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Abstract
Directed brain networks may provide new insights into exploring physiological mechanism and neuromarkers for

depression. This study aims to investigate the abnormalities of directed brain networks in depressive patients. We con-

structed the directed brain network based on resting electroencephalogram for 19 depressive patients and 20 healthy

controls with eyes closed and eyes open. The weighted directed brain connectivity was measured by partial directed

coherence for a, b, c frequency band. Furthermore, topological parameters (clustering coefficient, characteristic path

length, and et al.) were computed based on graph theory. The correlation between network metrics and clinical symptom

was also examined. Depressive patients had a significantly weaker value of partial directed coherence at alpha frequency

band in eyes-closed state. Clustering coefficient and characteristic path length were significantly lower in depressive

patients (both p\ .01). More importantly, in depressive patients, disruption of directed connectivity was noted in left-to-

left (p\ .05), right-to-left (p\ .01) hemispheres and frontal-to-central (p\ .01), parietal-to-central (p\ .05), occipital-

to-central (p\ .05) regions. Furthermore, connectivity in LL and RL hemispheres was negatively correlated with

depression scale scores (both p\ .05). Depressive patients showed a more randomized network structure, disturbed

directed interaction of left-to-left, right-to-left hemispheric information and between different cerebral regions. Specifi-

cally, left-to-left, right-to-left hemispheric connectivity was negatively correlated with the severity of depression. Our

analysis may serve as a potential neuromarker of depression.

Keywords Depression � Alpha frequency band � Partial directed coherence � Weighted directed brain network �
Disruption of directed connectivity � Correlation

Introduction

Characterized by high level of anhedonia and continuous

pessimism (DeRubeis et al. 2008; Kessler et al. 2003),

depression is one of the most serious and also common

mental disease. According to the World Health Organiza-

tion, there are about 350 million persons in the world

suffering from depressive disorders. However, the patho-

logical mechanism of depression is still not clear, and the

methods of clinical diagnosis of depression are somewhat

subjective (Hulshoff Pol and Bullmore 2013), which has

brought serious psychological and economic burden to

people. It is imperative to explore the pathological func-

tional mechanism of this mental disorder to improve its

detection and treatment efficiency. With the development

of brain imaging technology, researchers have found that

human brain is one of the most complex systems in nature,
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in which a large number of neurons form a highly complex

network to enable information processing and cognitive

expression (Bassett and Bullmore 2006). Brain networks

can contribute to understanding the structure, function, and

pathological mechanisms of the brain, which can help

prevent, diagnose, and treat mental diseases.

Findings with a specific focus on brain networks have

revealed that the structural and functional networks of

human brain conform to a complex network model (Bull-

more and Sporns 2009; van den Heuvel and Hulshoff Pol

2010). Graph theory provides a promising tool to explore

computational models of brain networks and quantitatively

describes the connectivity of different brain regions (Kaiser

2011; Mikail Rubinov and Sporns 2010). As a common

analytical approach for complex systems, such as human

brain, graph theory has indeed been applied to explore the

functional and structural abnormalities in mental disorders,

such as depression, Alzheimer’s disease, schizophrenia,

and bipolar disorder (Leistedt et al. 2009; Micheloyannis

et al. 2006; Rubinov et al. 2009; Stam et al. 2006, 2008;

Strakowski et al. 2012). The topological network parame-

ters are typically evaluated to quantify the properties of

these mental disorders, which then provide the diagnostic

criteria at the global and local levels. Recently, alterations

in the structure and functions of brain networks have been

frequently discovered in depressive patients (DP) using

graph theory (Stam and Reijneveld 2007). For example, an

electroencephalogram (EEG)-based study revealed that DP

showed significant randomization of global network met-

rics; they were characterized by lower characteristic path

length at the delta and theta bands compared with healthy

controls (HC) (Leistedt et al. 2009). A study based on

resting state functional magnetic resonance imaging

(fMRI) data from DP also found a decrease in character-

istic path length, an increase in global efficiency, and

changes in other metrics, such as reduced clustering coef-

ficient and local efficiency (Li et al. 2017). In another

study, researchers constructed the brain functional network

by collecting task-state fMRI data of 13 major depressive

disorder (MDD) patients and found that the global effi-

ciency of the brain functional network decreased and the

local efficiency increased when MDD patients performed

negative and neutral emotion processing tasks (Park et al.

2014). The decreased global efficiency of the dorsal stria-

tum, inferior frontal gyrus, orbitofrontal cortex, occipital

lobe, and somatosensory cortex in MDD patients was also

shown in an fMRI-based study (Meng et al. 2014).

However, conventional structural or functional network

analysis considers only the undirected information con-

nectivity, whereas the transmission of information in the

brain appears to be directed. For example, a preferential

direction of information flow was found in the delta and

beta rhythms across wake to sleep states: preferred right-to-

left hemisphere direction for delta and left-to-right for beta

rhythms (Bertini et al. 2007). Consequently, studies about

information flow, especially the directed connectivity

between different cerebral hemispheres as well as cerebral

regions, may contribute to uncovering more information

about the functions and the structure of the brain. Previous

studies have suggested that the interactions between the left

and right cerebral hemispheres play a crucial role in cog-

nitive and emotional processing, which contributes to

mediating the symptoms of depression (Banich et al. 1992;

Compton et al. 2005; Toro et al. 2008). Besides, it is also

necessary to investigate the functional coordination of

different cerebral regions. For instance, the frontoparietal

control systems contribute to promoting and maintaining

mental health (Cole et al. 2014). Directed analysis may

have considerable impact on the studies for dysfunctions of

DP. To our knowledge, few studies have yielded some

results on depression through directed network research.

The directed functional connectivity between cerebral

hemispheres and between different cerebral regions is still

not clearly known. To generalize the study of directed

functional connectivity, effective connectivity, which deals

with causal interactions of brain regions, can be used to

address this obstacle. Partial directed coherence (PDC) is

one of the main methods used to quantify the effective

connectivity between different channels. It neglects the

cross-channel directed interdependence that can be

extracted from multivariate data. This cortical interdepen-

dence is essential to understanding inter- and intra-hemi-

spheric as well as different regions’ causal interactions

(Sun et al. 2008). Indeed, PDC has been used to simulate a

neural network to help further research about the functions

of brain because of its ability to reveal the direction of

information flow (Sameshima and Baccalá, 1999). This is a

promising tool to study the aberration of directed func-

tional connectivity in various brain disorders (Coito et al.

2016; Ana Coito et al. 2019; Sperdin et al. 2018).

To investigate alterations of the directed connectivity

and the topological network parameters in DP, we explored

differences in the weighted directed functional brain net-

work between DP (N = 19) and HC (N = 20) in resting

state with eyes closed (EC) and eyes open (EO). We first

examined the differences of the mean value of partial

directed coherence over all paired channels between the

two groups. Then, graph theory was applied to construct

the weighted directed network for subsequent analysis.

Conventional topological parameters including the clus-

tering coefficient, characteristic path length and global

efficiency were computed. What’s more, we presented the

inter- and intra-hemispheric connectivity matrices and

statistical significance of different groups as well as the

significant differences of directed connectivity between

cerebral regions. In addition, the differences in the local
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characteristics between the two groups were compared,

namely, local efficiency and out- and in-strength. Further-

more, the Pearson correlation coefficients between

depression symptom measures and network metrics were

computed. We hypothesized abnormalities in topological

parameters and a disrupted connectivity of different cere-

bral hemispheres and regions in DP compared with HC.

Methods

Subjects

Depressive patients (N = 19) and healthy controls (N = 20)

with no prior or current history of depression were

recruited to participate. All of them were right-handed. The

age of depressive patients (female/male = 11/8) ranged

from 21 to 31 years (mean = 26.53; standard deviation

(SD) = 3.49), and the age of healthy controls (fe-

male/male = 11/9) ranged from 21 to 31 (mean = 25.00;

standard deviation = 2.29). There were no significant

between-group differences in age (t ¼ �1:6233; p ¼
:1130) or gender (v2 ¼ :0332; p ¼ :8554).

Depressive patients from Tianjin Anding Hospital,

Tianjin, China and The Second Xiangya Hospital, Chang-

sha, China were diagnosed and recommended by two

clinical psychiatrists. The healthy controls were all

recruited from Tianjin University. The study was approved

by the Ethics Committee of Tianjin Anding Hospital and

the Ethics Committee of The Second Xiangya Hospital. All

patients received a Structured Clinical Interview for

Diagnostic and Statistical Manual of Mental Disorders

(DSM)-IV. The inclusion criteria for depressive patients

were consistent with DSM-IV criteria: Hamilton Depres-

sion Rating Scale (HDRS) scores of 17 or greater on the

17-item scale. All the patients were first-episode untreated.

Exclusion criteria were the following: previous history

of psychiatric genetic disorders or other psychiatric dis-

eases, severe physical diseases, other medical drugs before

the trial, intellectual or behavioral disorders, a history of

alcohol and drug abuse, and participating in clinical trials

of other drugs.

Experiment

This study was conducted on the basis of an 8 min resting

state experiment that was performed in a quiet environment

without exogenous interference. The procedure of the study

was clearly explained to all subjects. During the experi-

ment, each subject was prompted to remain quiet and

relaxed with their eyes open and eyes closed in two alter-

nating orders by voice playback.

EEG recordings and preprocessing

Left ear mastoid process (M1) was selected as the reference

electrode, and the EEG data of 30 conductive electrodes

were finally recorded using the Neuroscan SYNAMPS based

on the international 10–20 system (30 channels = FP1, FP2,

FZ, F4, F8, F3, F7, FCZ, FC4, FT8, FC3, FT7, CZ, C4, T8,

T7, C3, TP7, TP8, P7, CPZ, CP4, CP3, PZ, P4, P8, P3, OZ,

O2, and O1). Sampling frequency was 1000 Hz, and the

channel impedances were maintained less than 10 kX.
EEG preprocessing was performed using EEGLAB in

MATLAB (R2016a), which is an open-source MATLAB-

based toolbox for data processing of EEG signals. First, the

data were re-referenced against the binaural mean refer-

ence (M1 and M2). The signals were band-pass filtered

within 0.1–100 Hz and then down-sampled to 500 Hz. The

8 min signals were extracted into two sections: 4 min eyes

open and 4 min eyes closed. Finally, independent compo-

nent analysis (ICA) was used to remove signal artifacts

caused by eye movements and breathing. We used the

ADJUST1.1 toolbox in EEGLAB to help remove the arti-

facts, which can help users automatically filter out unnec-

essary ICA components and reduce errors caused by

insufficient prior knowledge (Mognon et al. 2011). Fre-

quency bands of interest were classified by alpha

(8–13 Hz), beta (13–30 Hz) and gamma (30–50 Hz)

respectively.

Partial directed coherence for EEG connectivity

PDC was computed between all pairs of EEG channels at

each frequency band as a measure of directed functional

connectivity. PDC is a frequency-domain approach to

describe directed interactions among multivariate time

series. It is a normalized index showing the degree of

directional linear interdependence between pairs of vari-

ables at each frequency (Sameshima and Baccalá 1999). In

a linear framework, the notion of Granger-causality is

closely related to vector autoregressions. The mathematical

details of PDC can be briefly described as follows.

EEG is taken as an example to explain. Assume that the

original EEG is a matrix of K channels:

Y nð Þ ¼ y1 nð Þ; . . .; yK nð Þ½ �T

yi nð Þ represents the EEG signal in channel i. Then, a vector

autoregressive (van den Heuvel and Hulshoff Pol) model of

order p for Y nð Þ is defined as

Y nð Þ ¼
Xp

r¼1

ArY n� rð Þ þ E nð Þ

where Ar is the calculated K * K coefficient matrix of the

model using ARfit, a toolbox of Matlab (Schnieder and
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Neumaier 2001). E(n) is the error between the current

value and the predicted value. Next, a representation of

Granger causality in the frequency domain can be obtained

from the Fourier transform of Ar (Baccalá and Sameshima

2001)

A fð Þ ¼ I �
Xp

r¼1

Are
�i2pfr

In this case, the equation denotes the difference between

the n-dimensional identity matrix I and the Fourier trans-

form of the coefficient series. Then the PDC value of

channel j to channel i is defined as PDCj!i fð Þ ¼ Aij fð Þ
�� ��

, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

Akj fð Þ
�� ��2

r
. PDCj?i represents the ratio of infor-

mation flowing from j to i to all information flowing from

j. Simply put, the PDC value reflects the influence of

channel j on channel i, which accounts for the proportion of

its influence on other channels.

Construction of the weighted directed brain
network

We constructed the brain network using graph theory. The

network was represented by a matrix with N nodes and

K edges, where nodes indicated the electrodes and edges

indicated the value of PDC. In this study, we got 30

electrodes. PDC was computed for every pair of electrodes

for every subject in every frequency band. After calculating

the value of PDC of each subject in the different groups,

the PDC matrix Aij (i, j = 1,2, …, M; here M = 30) was

obtained. The diagonal of each PDC matrix was set to 0.

Therefore, there were 39 matrices (30 9 30) for 39 sub-

jects totally. The weighted directed brain network could be

plotted based on these PDC matrices. The element aij in the

PDC matrix indicated the weights of edges from the jth
electrode to ith electrode. The mean directed functional

brain network graph of each group was eventually

obtained.

Network analysis

Five common graph theory metrics were used to analyze

the properties of the network. All of these graph theory

metrics were calculated by Brain Connectivity Toolbox

(Mikail Rubinov and Sporns 2010).

The weights of edges connecting to a node i is called the

strength Wi. The higher the strength of a node, the more

important it is. In a directed graph, the strength is divided

into in-strength (the weights of edges that flow from other

nodes to the node) and out-degree (the weights of edges

that flow out of the node).

Wi ¼
X

j

wij

The clustering coefficient C is used to describe the

extent of clustering between nodes in a graph. The clus-

tering coefficient Ci of a node i is defined as the number of

existing edges between neighbors of i divided by the

maximum possible number of edges between neighbors.

The average Ci of all nodes is C,

C ¼ 1

n

X

i

1

2

P 1=3½ �
� �

þ PTð Þ 1=3½ �h i3
ii

ki ki � 1ð Þ � 2
P

aijaji
� �

where P 1=3½ � is defined as w
1
3

ij

n o
, i.e., the matrix obtained

by taking the 3rd root of each entry (Fagiolo 2007), and ki
is defined as the sum of all edges connected to node i.

Another parameter is the characteristic path length L. It

is a global characteristic that indicates how easy it is to

transport information in the network. The characteristic

path length L is usually defined as the mean of the shortest

path lengths between all possible pairs of nodes,

L ¼ 1

n

X

i

P
j

dwij

n� 1

where dwij is the shortest weighted path length (distance)

between nodes i and j.

However, this original definition of L is problematic in

networks that comprise more than one component because

there exist nodal pairs that have no connecting path. A har-

monic mean distance is used to measure L, which is called the

global efficiency Ge (Achard and Bullmore 2007; Stam and

Reijneveld 2007). Ge is also used to describe the global

characteristics. The local efficiency Le, defined as the mean of

the efficiencies of all subgraphs of neighbors of each of the

nodes of the graph, is used to describe the local characteristics.

L ¼ 1

n

X

i

P
j

ðdwij Þ
�1

n� 1

Statistical analysis

The normality of data was checked using the Kolmogorov–

Smirnov test. All of the data were normally distributed,

thus inter-group comparisons of network metrics were

conducted with t-test. Any test that yielded a p-value of

0.05 or less were considered statistically significant at an

alpha level of 0.05. The Benjaminiand-Hochberg false

discovery rate correction (BH-FDR) was performed to

correct the p-value (Benjamini and Hochberg 1995).
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Results

Partial directed coherence per frequency band
in EO state and EC state

Since eyes-open and eyes-closed state could exert an

influence on the EEG oscillation, the mean values of PDC

(averaged over all pairwise combinations of channels) at

different frequency bands (alpha, beta, and gamma) were

first calculated in both EO state and EC state, shown in

Fig. 1. As can be seen, DP tended to show a lower value of

PDC at all frequency bands in EC state, whereas there was

no such trend in EO state. However, the significant dif-

ference after BH-FDR correction was only found at alpha

band in EC state, where DP had a significantly lower value

of PDC than HC (0:1176� 0:0069 versus 0:1283�
0:0108; t ¼ 3:6682; correctedp ¼ :0050). There was no

significant difference between DP and HC at the beta

(0:1336� 0:0067 versus 0:1378� 0:0085; t ¼ 1:6990;

correctedp ¼ :0979) and gamma (0:1304� 0:0081 versus

0:1356� 0:0076; t ¼ 2:0323; correctedp ¼ :0743) fre-

quency bands in EC state. Consequently, it was the alpha

band in EC state that was the condition with the best

discrimination.

Mean weighted directed brain network graph
and its topological parameters

The mean PDC matrices were then converted to weighted

directed brain network graphs at the alpha band in EC state.

Mean brain network graphs for DP and HC are depicted in

Fig. 2, in which the connectivity weights between channels

greater than 0.172 are retained for easy observation. As can

be seen, the brain disconnection phenomenon was observed

in the depressive group. Then C, Ge, and L were calculated

to quantify the metrics of the graph, shown in Fig. 3. It is

obvious that DP showed a significant (after correction)

lower value for C and L (C; 0:0997� 0:0090 versus

0:1147� 0:0169; t ¼ 3:4974; corrected p ¼ :0023; L;

0:0722� 0:0199 versus 0:0960� 0:0305; t ¼ 2:8989;

corrected p ¼ :0050). This indicated a more random net-

work structure in DP.

Inter-hemispheric and intra-hemispheric
functional connectivity

To assess the alterations of information flow in depressive

patients, we computed the mean inter-hemispheric and

intra-hemispheric directed functional connectivity. 30

channels were divided into two parts, left hemisphere and

right hemisphere. As depicted in Fig. 4, the matrix consists

of four quadrants, of which the first quadrant indicates left-

to-right (LR) hemisphere, the second indicates right-to-

right (RR) hemisphere, the third indicates left-to-left (LL)

hemisphere, and the fourth indicates right-to-right (RL)

hemisphere. Obviously, the connectivity was disrupted in

DP in both the inter-hemispheric (RL) and intra-hemi-

spheric (LL) interactions. To evaluate quantitatively, the

inter- and intra-hemispheric connectivity strength of each

subject was then calculated and the statistical tests with

BH-FDR correction were performed between two groups.

As shown in Fig. 5, the DP had lower inter-hemispheric

and intra-hemispheric connectivity compared with the HC,

especially for LL (17:44� 3:62 versus 19:52� 2:59; t ¼
2:0540; p ¼ :0481) and RL (15:64� 4:91 versus 20:53�
3:47; t ¼ 3:5744; p ¼ :0023) connectivity. This demon-

strates that depression may interfere with the interactions

inside the left hemisphere as well as from the right hemi-

sphere to the left, which may be related with the left

hemisphere asymmetry caused by the cortical deactivation

of the right cerebral hemisphere reported in a prior study

(Haag et al. 1994).

Directed connectivity between different cerebral
regions

Further, we also explored the connectivity strength

between different cerebral regions. Thirty channels were

divided into 5 regions: frontal (F, FP1, FP2, F7, F3, FZ, F4,

F8), temporal (T, FT7, T7, TP7, FT8, T8, TP8), central (C,

FC3, FCZ, FC4, C3, CZ, C4, CP3, CPZ, CP4), parietal (P,

P7, P3, PZ, P4, P8), and occipital (O, O1, OZ, O2). The

directed connectivity of each subject between different

regions was calculated, and the significant differences were

then tested with BH-FDR correction. The directed con-

nectivity between different cerebral regions of DP and HC

is shown in Fig. 6.

Fig. 1 The mean value of PDC at the alpha, beta, and gamma

frequency bands in EC state and EO state. The mean and standard

deviation are represented by bars and lines, respectively, with blue for

healthy controls and red for depressive patients. The asterisks denote

corrected p\ .01 (t-test)
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We found significant decreased connectivity in the

frontal-to-central (FC,6:6274� 1:7606 versus 8:5031�
1:8066; t ¼ 3:2836; corrected p ¼ :0056), parietal-to-cen-

tral (PC,5:3759� 1:6513 versus 6:3801� 0:8354; t ¼

2:3776; corrected p ¼ :0312), and occipital-to-central

(OC,2:9986� 1:1553 versus 3:7121� 0:5514; t ¼ 2:4406;

corrected p ¼ :0312) regions existed in DP. Besides, the

connectivity strength in the temporal-to-central (TC,

6:3751� 1:8356 versus 1:8356 � 1:4711; t ¼ 2:3739;

corrected p ¼ :0583) regions also tended to show a lower

value in DP. In general, the disrupted connectivity was

mainly presented in the information flowing into the central

parts, which may indicate that the central parts in depres-

sive groups served as the local hubs appear to lose the

function of integrating various types of sensory, cognitive

and emotional information from other parts.

Local topological parameters

To investigate the dysfunction of DP in local brain regions,

the strength, out-strength, in-strength, and local efficiency

of each subject were computed and compared between two

Fig. 2 Mean weighted directed

brain network graph of

a healthy controls and

b depressive patients. In order to

facilitate observation, the

connection weights between

channels greater than 0.172 are

retained

Fig. 3 Topological parameters of directed functional networks in

healthy controls (blue) and depressive patients (red). The mean and

standard deviation are represented by bars and lines, respectively. The

significant differences in the network properties between the two

groups are denoted by double asterisks (corrected p\ .01)

Fig. 4 The mean weighted PDC matrices of different groups. Each

matrix consists of four parts, representing the inter-hemispheric and

the intra-hemispheric connectivity. The color bar is shown at the right

of each matrix. The capital letters in the four quadrants of the small

matrix mean left-to-left hemisphere (LL), left-to-right hemisphere

(LR), right-to-right hemisphere (RR), and right-to-left hemisphere

(RL), respectively
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groups. The significant differences after correction were

highlighted by the bold words.

As presented in Table 1, both the strength and local

efficiency of nodes located in central regions were lower in

DP than HC. Furthermore, we found that the out-strength

and local efficiency of frontal, occipital and parietal nodes

were lower in DP. However, the significant difference of

in-strength was only shown in C3 node. All these local

findings indicate the abnormalities of functional segrega-

tion in DP, while functional segregation is important to

specialized processing in brain (Mikail Rubinov and

Sporns 2010).

Correlation with HDRS scores

To explore the correlations between the network metrics

and clinical symptoms of depressive patients, Pearson

correlation analysis and linear regression were performed

between the network metrics (C, L) and HDRS scores as

well as the directed connectivity (LL, RL) and HDRS

scores at alpha frequency band in the EC state. All of these

metrics in depressive patients were significantly different

from that in healthy controls. Correlation coefficients

between HDRS scores and LL and RL were significant after

correction (LL : r ¼ �0:5142; correctedp ¼ 0:0381;RL :
r ¼ �0:4787; correctedp ¼ 0:0381). This finding indicate

that the severity of depressive symptoms was negatively

correlated with the intra- and inter-hemispheric

connectivity.

Discussion

In this study, we used partial directed coherence and graph

theoretic analysis to investigate the differences of weighted

directed brain network between DP and HC. We con-

structed the weighted directed brain network at alpha, beta,

and gamma frequency bands in eyes-closed and eyes-open

states. Topological characteristics and weighted directed

functional connectivity were compared to find the hypo-

function of brain network in DP. Our results indicated

obvious alteration at the alpha band in the eyes-closed

state.

Fig. 5 The inter-hemispheric (LR, RL) and intra-hemispheric (LL,

RR) connectivity of healthy controls and depressive patients. The

mean and standard deviation are represented by bars and lines,

respectively, with blue for healthy controls and red for depressive

patients. The asterisks denote corrected p\ .05 (t-test) and double

asterisks denote corrected p\ .01 (t-test) after correction

Fig. 6 The directed connectivity

of healthy controls and

depressive patients between

different regions. F, T, C, P, and

O indicate frontal, temporal,

central, parietal, and occipital,

respectively. Combinations of

different letters indicate directed

connectivity between different

regions (e.g. FC means frontal

to central regions). The mean

and standard deviation are

represented by bars and lines,

respectively, with blue for

healthy controls and red for

depressive patients. The

asterisks denote corrected

p\ .05 (t-test) and double

asterisks denote corrected

p\ .01 (t-test) and octothorpes

denote corrected p\ .06 (t-test)
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Table 1 Local topological parameters including strenth, out-strength, in-strength, and local efficiency of different groups

Healthy controls

(n = 20)

Depressive patients

(n = 19)

Corrected

p value

Healthy controls

(n = 20)

Depressive patients

(n = 19)

Corrected

p value

The strength of different groups

FP1 9.08 8.38 0.4539 C4 7.53 6.67 0.1652

FP2 8.16 8.15 0.6051 T8 6.24 5.89 0.2664

F7 8.28 6.83 0.0944 TP7 7.23 6.06 0.1238

F3 8.36 8.23 0.5562 CP3 9.04 6.79 0.0944

FZ 9.68 8.31 0.1652 CPZ 7.89 7.01 0.1652

F4 7.88 8.01 0.6277 CP4 7.68 6.92 0.1761

F8 7.30 7.09 0.5146 TP8 6.26 6.16 0.5287

FT7 6.98 6.68 0.4611 P7 7.39 6.53 0.1761

FC3 7.82 7.88 0.6051 P3 8.59 7.56 0.2417

FCZ 7.57 7.07 0.2318 PZ 7.53 6.74 0.1652

FC4 7.76 7.06 0.1652 P4 7.57 6.73 0.1652

FT8 6.72 6.94 0.6818 P8 7.09 7.19 0.6277

T7 7.64 6.36 0.1238 O1 7.63 6.70 0.1238

C3** 8.17 6.41 0.0022 OZ 7.17 7.19 0.6051

CZ 7.52 6.51 0.1238 O2 7.16 7.67 0.7580

The out-strength of different groups

FP1 3.64 3.27 0.0539 C4 3.82 3.51 0.0811

FP2* 3.68 3.26 0.0314 T8* 4.03 3.68 0.0349

F7 3.65 3.34 0.0811 TP7* 4.00 3.72 0.0459

F3 3.60 3.18 0.0557 CP3 3.83 3.84 0.5270

FZ 3.48 3.19 0.0869 CPZ* 3.89 3.61 0.0459

F4* 3.75 3.29 0.0459 CP4* 3.90 3.52 0.0459

F8** 3.99 3.38 0.0051 TP8* 4.07 3.75 0.0314

FT7* 4.03 3.63 0.0314 P7 3.99 3.70 0.0557

FC3 3.72 3.37 0.0516 P3 3.79 3.58 0.1881

FCZ 3.78 3.42 0.0811 PZ 3.99 3.72 0.0811

FC4* 3.86 3.44 0.0459 P4 3.91 3.60 0.0563

FT8* 3.99 3.53 0.0280 P8 3.97 3.70 0.0654

T7 3.92 3.81 0.2341 O1 3.88 3.71 0.1482

C3 3.71 3.62 0.3103 OZ* 3.91 3.51 0.0314

CZ* 3.80 3.42 0.0459 O2* 3.89 3.55 0.0459

The in-strength of different groups

FP1 5.44 5.12 0.6735 C4 3.72 3.16 0.4675

FP2 4.48 4.88 0.8489 T8 2.21 2.21 0.7993

F7 4.63 3.49 0.3143 TP7 3.22 2.33 0.3605

F3 4.76 5.05 0.8489 CP3 5.21 2.94 0.2235

FZ 6.2 5.12 0.4675 CPZ 4.00 3.40 0.4675

F4 4.13 4.73 0.8598 CP4 3.78 3.40 0.5274

F8 3.30 3.72 0.8489 TP8 2.19 2.40 0.8489

FT7 2.95 3.05 0.8411 P7 3.40 2.83 0.4675

FC3 4.11 4.50 0.8489 P3 4.80 3.98 0.4800

FCZ 3.79 3.65 0.6735 PZ 3.54 3.01 0.4675

FC4 3.90 3.61 0.5679 P4 3.67 3.13 0.4675

FT8 2.73 3.41 0.8927 P8 3.12 3.49 0.8489

T7 3.72 2.55 0.3030 O1 3.75 2.99 0.3605

C3* 4.46 2.79 0.0210 OZ 3.26 3.69 0.8489

CZ 3.72 3.08 0.4675 O2 3.27 4.13 0.8780
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Actually, abnormal alpha oscillations in depression have

been repeatedly reported in many earlier studies (Fin-

gelkurts et al. 2007; Gotlib et al. 1998; Zhang et al. 2018),

but they have not yielded unified conclusions. We specu-

lated that the inconsistent results may be caused by dif-

ferent brain patterns in different resting states including

eyes-open and eyes-closed. Studies have also reported that

brain in resting state maintains different patterns in eyes-

open and eyes-closed condition, especially for alpha

oscillations (Robert et al. 2007). Consequently, we

designed the 8 min resting state experiment with eyes open

and eyes closed in two alternating orders by voice play-

back, and analyzed eyes-open and eyes-closed states under

different frequency bands. It was at the alpha frequency

band in eyes-closed state that we found the most obvious

alteration between DP and HC, thus we present our further

results at alpha band in EC state only.

The results of topological characteristics showed

decreased C and L in DP. Previous studies that used

unweighted and undirected networks have reported lower

C (Li et al. 2015; Sun et al. 2019; Zhang et al. 2018) and

L (Hasanzadeh et al. 2020; Leistedt et al. 2009; Sun et al.

2019; Zhang et al. 2018) in patients with depression

compared with healthy controls. It is stated that these

alterations indicate a more random structure of depressive

patients (Latora and Marchiori 2001), namely random

network. Our observed more random network in depressive

patients was consistent with these studies. This random

structure in depressive patients is assumed to affect the

cognitive capability of brain (Leistedt et al. 2009) and

related to the abnormal changes of network hubs (Zhang

et al. 2018). Random networks also show less modularized

information processing capability or fault tolerance (Latora

and Marchiori 2001; Zhang et al. 2011).

As mentioned above, to our knowledge, the weighted

directed brain network has not been systematically tested in

depression. The current study based on PDC is an attempt

to expand the research on the weighted directed brain

network in patients with depression. PDC is a promising

tool that is better able to deal with multichannel data and

identify the causality of interdependence between elec-

trodes compared with conventional spectrum-based EEG

analysis, thus providing more details of cortical functional

interactions (Sun et al. 2008). Because the value of PDC

can represent the direction between electrodes, we con-

structed the directed brain network, which was able to

indicate the causality between brain regions. As the results

showed in Fig. 5, the inter-hemispheric interactions (right-

to-left) and the intra-hemispheric interactions (left-to-left)

in depressed patients decreased significantly. Many earlier

Table 1 (continued)

Healthy controls

(n = 20)

Depressive patients

(n = 19)

Corrected

p value

Healthy controls

(n = 20)

Depressive patients

(n = 19)

Corrected

p value

The local efficiency of different groups

FP1 0.1275 0.1129 0.0837 C4* 0.1171 0.1013 0.0167

FP2 0.1219 0.1128 0.1645 T8 0.1033 0.0948 0.1021

F7* 0.1228 0.1033 0.0167 TP7* 0.1149 0.0958 0.0167

F3 0.1248 0.1123 0.0587 CP3** 0.1283 0.1044 0.0046

FZ** 0.1345 0.1136 0.0081 CPZ* 0.1229 0.1070 0.0239

F4 0.1203 0.1137 0.1645 CP4* 0.1203 0.1037 0.0167

F8 0.1157 0.1056 0.1011 TP8 0.1040 0.0980 0.1645

FT7 0.1127 0.1011 0.0837 P7* 0.1174 0.1003 0.0167

FC3 0.1211 0.1114 0.1317 P3* 0.1245 0.1102 0.0416

FCZ* 0.1168 0.1055 0.0254 PZ* 0.1182 0.1042 0.0254

FC4* 0.1199 0.1066 0.0278 P4* 0.1199 0.1033 0.0167

FT8 0.1096 0.1041 0.2275 P8 0.1143 0.1072 0.1645

T7* 0.1193 0.0997 0.0167 O1* 0.1194 0.1046 0.0199

C3*** 0.1239 0.1011 0.0007 OZ 0.1148 0.1070 0.1314

CZ* 0.1172 0.1013 0.0167 O2 0.1157 0.1093 0.1645

*Corrected p\ 0.05
**Corrected p\ 0.01
***Corrected p\ 0.001

The significant differences after correction were highlighted by the bold words
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studies suggested that communication between the left and

right cerebral hemispheres is a crucial component of cog-

nitive and emotional processing (Banich et al. 1992;

Compton et al. 2005; Toro et al. 2008). Inter-hemispheric

communication of information is important for several

reasons: to ensure that each hemisphere has access to

crucial perceptual information about the world; and to

allow for complex cognitive tasks to be allocated between

the hemispheres in a manner that takes advantage of the

cognitive specializations of each hemisphere (Banich et al.

1992). Thus, the result of decreased connectivity of the

right-to-left hemisphere may cause an imbalance of infor-

mation transmission between hemispheres, especially for

right-to-left hemispheres. This abnormality in information

processing of DP is consistent with a previous study that

reported asymmetry to the left hemisphere, which inter-

preted as a cortical deactivation of the right cerebral

hemisphere and seems to be a state marker of depression

(Haag et al. 1994; Henriques et al. 1991). A study based on

fMRI of depressed patients also found deficits in the

interhemispheric connectivity in depressed patients (Wang

et al. 2013).

The electrode activities of the midline were also con-

sidered. The connectivity strengths of the inner midline

(MM), left hemisphere to midline (LM), midline to left

hemisphere (ML), right hemisphere to midline (RM), and

midline to right hemisphere (MR) were calculated. Only

connectivity strength of ML was significantly (corrected,

p ¼ 0:02) decreased in DP, which indicate the dysfunction

of the left hemisphere in DP served as the information

recipient.

As we can see in Fig. 6, weighted directed decreased

connectivity of several specialized regions was presented.

FC, PC, OC and TC connectivity was significantly lower in

DP compared with HC. Our results also revealed that the

outgoing information of the frontal, temporal, occipital and

central parts in depressed patients were both decreased, but

there was only decreased ingoing information in the left

central parts (Table 1). These findings can be considered as

a sign of lower information flow from frontal, temporal,

occipital and parietal to left central regions in DP. The

similar decreased results were also observed in local effi-

ciency in DP, which means abnormality of functional

segregation. We speculated that the central parts in

depressive groups served as the local hubs appear to lose

the function of integrating various types of sensory, cog-

nitive and emotional information from other parts. In fact,

cerebral activities have been investigated in the fronto-

central and centro-parietal regions in patients with bipolar

disorders (BD). A research about EEG alpha band suggest

BD patients showed a decrease of mean synchronization in

the alpha band, and the decreases were greatest in fronto-

central and centro-parietal connections (Kim et al. 2013).

Our findings support the reports about the cognitive decline

and emotional disorders of depressed patients, which may

provide new evidence about the disruptions of the inter-

actions from frontal, temporal, occipital and parietal to

central regions.

What’s more, to further highlight the advantages of the

directed weighted brain network, we have constructed

undirected brain networks using magnitude squared

coherence (MSC) as a reference calculated by using

HERMES, a toolbox on MATLAB (Niso et al. 2013). MSC

measures the linear correlation between two variables x tð Þ
and y tð Þ as a function of the frequency, f . We computed the

same network metrics as we did earlier, and no significant

results after correction were found. We found no statistical

differences at any frequency band in EC or EO state ðp ¼
0:74; 0:23; 0:09; 0:46; 0:46 and 0:24 corresponding to

alpha.EC, beta.EC, gamma.EC, alpha.EO, beta.EO and

gamma.EO, respectively). Specifically, at alpha band in EC

state, differences of the connectivity between the two

hemispheres p ¼ 0:64ð Þ and within the left hemisphere

p ¼ 0:66ð Þ, as well as differences of the connectivity

between different cerebral (frontal, temporal, occipital,

parietal) regions and the central regions ðp[ 0:05Þ and

differences in topological characteristics

(p ¼ 0:74; 0:70 and 0:74 corresponding to C, L and Ge,

respectively), found in the directed network, did not appear

in the undirected network. We speculated that undirected

networks may confuse the direction of information flow in

brain and lose the essential information in DP. Providing

more useful information, directed brain networks can be

considered as more effective tools for exploring the neu-

rophysiological mechanisms of psychiatric disorders such

as depression.

Figure 7 shows that the severity of DP is negatively

correlated with two measured network metrics (LL and

RL). DP with attenuated left to left and right to left

hemispheric connectivity may have higher HDRS scores,

indicating that the lower the LL and RL, the more severe

the depression.

There are some limitations in our study. It must be

acknowledged that the gamma rhythm is one of the popular

approaches in studying neuromarkers of depression.

Gamma rhythms are correlated with increased neuronal

action potential generation (Nir et al. 2007; Watson et al.

2018). Many studies have indicated that gamma rhythms of

HC are different from that of depressive patients (Akar

et al. 2015; Lee et al. 2010; Liao et al. 2017; Liu et al.

2014; Pizzagalli et al. 2006; Siegle et al. 2010; Strelets

et al. 2007). For example, an EEG study found that subjects

with high depression scores (including Beck Depression

Inventory (BDI) and Mood and Anxiety Symptom Ques-

tionnaire (MASQ) scores) had reduced resting gamma in

the anterior cingulate cortex, whereas gamma increased in
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frontal and temporal regions in a study in which subjects

with depression performed spatial and arithmetic tasks

(Pizzagalli et al. 2006). In addition, subjects performing

emotion-related tasks in major depression can show

decreased frontal cortex gamma (Lee et al. 2010; Liu et al.

2014). Akar et al. found increased resting complexity of

gamma signaling in the frontal and parietal cortex in sub-

jects with major depression. All these studies prove that

gamma rhythms are an important direction to explore the

alterations of the brain in DP compared with heathy con-

trols (Akar et al. 2015). However, we did not find signifi-

cant differences at the gamma band. A possible reason is

that we didn’t include cognitive tasks for DP. Our future

study will further address the task-specific and sensory-

based approaches for gamma rhythms. Besides, the number

of subjects needed to be increased to make our results more

convincing and we are working to recruit more subjects for

further research.

In summary, we found decreased connectivity in DP at

the alpha band during resting state with eyes closed. In

addition, lower clustering coefficients and characteristic

path lengths in DP indicate a more randomized network

structure. Furthermore, the reduced inter-hemispheric

(right-to-left) and intra-hemispheric (left-to-left) functional

connectivity of DP suggest that DP have imbalance of

information transmission coordination from right-to-left

hemisphere, which may inhibit the expression of cognitive

function. The decreased interaction from frontal to central,

temporal to central, parietal to central and occipital to

central in depressed patients suggest that the central parts

in DP served as the local hubs appear to lose the function of

integrating various types of sensory, cognitive and emo-

tional information from other parts. Local findings

including local efficiency and out-strength indicate the

abnormalities of functional segregation in DP, while

functional segregation is important to specialized process-

ing in brain. What’s more, the directed network metrics

may reflect an effective measure of the severity of

depression. Based on our findings, we speculate that our

research may serve as a potential neuromarker of the

severity of depression.
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Watson BO, Ding M, Buzsáki G (2018) Temporal coupling of field

potentials and action potentials in the neocortex. Eur J Neurosci

48(7):2482–2497. https://doi.org/10.1111/ejn.13807

Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011)

Disrupted brain connectivity networks in drug-naive, first-

episode major depressive disorder. Biol Psychiat

70(4):334–342. https://doi.org/10.1016/j.biopsych.2011.05.018

Zhang M, Zhou H, Liu L, Feng L, Yang J, Wang G, Zhong N (2018)

Randomized EEG functional brain networks in major depressive

disorders with greater resilience and lower rich-club coefficient.

Clin Neurophysiol 129(4):743–758. https://doi.org/10.1016/j.

clinph.2018.01.017

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Cognitive Neurodynamics (2022) 16:1059–1071 1071

123

https://doi.org/10.1002/hbm.20172
https://doi.org/10.1002/hbm.20172
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1002/hbm.20517
https://doi.org/10.1016/S0165-0270(99)00128-4
https://doi.org/10.1016/j.ijpsycho.2008.04.008
https://doi.org/10.7554/eLife.31670
https://doi.org/10.1186/1753-4631-1-3
https://doi.org/10.1186/1753-4631-1-3
https://doi.org/10.1093/cercor/bhj127
https://doi.org/10.1093/brain/awn262
https://doi.org/10.1111/j.1399-5618.2012.01022.x
https://doi.org/10.1007/s11055-007-0025-4
https://doi.org/10.1007/s11055-007-0025-4
https://doi.org/10.1016/j.brainresbull.2008.05.001
https://doi.org/10.1016/j.brainresbull.2008.05.001
https://doi.org/10.1109/TNSRE.2019.2894423
https://doi.org/10.1109/TNSRE.2019.2894423
https://doi.org/10.1093/cercor/bhn014
https://doi.org/10.1093/cercor/bhn014
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1371/journal.pone.0060191
https://doi.org/10.1111/ejn.13807
https://doi.org/10.1016/j.biopsych.2011.05.018
https://doi.org/10.1016/j.clinph.2018.01.017
https://doi.org/10.1016/j.clinph.2018.01.017

	Hypofunction of directed brain network within alpha frequency band in depressive patients: a graph-theoretic analysis
	Abstract
	Introduction
	Methods
	Subjects
	Experiment
	EEG recordings and preprocessing
	Partial directed coherence for EEG connectivity
	Construction of the weighted directed brain network
	Network analysis
	Statistical analysis

	Results
	Partial directed coherence per frequency band in EO state and EC state
	Mean weighted directed brain network graph and its topological parameters
	Inter-hemispheric and intra-hemispheric functional connectivity
	Directed connectivity between different cerebral regions
	Local topological parameters
	Correlation with HDRS scores

	Discussion
	Data availability
	References




