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Abstract
Gamma-band activity, peaking around 30–100 Hz in the local field potential’s power spectrum, has been found and

intensively studied in many brain regions. Although gamma is thought to play a critical role in processing neural

information in the brain, its cognitive functions and neural mechanisms remain unclear or debatable. Experimental studies

showed that gamma rhythms are stochastic in time and vary with visual stimuli. Recent studies further showed that

multiple rhythms coexist in V1 with distinct origins in different species. While all these experimental facts are a challenge

for understanding the functions of gamma in the visual cortex, there are many signs of progress in computational studies.

This review summarizes and discusses studies on gamma in the visual cortex from multiple perspectives and concludes that

gamma rhythms are still a mystery. Combining experimental and computational studies seems the best way forward in the

future.
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Significance of gamma oscillations

Gamma rhythms (30–100 Hz) in the local field potential

(LFP) are commonly found in many brain regions (Buzsáki

2009; Wang 2010), including the hippocampus (Bragin

et al. 1995; Wang and Buzsáki 1996; Colgin et al. 2009;

Belluscio et al. 2012; Fernández-Ruiz et al. 2021),

entorhinal cortex (Chrobak and Buzsáki 1998; Quilichini

et al. 2010), olfactory bulb (Adrian 1942, 1950; Neville and

Haberly 2003), auditory cortex (Lakatos et al. 2005;

Fujioka et al. 2009; Vianney-Rodrigues et al. 2011; Gross

et al. 2013), parietal cortex (Bouyer et al. 1981; Pesaran

et al. 2002; Hawellek et al. 2016), prefrontal cortex (Gre-

goriou et al. 2009; Benchenane et al. 2011; Colgin 2011;

Kim et al. 2016), and visual cortex (Eckhorn et al. 1988;

Gray and Singer 1989a; Gray et al. 1989; Frien et al. 1994;

Kreiter and Singer 1996; Friedman-Hill et al. 2000;

Maldonado et al. 2000; Hermes et al. 2015). It has been

proposed that gamma-band activity may play an essential

role in normal cognitive processes (Eckhorn et al. 1988;

Gray et al. 1989; Singer and Gray 1995; Draguhn and

Buzsáki 2004; Henrie and Shapley 2005; Fries 2005, 2009;

Fries et al. 2007; Wang 2010; Buzśaki and Wang 2012)

such as learning (Bauer et al. 2007), memory (Pesaran et al.

2002; Kucewicz et al. 2017), and attention (Fries et al.

2001; Jensen et al. 2007; Womelsdorf and Fries 2007;

Vinck et al. 2013). Abnormal gamma rhythms are associ-

ated with mental disease (Uhlhaas and Singer

2006, 2010, 2012; Gonzalez-Burgos and Lewis 2012;

Lewis et al. 2012).

Gamma-band activity was first discovered in the cat

olfactory bulb (Adrian 1942, 1950). Then years later the

presence of gamma activity in the primary visual cortex,

V1, started drawing attention, first in cat (Eckhorn et al.

1988; Gray and Singer 1989b; Gray et al. 1989; Gray and

Di Prisco 1997; Samonds and Bonds 2005), then in

macaque monkey (Frien et al. 1994; Kreiter and Singer

1996; Friedman-Hill et al. 2000; Maldonado et al. 2000;

Lima et al. 2010; Ray and Maunsell 2011; Jia and Kohn

2011; Womelsdorf et al. 2012; Xing et al. 2012b; Roberts

et al. 2013; Jia et al. 2013a; Van Kerkoerle et al. 2014;

Murty et al. 2018; Peter et al. 2019; Onorato et al. 2020)

and in humans (Tallon-Baudry and Bertrand 1999; Canolty
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et al. 2006; Hermes et al. 2015; Michalareas et al. 2016;

Kucewicz et al. 2017). Rodents (Cardin et al. 2005, 2009;

Saleem et al. 2017; Storchi et al. 2017; Welle and Contr-

eras 2017) and insects (Kirschfeld 1992; Grabowska et al.

2020) also became animal models for understanding the

neural mechanisms of gamma-band activity.

In the visual cortex, gamma is observed in the local field

potential (LFP) as a narrow-band increase in power in the

gamma frequency range (around 30–80 Hz) during the

presentation of a visual stimulus (Fig. 1A–C) (Gray and

Singer 1989a; Castelo-Branco et al. 1998; Fries et al. 2007;

Xing et al. 2012a; Jia et al. 2013b). The bell-shaped bump

(narrow-band gamma) in the power spectrum is defined as

a gamma rhythm. In the LFP, a broad-band power eleva-

tion over a wide frequency range around the gamma band

(Fig. 1D) (Henrie and Shapley 2005; Yuval-Greenberg

et al. 2008; Jia et al. 2011; Ray and Maunsell 2011) is a

different component, which behaves similarly to spiking

activity (Jia et al. 2011; Ray and Maunsell 2011). In the

following sections of this paper, we focus on studies of

narrow-band gamma in the visual cortex of cat and mon-

key, the two animal models in which studies and theories

of gamma rhythms were initiated.

The functions of gamma oscillation are
controversial

There have been many speculations about the function of

gamma-band activity. For example, gamma synchroniza-

tion may contribute to solving the ‘binding problem’

(Singer and Gray 1995; Singer 1999a). The activity of

neurons could be grouped together dynamically through

synchrony associated with perceptual Gestalt principles

(Milner 1974; Engel et al. 1992; von der Malsburg 1994).

Engaging in an oscillation could also increase the saliency

of neuronal signals (Gray and McCormick 1996) such as

the relationship between orientation discrimination per-

formance and gamma band activity (Edden et al. 2009). In

V1, orientation selectivity was modulated by the gamma

phase (Womelsdorf et al. 2012) and the changes of orien-

tation preference of neuronal populations in visual cortex

occurred if stimuli induced synchronized responses oscil-

lating at gamma band frequencies (Galuske et al. 2019).

The early studies on cats (Eckhorn et al. 1988; Gray and

Singer 1989a; Gray et al. 1989; Gray and Di Prisco 1997)

provided evidence that global features (such as contour

information, or motion information at different visual

locations that belonged to the same object) of visual stimuli

were associated with robust synchronization of responses

in V1. These observations were then taken as support for

the binding-by-synchrony (BBS) hypothesis (Milner 1974;

Fig. 1 Stimulus induced narrow-band and broad-band gamma activ-

ity. A–C are replotted based on Xing et al. (2012a). A shows the

multiunit activity to the visual stimulus (drifting grating) for an

example site. The response over the first 0.2 s after stimulus onset

was termed the initial transient response. The response from 0.3 to 2 s

after stimulus onset (time 0) was taken to be the sustained response.

B illustrates the color-coded spectrogram (power spectrum vs time) of

the Local Field Potential (LFP) to the drifting grating stimulus. The

sustained power is induced after stimulus onset (time 0 marked by the

first vertical dashed line) in the frequency band between 20 and 60 Hz

(marked by two horizontal dashed lines). C shows the relative power

spectrum which is normalized by power at each frequency during the

blank period. D is replotted based on Jia et al. (2011). The top panel

of D shows a single epoch example of the raw LFP and the bottom

panel shows the power spectra of LFPs from one site for two

orientations (red and black lines) and spontaneous activity (gray

lines). The gamma bump around 40 Hz is defined as the narrow-band

component of gamma. The broad-band component of gamma power

is estimated by the exponential fit indicated with dashed lines
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Grossberg 1976; von der Malsburg 1994), that is, that

binding/integration of information for a visual object might

be through synchronization by gamma rhythms in V1

(Singer 1999b, 2009; Uhlhaas and Singer

2006, 2010, 2012). However, the BBS hypothesis has been

challenged by the proposal that gamma is an epiphe-

nomenon that is irrelevant for information processing

(Shadlen and Movshon 1999). Furthermore, experimental

data indicate that the peak frequency in the gamma band

varies across visual cortical loci when they are activated by

the same visual object (Ray and Maunsell 2010). Although

there are some possible explanations of these problems for

the BBS hypothesis in a follow-up study (Singer 2021), the

controversy about the BBS hypothesis continues.

Several years after the BBS hypothesis was proposed

came the ’communication-through-coherence’ (CTC)

hypothesis (Fries 2005, 2009). The CTC hypothesis pro-

posed that gamma rhythms facilitate neuronal communi-

cation between cortical regions by neuronal coherence in

the gamma-band and the effectiveness of long-distance

communication depends on the relative gamma phase (zero

phase) between the spikes and the LFP. Similar to the

situation with the BBS hypothesis, the CTC hypothesis was

both supported (Womelsdorf et al. 2007; Gregoriou et al.

2009) and opposed (Jia et al. 2013a, Akam and Kullmann

2012). An updated version of the CTC hypothesis (Fries

2015) proposed that entrainment with delay was the

mechanism that sets up phase relations subserving CTC.

The updated CTC proposed also that the way rhythmic

synchronization modulates excitability is not simply by

linear filtering of a sinusoidal drive, but with nonlinear

models composed of spiking excitatory and inhibitory

neurons (Borgers and Kopell 2008; Gielen et al. 2010). At

present, more studies support the CTC hypothesis than

oppose it, but more experiments and theories are needed to

verify it in the future.

Both the BBS and CTC hypotheses implied that gamma

activity performs important functions for perception or

cognition. However, many studies in recent years do not

support the idea that gamma rhythms in the visual cortex

have specific visual functions (Singer 2018). Instead, many

people think that gamma-band activity is a by-product of

neuronal activity in the cortical network (Shadlen and

Movshon 1999; Thiele and Stoner 2003; Roelfsema et al.

2004; Henrie and Shapley 2005; Ray and Maunsell 2010;

Chariker et al. 2016, 2018) or in some cases gamma may be

an artifact (Yuval-Greenberg et al. 2008). The arguments

against the idea that synchronized oscillations have a

functional role came from empirical studies on response

properties of gamma rhythms, including studies of stimu-

lus-dependence, stochastic dynamics, and differences of

gamma-band activity in different species.

What visual information does gamma
oscillation represent?

Although gamma has been thought important for visual

processing, what is represented by gamma is still unclear.

Some previous studies showed that gamma is strongly

induced by thin bars or face contours (Fig. 2A) (Gray and

Singer 1989b; Singer and Gray 1995; Neuenschwander and

Singer 1996; Castelo-Branco et al. 1998; Uhlhaas and

Singer 2006, 2010, 2012). Such results suggested that

gamma could represent a visual object or the contour of a

visible object. But other studies demonstrated that the

surfaces of visual stimuli also induce strong gamma-syn-

chronous responses in V1 (Fig. 2B) (Gail et al. 2000; Xing

et al. 2010, 2014a; Peter et al. 2019), suggesting that the

gamma rhythm could represent surface information (Peter

et al. 2019). Whether gamma represents a visual object’s

contour or its surface is still unclear.

The surface preference of gamma band activity can be

modified by surface properties. For instance, gamma peaks

in the power spectrum of the LFP were strongly induced by

a black surface, but the gamma peak was weak or absent

for a white surface in macaque V1 (Xing et al. 2014)

(Fig. 2C) or cat V1 (Fig. 2D, unpublished data from Dajun

Xing’s lab). A similar result could also be seen in the color

preference of gamma; gamma prefers red surfaces more

than surfaces of other colors (Shirhatti and Ray 2018; Peter

et al. 2019). If gamma represents visual surfaces, why there

is such a strong luminance/color preference? One possible

answer is that it could be simply a consequence of different

cone contrast–red versus gray higher in cone contrast than

green versus gray, for instance. But the color preference

still needs to be confirmed and explored more deeply in

future experiments.

The uncertainty about gamma’s function for information

representation may be due to the fact that we don’t

understand fully the mechanisms for the stimulus depen-

dence of gamma band rhythms in the visual cortex. Pre-

vious studies have shown that gamma depends on different

stimulus characteristics, such as luminance/color (Swet-

tenham et al. 2013; Xing et al. 2014; Saleem et al. 2017;

Storchi et al. 2017; Shirhatti and Ray 2018; Peter et al.

2019), contrast (Henrie and Shapley 2005; Ray and

Maunsell 2010; Jia et al. 2013b), orientation (Siegel and

König 2003; Kayser and Ko 2004; Cardin et al. 2005;

Berens et al. 2008; Womelsdorf et al. 2012; Han et al.

2020), temporal frequency (Jia et al. 2011; Murty et al.

2018), stimulus size (Bauer et al. 1995; Gieselmann and

Thiele 2008; Jia et al. 2011, 2013b; Ray and Maunsell

2011). Furthermore, the complexity of visual stimuli

modulates the strength of cortical gamma activity. Gamma

band power is reduced when the visual stimulus includes a
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noise masking grating (Zhou et al. 2008; Jia and Kohn

2011; Jia et al. 2013a), and in natural images(Kayser et al.

2003; Kayser and Ko 2004; Hermes et al. 2015), and when

the visual stimulus consists of superimposed gratings

(Lima et al. 2010; Bartolo et al. 2011; Wang et al. 2021). In

the last section of our review, we will discuss progress in

understanding the stimulus-dependence of gamma

rhythms.

How does gamma band activity help
information integration?

In addition to visual information representation, the rela-

tionship between gamma rhythms and visual information

integration is also unclear. Spike activity, which carries

visual information, has been found to lock to the phase of

the gamma rhythm (Schoffelen et al. 2005; Fries et al.

2007; Fries 2015). The strong phase-locking between

visually-evoked signals and gamma suggests that different

kinds of visual information might be communicated

according to their gamma phase. Perhaps phase-locking

together with the CTC hypothesis (Fries 2005, 2009, 2015)

could explain how different visual signals about visual

objects could be integrated in downstream cortical regions.

Fig. 2 Gamma oscillation

induced by surface or object

stimuli. A is replotted based on

Castelo-Branco et al. (1998).

The bar stimulus evokes strong

oscillatory responses at 49 Hz

in Area 18 of the cat, as

indicated by the oscillatory

spectrum of spike times in the

righthand panel. B is replotted

based on Peter et al. (2019). It

shows average LFP power

spectra for different chromatic

conditions. C is replotted based

on Xing et al. (2014). It shows

average LFP power spectra to

black and white stimuli in layer

4C of V1. D shows unpublished

data from Dajun Xing’s lab,

which shows average LFP

power spectra to black and

white stimuli in cat V1
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However how the visual system coordinates/integrates

gamma information in time and phase is not fully under-

stood. Some theoretical work has used oscillator models to

understand gamma rhythm (Börgers 2017). A natural

consequence of the oscillator theories is the concept of

gamma as a clock signal for synchronizing brain infor-

mation. However, experimental studies found that gamma

rhythms in V1 are not oscillatory but instead are stochastic

in time (Burns et al. 2010, 2011; Xing et al. 2012a) (Fig. 3,

but see Subhash Chandran et al. 2018). There are rapid

changes of frequency and only short durations of consistent

phase and power elevation (Also see Feingold et al. 2015

for that of beta rhythm in motor cortex and Bastos et al.

2018 for gamma bursting in frontal cortex). The non-

oscillatory nature of gamma was shown theoretically to

cause more CTC (Saraf and Young 2021) suggesting that

instaneous synchronization, instead of sustained oscilla-

tion, is more important for information integration (Xing

et al. 2012a). Although there are studies (Jia et al. 2013a;

Roberts et al. 2013) that showed that gamma’s stochastic

properties are consistent and coordinated between monkey

V1 and V2, we still don’t know the exact way that the brain

integrates the information carried by gamma in time. We

need to rethink how gamma rhythms are generated and

how gamma rhythms might aid information processing in

the brain.

Besides the randomness of gamma in time, the gamma

rhythm is also variable in space. Ray and Maunsell (2010)

showed that frequencies of gamma rhythms could be

continuously different as a function of location in visual

space, even if the different locations belong to the same

visual object. The frequency difference for gamma in space

is somewhat puzzling; if specific visual information

appears in a fixed phase for all different frequencies, then

the information carried by these frequencies will appear at

different times; if the visual system synchronizes the

information at the same time, then the information will

appear in different phases for various frequencies.

Most studies on gamma band activity have reported a

single gamma frequency bump in monkey V1. Interest-

ingly, two gamma peaks in the frequency spectrum have

been previously reported in the visual cortex of humans

(Kucewicz et al. 2017), cats (Fig. 4A–C) (Castelo-Branco

et al. 1998; Bharmauria et al. 2016; Han et al. 2020; Wang

et al. 2021), monkeys (Murty et al. 2018 and Fig. 4D is

unpublished data for awake monkey V1 from Dajun Xing’s

lab) and rats (Oke et al. 2010). The finding of multiple

gammas generates more questions about gamma’s func-

tion. What kind of visual information is carried by two

distinct gamma peaks, and what is the relationship between

the two gamma peaks? How do downstream cortical

regions integrate information carried by multiple gammas?

All these questions have not been answered fully.

Do gamma rhythms serve a canonical
function?

If gamma band activity has essential functions in cognition

and perception, one should expect that its importance will

lead to conservation of brain functions and circuits that

generate gamma in different species throughout biological

evolution. However, this seems not to be the case; instead,

recent studies have shown that gamma band activity in

different species’ visual cortices are different in response

properties and neural origins.

Bastos et al. (2014), studying macaque monkeys, found

gamma in V1 (specifically in V1 superficial layers Spaak

et al. 2012; Xing et al. 2012b; Roberts et al. 2013; Van

Kerkoerle et al. 2014) but not in the LGN and concluded

that a visually-induced gamma rhythm is an emergent

property in the cortex (Fig. 5A). However, for mice,

Fig. 3 Stochastic generation of

gamma in awake and

anesthetized states. The figure is

replotted based on Xing et al.

(2012b). The top panel shows

the LFP recorded from an

awake monkey after stimulus

onset and in the panel below it

is its spectrogram. The gray

shaded areas of the LFP are

gamma-band bursts. Each black

bar in the spectrogram marks

the peak frequency (y-axis) and

the duration of each gamma-

band burst
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studies have shown that gamma is generated in subcortical

regions, including LGN (Saleem et al. 2017; Schneider

et al. 2021) and retina (Storchi et al. 2017) (Fig. 5B).

Studying cat visual cortex, Castelo-Branco et al., (1998)

found two narrow-band gamma peaks. Their results indi-

cated that one is generated at the cortical level, and the

other one is of subcortical origin. More importantly, the

response properties of gamma rhythms are also species-

specific. In macaque, Xing et al. (2014) found that the peak

in the gamma band preferred dark stimuli (Figs. 2D, 5C for

macaque data; also see Fig. 2D for unpublished data in cats

from Dajun Xing’s lab), while in mouse V1, the LFP

gamma activity was strongly induced by lightness instead

of darkness (Fig. 5D) (Saleem et al. 2017; Storchi et al.

2017). The species differences are not consistent with a

canonical role of gamma in cognition and perception.

Neural mechanism of gamma rhythms
revealed by computational models

We have to admit that we don’t fully understand the

function, or functions, of gamma rhythms given all the

puzzles and controversies reviewed above. This is pri-

marily due to the fact that we also don’t know the neural

mechanisms for generating and modulating gamma. With

advanced experimental techniques (intracellular record-

ings, optogenetics, etc.), mouse studies have revealed

excitatory and inhibitory contributions to gamma (Cardin

et al. 2009; Veit et al. 2017). But so far these techniques

cannot be fully applied in primate studies. The species

difference for gamma properties suggests a need for sep-

arate studies on different species. An alternative way to

understand gamma at the circuit level for primates is to

construct dynamic models of neural networks combining

experimental data.

Fig. 4 Experimental evidence for multiple gamma oscillations in the

visual cortex. A–C is replotted based on Wang et al. (2021). A and

B show the response matrix driven by plaid for an example site. A

presents various plaids formed by the linear summation of two

orthogonal drift gratings with varying contrast. These stimuli (size,

38�; spatial frequency, 0.05 cycle/deg) were presented for 2 s with a

time–frequency of 2 Hz and were repeated 10 times. B shows the trial

averaged (n = 10) LFP power spectrum (gray dots) in response to

corresponding stimuli in A. Two narrow-band gamma oscillations

(blue curve) and the baseline (dark gray line) were estimated through

a spectrum fitting procedure. C shows the LFP power spectra have

two distinct narrow-band gamma oscillations induced by a grating in

cat V1. D shows the LFP power spectra in awaked macaque V1 that

have two distinct narrow-band gamma oscillations induced by

gratings with different size, which is the unpublished data from

Dajun Xing’s lab
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Computational models with interaction of excitation and

inhibition (Fig. 6A) (Xing et al. 2012a; Chariker et al.

2016, 2018; Mejias et al. 2016) (Fig. 6DE) have made

progress in understanding stochastic and stimulus-depen-

dent properties of gamma. The gamma peaks are strongly

influenced by different types of neural circuits. Local cir-

cuit models, have successfully achieved the stochastic

properties observed in experiments (Xing et al. 2012a;

Chariker et al. 2018). Furthermore, Jia and colleague

(2013b) introduced feedback connections in the V1 model

(Fig. 6B) and explained many observations concerning the

changes of gamma power and frequency with different

stimuli, including stimulus contrast, size, orientation, and

noise-masking stimuli (Jia et al. 2013b) (Fig. 6F). More

recently, Han et al. (2021) introduced horizontal connec-

tions (HC) into a large-scale V1 model (Fig. 6C). They

found that HC could generate a new gamma around 30 Hz

(slow gamma) which is different from fast gamma (around

50–60 Hz)(Fig. 6G). The two gamma band peaks that

emerge in the Han et al. (2021) model are highly consistent

with experimental findings for two distinct gammas in

macaque V1(Fig. 4D).

Up to now, computational models have provided pos-

sible mechanisms for various gamma band phenomena in

visual cortex, but there are still two main shortcomings.

The first is that the predicted effects on gamma rhythms

from feedback and horizontal neural circuits in the model

should be further confirmed by experiments. Another one is

that most of the models to explain stimulus dependence and

stochastic property are at the mean-field level. Spiking

neuron models (like Chariker et al. 2018) are closer to the

actual response of neurons and will play a greater role in

the future.

Concluding Remarks

Although the cognitive functions of gamma band peaks in

cortical population activity are still unclear, it is apparent

that gamma is related to multiple neural circuits, suggested

by computational studies. As an essential feature for a

complex dynamic system (the brain), gamma band peaks

are crucial experimental data that should help us to

understand neural circuits underlying brain functions. From

both experimental and computational sides, more work on

gamma band activity is needed for understanding its role in

normal cognitive functions and abnormal mental states of

the brain.

Fig. 5 Species difference on

generation mechanism and

functions of gamma rhythms.

A is plotted based on the main

result in Bastos et al. (2014)

which shows the cortical

mechanism of the gamma

rhythm. A is plotted based on

the main result in Saleem et al.

(2017) which shows the

subcortical mechanism of the

gamma rhythm. C is replotted

based on Xing et al. (2014). It

shows the average power

spectra (LFP) to black and white

stimuli in macaque V1. D is

replotted based on Storchi et al.

(2017) and Saleem et al. (2017).

It shows the average LFP power

spectra during uniform light

conditions (white) or complete

darkness (black)
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Bragin A, Jandó G, Nádasdy Z et al (1995) Gamma (40–100 Hz)

oscillation in the hippocampus of the behaving rat. J Neurosci

15:47–60

Burns SP, Xing D, Shelley MJ, Shapley RM (2010) Searching for

autocoherence in the cortical network with a time-frequency

analysis of the local field potential. J Neurosci 30:4033–4047

Burns SP, Xing D, Shapley RM (2011) Is gamma-band activity in the

local field potential of v1 cortex a ‘‘clock’’ or filtered noise?

J Neurosci 31:9658–9664
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