresponding to the

realization with label AND#id15 Ortho). Each of the panels shows

the different relevant situations described in Sect. 4.3.1, and the

behavior of the system in low dimensional space according to each

case
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The location of the eigenvalues outside the unit circle

seems to be related to the behavior (or mode) observed for

the different stimuli discussed in the previous sec-

tion. Indeed, for all the realizations obtained corresponding

to the different tasks, it was possible to link the position of

the eigenvalues with the approximate behavior of the unit’s

activity hiðtÞ, described in the previous section.

In Sect. 3, it is argued why the analysis of the recurrent

weights matrix allows a good approximated description of

the different modes obtained for each realization and

stimulus type. Now, let’s classify the different distributions

of eigenvalues of the realizations, and relate them to the

results presented in Sect. 4.3.

The eigenvalue distributions for different tasks and

initial conditions of the most common situations obtained

in the simulations are presented in Fig. 8.

Let’s consider the AND and XOR tasks. It is observed

for these tasks that the WRec matrices present at least three

eigenvalues outside the unit circle in more than 70% of the

realizations obtained. One usually is a real eigenvalue, and

the others constitute a complex conjugate pair. Different

cases can occur in this frequent situation. Those are

described below [See also Supplementary Information].

The fixed level of activity hiðtÞ is usually associated

with the excited level of the output, while the complex

conjugate pair usually is associated with the passivated

level. Exceptionally, it is possible to observe a few cases

where this is the other way around (less than 20% of cases,

See Supplementary Information). It is also observed that

the frequency of oscillation of hiðtÞ always correlates with
the angle in the complex plane defined by Eq. (10).

h ¼ arctan
ImðkLÞ
ReðkLÞ

� �
ð10Þ

h is measured with respect to the positive semi-axis, kL is

the complex dominant eigenvalue outside the unit circle

(imaginary part is not zero). Small angles correspond to

slower frequency oscillations of the activity hiðtÞ, while
larger angles correspond to faster oscillations, as is shown

also in (Figure 1 of Supplementary Information).

In approximately 10% of the realizations, the eigenval-

ues outside the unit circle are pure reals (a rare situation

where there are usually 2 or 3 eigenvalues outside the unit

circle). The states of the hiðtÞ correspond to non-zero

sustained fixed levels. This happens for both states, the

passivated output and the excited output.

Fig. 6 Example of one

simulation performed with a

trained network for the Flip

Flop task. This case corresponds

to the network with label

FF id#05 Ortho. Panel a the

state of the SET and RESET

inputs are shown as a function

of time. The outputs and the

temporal evolution of the

activity of some units are also

shown. On the right side, panel

b the behaviour of the system

was plotted into the three axes

of greatest variance

Fig. 7 Comparison between the

distribution of eigenvalues

corresponding to the pre-

training and post-training

condition for the network

previously considered in the

example shown in Fig. 3. On

panel a it is shown the

orthogonal condition reflected

in the distribution of the

eigenvalues. On panel b it is

shown the result that after

training. A few eigenvalues

migrate out of the unit circle
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When the eigenvalues outside the unit circle are 2 pure

reals, but one is on the side of the negative semi-axis, a

fixed-level mode appears for the hiðtÞ and another mode

with very fast oscillations (See Figure f2 of Supplementary

Information).

Exceptionally (in less than 10% of the realizations),

some trained networks have more than two pairs of com-

plex conjugates. In this case, the oscillatory behaviour is

usually more complex, but it seems to be dominated by the

eigenvalue more distant from the unit circle. In cases of

high-frequency oscillations, slow modulations can also be

observed in the levels of hiðtÞ, on those networks that have

negative real eigenvalues or eigenvalues with large imag-

inary parts.

Let’s consider now the results obtained for the OR task.

In this case, as mentioned in Sect. 4.3, it is enough to have

one general mode for the activity of the units, since it is

possible to either have the state of rest or the excited state

of the output. There is no passivated state in this task.

Due to the stochastic nature of the training algorithm, as

well as the differences in the initial parameters, multiple

final configurations for the trained network are possible for

the same task. However, there is a minimum requirement in

the connectivity of the network to perform the task. For the

OR task, it is necessary to have at least one eigenvalue with

a real part greater than 1 in the recurrent weights matrix for

the network to be able to perform the task. This eigenvalue

corresponds to the excited output state. It is possible to

have a realization with more than one mode, but this will

not be elicited by any combination of stimuli at the input.

In the case of matrices with the initial condition

orthogonal, the configurations mostly have three eigen-

values outside the unit circle: the complex conjugate pair

and the pure real eigenvalue. For random normal matrices,

it is most common to have only one pure real eigenvalue.

This difference between both conditions appears

because when the eigenvalues are located on the edge of

the circle (orthogonal initial condition), it is less difficult

for the training algorithm to move a complex conjugate

pair outside the unit circle. All are placed at the same

distance on the border. When a training instance happens,

all eigenvalues change a little their position. Whereas, if

the initial condition is random normal, it is more compu-

tationally expensive to push more than one eigenvalue,

since they are more likely located further from the edge at

different distances, and more instances of training are

necessary. But if the matrix were initialized with some of

the eigenvalues out the border, such as the case of the

simulation with the normal condition for the OR task (Sim.

01) shown in Fig. 8 upper right panel, it is possible to have

a realization with more than one mode after training. For

complete detail of simulations see the statistical summary

of Supplementary Information.

Fig. 8 Distributions of eigenvalues in the complex plane for the realizations used to exemplify the different modes obtained as a result of training

and initial conditions. It is observed that the dominant values outside the unit circle can be real or complex
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Depending on the proximity to the edge, it is possible to

have configurations with a single mode or two. In the case

of having two, the stimuli generally elicitate the mode

corresponding to the pure real eigenvalue. The activity

hiðtÞ goes from the transitory state to the fixed level, which

is consistent with the previous observation for the AND

and XOR tasks, where the oscillatory states usually cor-

respond to the passivated output level, which is a state that

does not occur for any combination of stimuli in the OR

task.

This result has been previously observed in the simu-

lations of Jarne and Laje (2020), but not described. It is

known from the Machine Learning field that orthogonal

initialization of the weight matrix in recurrent networks

improves learning (Arjovsky et al. 2016). It is used

sometimes as a regularization technique when minimizing

the gradient, among others.

Let’s consider the Flip Flop task. For this task, the

minimum situation for the system to fulfil the task is

analogous to what happens in networks that learned AND

or XOR tasks. For a given combination, the network must

be able to present the passivated state of the output.

The cases obtained in this work can be classified into

similar categories as before. Nevertheless, this task has an

additional complexity related to the distance between

consecutive stimuli and the capacity of the system between

stimuli to pass from the transient to the steady-state. The

Flip Flop is not only a binary decision, and the distribution

of eigenvalues in the complex plane frequently has more of

them outside the unit circle compared to the other tasks.

In most situations, it is observed that a fixed point state

corresponding to the real eigenvalue appears and also a

complex conjugate pair, which is generally related to the

passivated state of the output.

Considering the tasks studied and the different realiza-

tions obtained, in general, Fig. 9 shows a schema that

allows us to summarize the results, linking the dominant

eigenvalues with the behaviour of the activity.

According to the results presented in this section, there

are multiple ways for the internal configurations to

reproduce the same task for which the network was trained.

In each task, it is necessary to have at least one mode, of

those defined before, associated with each possible output

state. Additional modes may exist, but these will not be

excited by the input stimulus combinations.

Following the description presented in Sect. 3, and in the

light of the results obtained in the simulations shown in

Sect. 4, the states described in the Eqs. 8 and 9 were

observed. In fact, for the realizations that have complex

dominant eigenvalues, if we numerically estimate the fre-

quency of oscillation, of the activity hiðtÞ, it is

approximately:

f ¼ 1

2p
ImðkmaxÞ
ReðkmaxÞ

ð11Þ

which is consistent with estimates made in Landau and

Sompolinsky (2018) and Garcı́a et al. (2013).

More about dynamics inferred from WRec

In Asllani et al. (2018), authors studied dynamical pro-

cesses evolving on non-normal networks and have shown

how small disturbances may undergo a transient phase and

be strongly amplified in linearly stable systems. Such

property (not normal matrices) was not selected nor

expected to be necessary for solving the particular tasks

studied here. But in all realizations obtained of present

work (also the realizations that started initially with

orthogonal or normal matrices), at least a minimum degree

of non-normality was found after training.

The matrices of trained networks are not normal, as

shown in eigenvalue distributions of the examples in

Fig. 8. The previous analysis is not fully complete.

Although the matrices of the simulations are approximately

normal when considering orthogonal condition (see

Appendix B) since they do not deviate much from the

initial condition after training. They are enough not-normal

so that there is a transient amplified effect that leads the

system from the initial condition to the long term dynamics

Fig. 9 Summary of the behaviour observed for the trained network’s

activity of the units, hiðtÞ, when receiving different stimuli linked

with the dominant eigenvalues outside the unit circle. These results

are summarized considering the four possible tasks for both initial

conditions before training. Examples of each behavior are avaliable in

the Supplementary Information
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observed. This happens for all realizations (see Appendix

B for more details).

The departure from the normal condition of the matrix

can be estimated through the parameter Henrici’s departure

from normality, obtained as in Eq. (12).

dFðWRecÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjjWRecjj2 �

PN
i¼1 jkij

2Þ
q

jjWRecjj
ð12Þ

where for normalization, it is divided by the norm of the

matrix.

The long term dynamics was previously obtained

through linearization. The departure from normality is

which leads the system from equilibrium to the final state

and makes appear more complex patterns for the activity

(Asllani et al. 2018).

It was observed, in some realizations, that appear high-

frequency oscillations that sometimes include modulations.

Following Bondanelli and Ostojic (2020), the observed

transient in the activity can be also related to the norm of

hðtÞ. This norm is the euclidean distance between the

equilibrium point of the system and the activity at time t. It

is estimated as:

jjhðtÞjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼1

~h
2

i ðtÞ þ 2
XN

i[ j

~hiðtÞ ~hjðtÞvivj

vuut ð13Þ

This magnitude has been previously studied as an ampli-

fication mechanism in neural signals (Bondanelli and

Ostojic 2020), where authors studied the change or the

slope of the hðtÞ norm, and the conditions for the appear-

ance of amplified trajectories like the ones observed in the

present work. They affirm that the necessary condition for

having amplified trajectories is on the eigenvalues of the

symmetric part of the matrix WRec estimated as in (14).

This condition establishes that the maximum eigenvalue of

the symmetric part of the matrix must be greater than 1.

WRec
sym ¼ 1

2
ðWRec þWRecTÞ ð14Þ

Let us remember that symmetric matrices have all their real

eigenvalues. For all the realizations in the simulations of

present work, the maximum eigenvalue of the symmetric

matrix is always greater than 1, therefore the condition for

the existence of transients is guaranteed. Only some

specific values of the initial condition, ho;i, will be ampli-

fied according to Bondanelli and Ostojic (2020). This is

consistent with the observations that when networks are

elicitated with different amplitude values for the input

pulse there is an amplitude limit for which the paths are not

amplified anymore.

In the case of the realizations obtained, a transient

ending in a sustained oscillation, or one going to a fixed

point different from zero is always observed. Exceptionally

for tasks with a passivated state for the output attenuation is

observed.

In general, the behavior of the system when eigenvalues

are lying outside the unit circle, either with the real part

less than 1 or with the negative real part, is to present rapid

oscillations. In those cases, the system seems to be also

governed by the set of eigenvalues outside the unit circle

since the modes that remain within tend to attenuate the

transients.

In an RNN, an eigenvalue outside the unit circle could

give a chaotic attractor state, but it is not the case of the

trained networks presented here (with all parameters

trained) because a chaotic attractor will not be able to

provide stationary output needed according to training rule.

Regarding the spectral radius, it is not possible to train

all the network’s parameters with few epochs starting with

weight distributions with an initial value of spectral radius

g much larger than 1, or even much smaller. To generate

networks with chaotic behaviour, but still capable of ful-

filling the tasks, another paradigm is possible such as

reservoir computing, where only the output weights are

trained. In Laje and Buonomano (2013), authors considered

networks with chaotic behaviour but where only the output

parameters are trained. The number of units must be larger

for the reservoir. In this case other training methods are

used, and then different values for g can be considered to

include chaotic behaviour.

Discussion

The brain represents sensory stimuli with the collective

activity of thousands of neurons. Coding in this high-di-

mensional space is typically examined by combining linear

decoding and dimensionality-reduction techniques (Cun-

ningham and Yu 2014; Bagur et al. 2018; Bondanelli and

Ostojic 2020), as it was explored in the current paper. The

underlying network is often described in terms of a

dynamical system (Sussillo 2014; Barak 2017; Mante et al.

2013). Here a set of task-based trained networks was

analyzed, which has become a popular way to infer com-

putation functions of different parts of the brain (Mah-

eswaranathan et al. 2019b). The aim was to classify the

obtained behaviors and relate them to the eigenvalue

spectrum.

Without any constraint, different behaviors for the same

task were obtained. Some were observed already in dif-

ferent experimental data sets. That includes oscillatory

activity (Nambu et al. 2020) and fixed points memories in

the space state (Sussillo and Barak 2013).

The results presented suggest that it is not sufficient to

implement a task-based approach only, without considering

270 Cognitive Neurodynamics (2023) 17:257–275

123



other aspects related to the brain system or part that we

want to model, given that multiple dynamical systems

could represent the same temporal task. On the contrary, to

do this, it is necessary to consider additional information to

constraint the model and be able to compare it thoroughly

(Salatiello and Giese 2020).

Let us consider the results of Maheswaranathan et al.

(2019a). In this work, the authors studied networks trained

to perform three standard neuroscientific-inspired tasks and

characterized their non-linear dynamics.

On the one hand, they found that the geometry of the

representation of the RNN is highly sensitive to the choice

of the different architectures (RNN, GRU or LSTM), which

is expected since the equations of these architectures, and

the internal states, are different from each other. For this

study, they used different measures of similarity, such as

Canonical Correlation Analysis (Maheswaranathan et al.

2019a).

On the other hand, they found that, while the geometry

of the network can vary throughout the architectures, the

topological structure of the fixed points, transitions

between them, and the linearized dynamics appear uni-

versally in all architectures.

However, in Maheswaranathan et al. (2019a), it is not

stated that each topological structure is linked uniquely to

each task. The results of the present work do not contradict

those of [4], they extend the analysis showing how, within

the same network architecture (in this case RNN), different

topological structures can be obtained, as long as at least

one structure (and one transition) is associated with the

different decisions for which the network has been trained

to take in the task.

For example, for the case of the 3 bits Flip Flop task,

that was studied in Maheswaranathan et al. (2019a), we

have obtained preliminary results (Jarne 2021b), where we

also observed a topology similar to that of Fig. 1 of

Maheswaranathan et al. (2019a), with eight fixed points.

However, we have also obtained different spatial distri-

butions and orientations of these points for the different

realizations.

In simpler tasks related to binary decisions, such as the

tasks studied in this work, the system has more freedom to

achieve the same result through training. The minimum

necessary condition for the system is that the recurrent

weight matrix has one real eigenvalue (or a conjugate pair

of complex eigenvalues) outside the unit circle associated

with each state that the system must take to fulfil the task.

In that sense, there is universality, but not in the sense that

the number of eigenvalues or their value associated with

each state within the task is unique.

In the way that the network is configured due to training,

the activation function (hyperbolic tangent) allows the

activity hiðtÞ of units to grow and saturate to a value that

converges to a fixed amplitude (fixed-point), or ultimately

allows small oscillations. In both cases, Wout combines

them finally to decide according to the stimuli for which

the network was trained. These options are reflected in the

eigenvalue spectrum with the values outside the unit circle.

Because it is a task-based approach, in principle, for the

trained networks, nothing restricts the different possible

internal configurations that give rise to the same decision-

making process. This is true for both initial configurations

considered here: Normal Random and Orthogonal Ran-

dom. The diversity of solutions does not depend on the

training algorithm (backpropagation through time with

ADAM optimizer was used in present work as shown in

Sect. 2). Different configurations also arise for similar tasks

using other training techniques such as Force and Full-

force for example used in Sussillo and Barak (2013) and

DePasquale et al. (2018).

However, regularization methods could be used to

penalize some of the solution types against others if one

had some argument or hypothesis related to the dynamics

of the biological process that motivates it. In some studies,

RNNs are optimized to reproduce neural data. Other

studies take a task-oriented approach, such as present work,

by training a network to perform a task and then attempting

to find similarities between the RNN’s population

dynamics and those of biological neurons recorded from an

animal performing a similar task. It is also possible to take

a hybrid approach, by training a network on a task with

constraints that yield more brain-like solutions (Pollock

and Jazayeri 2019).

Regarding the solutions obtained in the tasks considered

in this work, which form part of the set of temporary

decision-making tasks, increasing the number of units does

not favor any kind of solution over another (Jarne and Laje

2020). Also, there are no differences in terms of accuracy if

we compare the fixed point solutions with the oscillatory

ones.

In more complex tasks where, for example, we can

consider multi-tasking as more complex (Jarne 2021a),

what happens is that it is necessary to add more units for

the network training to converge.

Conclusions

Considering the analysis made above, it is possible to

highlight some aspects of the results obtained in the study.

On one hand, networks trained for these four tasks (AND,

XOR, OR, and Flip Flop) have consistent patterns, and they

are not stable systems, in the sense described in Bondanelli

and Ostojic (2020), meaning that the trajectory asymptot-

ically decays to the equilibrium state that corresponds to
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hiðt ¼ 0Þ ¼ 0, which in principle is not an unexpected

situation. The classification for the set of tasks proposed

here and its dynamics are interesting since these tasks

could constitute possible flow control mechanisms for

information in the cortex.

On the other hand, different realizations for the same

task were obtained with different dynamical behaviours,

and the trained networks are generally non-normal (Sen-

gupta and Friston 2018).

It is interesting to note that as indicated in Sect. 5, a

priori, the obtained dynamics was not created on purpose.

It was not created by using input-driven attractor states,

either fixed points or limit cycles, and finding appropriate

projection from the obtained attractor states to required

output state learning Wout. Rather the dynamics of the

system arises as a result of requesting the system to learn

the task, with the considered initial conditions.

Linearization was a useful mechanism to understand the

behaviour of the system in the first order. Thus the

decomposition into eigenvalues of the matrix of recurrent

weights is linked with the activity for these tasks.

The results obtained support the hypothesis that trained

network represents the information of the tasks in a low-

dimensional dynamics implemented in a high dimensional

network or structure (Barak 2017) as also reported in

Kuroki and Isomura (2018).

The neural network model studied in this work, as

described in Sect. 2, is widely used to describe results in

different experiments and areas in neuroscience. For

example in motor control (Kao 2019). In particular,

analyzes on the cerebral cortex show complex temporal

dynamics (Sussillo 2014; Sussillo and Barak 2013; Siegel

et al. 2015; Pehlevan et al. 2018), where different mecha-

nisms to control the information flow could be present and

coexist. For this reason, knowing the details of the model’s

dynamics is important to understand the observed experi-

mental results with greater precision.

Future extensions of the present work will include the

distinction between excitatory and inhibitory neurons.

Appendix A: Variation of the distribution’s
moments

Tables 2 and 3 show the changes in the moments of dis-

tribution after training for the realizations of each task. It is

not possible to estimate the differences of variance with a

fit due to the variations of less than 0.1% between initial

condition and trained networks (points are too close to

perform a meaningful fit).

In each cell of the table is included the moment for each

tasks. Results are obtained with linear regression where the

x-axis is the initial value, and the y-axis is the value after

trained is performed. The departure from the identity line is

measured in percentage with its uncertainty D. The positive
mean value is larger with respect to the initial condition

and the negative means smaller. Each cell of the

table represents the fit result of the moment, considering

the set initial-final of all realizations.

Table 2 Percentage variation

for each moment and task, with

its uncertainties with respect to

the initial condition Orthogonal

pre-training

Moment And Xor Or FF D And D Xor D Or D FF

l - 0.9 - 0.009 0.83 - 4.8 0.02 0.01 0.002 0.03

Variance – – – – – – – –

Skewness 14 4 - 0.95 2.32 0.7 1 0.2 0.9

Kurtosis 15 0.82 1.47 3.85 0.7 1 0.2 0.98

Table 3 Percentage variation

for each moment and task, with

its uncertainties with respect to

the initial condition Random

Normal pre-training

Moment And Xor Or FF D And D Xor D Or DFF

l - 5.82 - 2.95 - 0.85 - 2 0.01 0.01 0.005 0.01

Variance – – – – – – – –

Skewness 6.48 0.37 10.9 9.96 1.2 0.11 1 1

Kurtosis 4.40 - 0.22 12.26 2.46 1 0.18 1.03 0.6
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Appendix B: Henrici’s number

The histograms of Fig. 10 show, separating the tasks by

colour, the averages of Henrici’s numbers calculated for

the matrices of each of the tasks (AND, OR, XOR, and Flip

Flop). The values on the bottom of Fig. 10 correspond to

the matrices trained from the orthogonal condition, and

those from the top correspond to the random normal con-

dition. It is observed that, when the initial condition is the

same, the values obtained in the different tasks do not

present significant differences between them.

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s11571-

022-09802-5.
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