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Abstract
We construct embedded functional connectivity networks (FCN) from benchmark resting-state functional magnetic res-

onance imaging (rsfMRI) data acquired from patients with schizophrenia and healthy controls based on linear and

nonlinear manifold learning algorithms, namely, Multidimensional Scaling, Isometric Feature Mapping, Diffusion Maps,

Locally Linear Embedding and kernel PCA. Furthermore, based on key global graph-theoretic properties of the embedded

FCN, we compare their classification potential using machine learning. We also assess the performance of two metrics that

are widely used for the construction of FCN from fMRI, namely the Euclidean distance and the cross correlation metric.

We show that diffusion maps with the cross correlation metric outperform the other combinations.
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Introduction

Over the past years, functional magnetic resonance imag-

ing (fMRI) has been widely used for the identification of

brain regions that are related to both functional segregation

and integration. Regarding functional segregation, the

conventional analysis relies on the identification of the

activated voxels based on functional response models and

multivariate statistics between experimental conditions

(e.g. resting-state vs. task-stimulated activity). A repre-

sentative example is the General Linear Model (GLM) that

is implemented in well established software packages such

as SPM (Friston et al. 1994) and FSL (Smith et al. 2004).

On the other hand, for the assessment of functional

integration, there is a distinction between functional and

effective connectivity (Friston 2011). Functional connec-

tivity (FC) analysis looks for statistical dependencies (e.g.

correlations, coherence) between brain regions. Effective

connectivity (EC) analysis tries to reveal the influence that

one neural system exerts on another. A detailed review on

the differences between FC and EC approaches can be

found in Friston (2011).

Here, we focus on the construction of functional con-

nectivity networks (FCN) based on resting-state fMRI

(rsfMRI) recordings. In rsfMRI, there is no stimuli and thus

the assessment of functional integration is more complex

and not so straightforward compared to task-related

experiments (Khosla et al. 2019). Furthermore, sponta-

neous/ resting-state brain activity as measured with fMRI

has been considered as a potential biomarker in psychiatric

disorders (see e.g. the review of Zhou et al. 2010). In

general, two basic frameworks are explored for the con-

struction of FCN: (a) seed-based analysis (SBA) and

(b) independent component-based analysis (ICA). In the

SBA (Cole et al. 2010), the (averaged) fMRI signals of the

regions of interest (ROIs) are correlated with each other;

correlations above a threshold are considered functional

connections between seeds/ROIs. Even though the SBA

has been proved extremely useful in identifying functional

networks of specific brain regions (Greicius et al. 2003;
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Fox et al. 2005; Margulies et al. 2007), its major disad-

vantage is the requirement of the a-priori knowledge of the

functional organization of the brain, while possible corre-

lations between seeds can be due to structured spatial

confounds (e.g. scanner artifacts) (Cole et al. 2010). Fur-

thermore, the definition of a seed is based on standard

coordinates, while at the subject level, anatomical differ-

ences may lead to the consideration of functionally irrel-

evant voxels at the group level. Despite the use of

normalization techniques, the accuracy of this approach is

limited especially for brain regions, such as the hip-

pocampus, where neurogenesis continues even in the adult

life (Saxe et al. 2006). On the other hand, ICA (Hyvärinen

and Oja 2000) has arisen as an alternative approach since

the early 2000s (Beckmann et al. 2005; Beckmann and

Smith 2005; Kim et al. 2010). ICA decomposes the 4D

fMRI data to a set of spatial components with maximum

statistical independence and their associated time series.

Smith et al. (2009) in a meta-analytic study of 30,000

rsfMRI scans with the aid of ICA revealed a functional

‘‘partition’’ of the brain into resting-state networks (RSNs),

such as the sensorimotor, default mode and auditory net-

works. Applications of ICA include also data pre-pro-

cessing, where noise-related components are regressed out

from the original fMRI signals (Pruim et al. 2015). How-

ever, while ICA produces spatial components that are

statistically independent to each other, there is no clear link

between the spatial components and specific brain func-

tions and spatial components cannot in general be ordered

by relative importance (Cole et al. 2010). Another issue is

that most of the standard algorithms that compute inde-

pendent components (ICs) utilize gradient based opti-

mization algorithms that use an iterative scheme; the initial

guesses in these algorithms are generated randomly making

the whole process stochastic. As a consequence, the

obtained spatial components may differ significantly for

the same dataset over repeated runs (Himberg et al. 2004).

Hence, the reproducibility of the ICA results over repeated

runs may be questioned.

In order to tackle the above issues, several techniques

have been proposed for the classification of ICs and the

construction of subject-specific ROIs (Pamplona et al.

2020; Yang et al. 2008). Advances have also been made

regarding the selection of the model order of the ICA

decomposition, such as the Bayesian dimensionality esti-

mation technique (Beckmann et al. 2005) and the use of

theoretic information criteria for model order selection (Li

et al. 2007). Finally, the so-called ranking and averaging

ICA by reproducibility (RAICAR) (Yang et al. 2008;

Himberg et al. 2004) (see also Cole et al. (2010) for a

critical discussion) aims at resolving issues regarding

stochasticity and robustness of the ICA decomposition.

RAICAR utilizes a sufficient number of ICA realizations

and based on the reproducibility of the ICs aims to rank

them in terms of the most ‘‘reliable’’ components. Reliable

ICs among realizations are assessed via correlations and

the final estimate of each component is averaged.

Alternatively and/or complementary to the above anal-

ysis, linear manifold learning algorithms such as Principal

Component Analysis (PCA) (Jollife 2002; Worsley et al.

2005; Baumgartner et al. 2000) and classical Multidimen-

sional Scaling (MDS) (Kruskal 1964; Friston et al. 1996)

have been also exploited. PCA has been succesfully

applied in the pre-processing routine for dimensionality

reduction (often prior to ICA) (Iraji et al. 2016). Applica-

tions of PCA include also the recovery of signals of interest

(Viviani et al. 2005) and the construction of FCN from

fMRI scans in task-related experiments (Worsley et al.

2005; Baumgartner et al. 2000). In these studies, the per-

formance of PCA with respect to the detection of regions of

correlated voxels has been shown to be satisfactory but not

without problems. For example, a study by Baumgartner

et al. (2000) highlighted the limits of PCA to correctly

identify activation of brain regions in cases of low contrast-

to-noise ratios (CNR) appearing when signal sources of e.g.

physiological noise are present.

MDS has been also widely used in fMRI (mostly for

task-based studies) mainly for the identification of simi-

larities between brain regions in terms of voxel-wise con-

nectivity (Shinkareva et al. 2012, 2013; Tzagarakis et al.

2009; O’Toole et al. 2007; Haxby et al. 2001; de Beeck

et al. 2010). The implementation of MDS in neuroimaging

dates back to the work of Friston et al. (1996), where

embedded (voxel-wise) connectivity from PET data was

investigated during word generation tasks between healthy

and schizophrenia subjects. Salvador et al. (2005) used

MDS to investigate the embedded connectivity of

anatomical regions of the brain from rsfMRI data. Ben-

jaminsson et al. (2010) used MDS to embed high-dimen-

sional rsfMRI data from the mutual information space to a

low dimensional Euclidean space for the identification of

RSNs. Hervé et al. (2012) used MDS to acquire a low

dimensional approximation of interregional correlations for

the investigation of the affective speech comprehension.

Finally, in a meta-analytic study by Etkin and Wager

(2007), MDS was exploited to provide a low-dimensional

visualization of co-activation interrelations of Regions of

Interest (ROIs). MDS has been also used in studies

investigating the functional (dys)connectivity associated

with schizophrenia (Welchew et al. 2002) and Asperger’s

Syndrome (Welchew et al. 2005).

However, thus far, only a few studies have exploited

non-linear manifold learning algorithms such as Locally

Linear Embedding (LLE) (Roweis and Saul 2000), Iso-

metric Feature Mapping (ISOMAP) (Tenenbaum et al.

2000), diffusion maps (Coifman and Lafon 2006) and
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kernel PCA (kPCA) (Schölkopf et al. 1997) for the anal-

ysis of fMRI data and particularly for the construction of

FCN. The LLE method has been applied in rsfMRI studies

for the improvement of predictions in ageing (Qiu et al.

2015), for the classification of healthy subjects and patients

with schizophrenia (Shen et al. 2010) and as an alternative

method for dimensionality reduction before the application

of ICA in task-related fMRI, where non-linear relationships

in the BOLD signal are introduced (Mannfolk et al. 2010).

The kPCA method has been recently applied to a fMRI

study for non-linear feature extraction (Tsatsishvili et al.

2018). In this study, it was shown that certain important

features could not be found by the standard PCA. kPCA

has been also used for feature extraction towards the

automated diagnosis of (Attention-Deficit Hyperactivity

Disorder) ADHD (Sidhu et al. 2012). In Anderson and

Cohen (2013), ISOMAP was employed to a benchmark

rsfMRI dataset of 146 subjects for the construction of

embedded low-dimensional FCN for the classification of

controls and schizophrenic subjects. ROIs were selected

using single-subject ICA and the similarities between the

ICs were assessed using a pseudo-distance measure based

on cross correlation. Graph-theoretic measures were then

used for the discrimination between patients and healthy

controls. Another study based on single-subject ICA

exploited ISOMAP to classify spatially unaligned fMRI

scans (Anderson et al. 2010). The study focused on com-

parisons between patients with schizophrenia versus heal-

thy controls and different age groups of healthy controls

versus patients with alzheimer’s disease. Despite the rela-

tively low sample sizes, results were promising with good

classification rates. Recently, Haak et al. (2018) utilized

ISOMAP for the construction of individualised connec-

topies from rsfMRI recordings taken from the WU-Minn

Human Connectome Project in a fully data-driven manner.

Only a handful of studies have used diffusion maps for the

analysis of fMRI data. These studies have been focused

mainly on the clustering of spatial maps of task-related

experiments (Shen and Meyer 2005; Sipola et al. 2013).

Shen and Meyer (2005), and Sipola et al. (2013) used

diffusion maps with a Gaussian kernel to cluster selected

fMRI spatial maps that are derived by ICA. The approach

was demonstrated using fMRI recordings acquired from

healthy participants listening to a stimulus with a rich

musical structure. Other applications of diffusion maps in

neuroimaging include predicitions of epileptic seizures and

the identification of the pre-seizure state in EEG timeseries

(Lian et al. 2015; Duncan et al. 2013). A review on the

intersection between manifold learning methods and the

construction of FCN can be found in Siettos and Starke

(2016), and Richiardi et al. (2013).

Here, we employed MDS, ISOMAP, diffusion maps,

kPCA and LLE to construct embedded FCN from rsfMRI

data taken from healthy controls and schizophrenia

patients. For our demonstrations, we used the Center for

Biomedical Research Excellence (COBRE) rsfMRI dataset

that is publicly available and has been used recently in

many studies (Calhoun et al. 2012; Mayer et al. 2013;

Anderson and Cohen 2013; Qureshi et al. 2017). Based on

key global graph-theoretic measures of the embedded

graphs, we assessed their classification efficiency using

several machine learning algorithms, namely linear stan-

dard Support vector machines (LSVM), radial (radial basis

function kernel) support vector machines (RSVM),

k-nearest neighbours (k-NN) classifier, and artificial neural

networks (ANN). We also investigated their performance

considering two commonly used distance metrics, namely

the cross correlation and the Euclidean distance. Our

analysis showed that diffusion maps with the cross corre-

lation outperformed all other combinations.

At this point, we should note, that our study does not

aim at extracting the best classification performance by

trying to find the best possible pre-processing pipe-line of

the raw fMRI data and/or the selection of ‘‘best’’ subjects

and/or the selection of the best set of graph-theoretic

measures that provide the maximum classification. Yet, we

aim at using state-of-the-art manifold learning methods for

the construction of embedded FCN and compare their

classification efficiency using only the three fundamental

global graph measures, i.e. the average path length, the

global clustering coefficient and the degree. Furthermore,

our results can be compared to those obtained by similar

studies (see e.g. Anderson and Cohen 2013) using the same

pipe-line for data pre-processing and single-subject ICA.

To the best of our knowledge, this paper is the first to

perform such a thorough comparative analysis of both

linear and nonlinear manifold learning on rsfMRI data. It is

also the first study to show how diffusion maps can be used

for the construction of FCN from rsfMRI, assessing also

the efficiency of two basic distance metrics, the cross

correlation and the Euclidean distance.

Materials and methods

Data description

For our demonstrations we used the Schizophrenia COBRE

dataset (http://fcon_1000.projects.nitrc.org/indi/retro/cobre.

html) comprised of rsfMRI data from 74 healthy and 72

Schizophrenic subjects of varying ages (18–65 years in both

groups). All subjects were screened and excluded if they had

history of neurological disorders, mental retardation, severe

head trauma with more than 5 min loss of consciousness,

substance abuse or dependence within the last 12 months.
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Diagnostic information was collected using the Structured

Clinical Interview used for DSM Disorders (SCID).

For the anatomical imaging, a multi-echo Magnetization

Prepared RApid Gradient Echo (MPRAGE) sequence was

used with the following set of parameters: TR (repetition

time)/TE (echo time)/TI (inversion time) = 2530/[1.64, 3.5,

5.36, 7.22, 9.08]/900 ms, flip angle = 7�, Field Of View

(FOV) = 256� 256 mm2, Slab thickness = 176 mm, data

matrix = 256� 256� 176, Voxel size = 1� 1� 1 mm3,

Number of echos=5, Pixel bandwidth=650 Hz, Total scan

time = 6 min. With 5 echoes, the TR, TI and time to encode

partitions for the multi-echo MPRAGE are similar to that

of a conventional MPRAGE, resulting in similar Gray

Matter (GM)/ White Matter (WM)/ CelebroSpinal Fluid

(CSF) contrast. The rsfMRI data-set was collected with

single-shot full k-space Echo-Planar Imaging (EPI) with

ramp sampling correction using the intercomissural line

(AC-PC) as a reference (TR: 2 s, TE: 29 ms, slice size:

64x64, number of slices: 32, voxel size: 3� 3� 4 mm3).

Pre-processing and signal extraction

As also implemented in other studies (see e.g. Anderson

and Cohen 2013), we first performed a basic pre-processing

of the raw fMRI data using FSL (FMRIB’s Software

Library, www.fmrib.ox.ac.uk/fsl). In particular, the fol-

lowing pre-processing steps were applied: motion correc-

tion using Fsl’s linear registration tool (MCFLIRT)

(Jenkinson et al. 2002), slice-timing correction using

Fourier-space time-series phase-shifting; non-brain

removal using the brain extraction tool (BET) (Smith

2002), spatial smoothing using a 5 mm full-width at half-

maximum (FWHM) Gaussian kernel, grand-mean intensity

normalization of the entire 4D dataset by a single multi-

plicative factor (10,000 divided by the grand mean inten-

sity, Fsl’s default). Furthermore, we used ICA automatic

removal of motion artifacts (AROMA) (Pruim et al. 2015)

to detect and factor out noise-related (motion artifacts and

other structured noise components like cardiac pulsation

confounds) ICs. After the implementation of ICA

AROMA, we applied a high-pass temporal filtering at 0.01

Hz (100 s) as it is highly recommended (Pruim et al. 2015).

We then proceeded with the decomposition of the pre-

processed fMRI data to spatial ICs (for each subject) using

the RAICAR methodology (Yang et al. 2008). In this way,

we computed the most reproducible spatial ICs over

repeated runs as a solution to the well known problem of

the variability of the ICA decomposition (Himberg et al.

2004). This choice is related to the benchmark fMRI data

per se as there is only a single session per subject with

relatively small duration (6 min); therefore we wouldn’t

expect a robust ICA decomposition for all subjects (see

also the discussion in Cole et al. 2010). Another choice

would be to perform group-ICA analysis [which is subject

to other limitations (see in the ‘‘Discussion’’ section)], but

we decided to use single-subject ICA in order to have a

common ground with the methodologically similar work

presented in Anderson and Cohen (2013).

Ranking and averaging ICA by reproducibility
(RAICAR)

Independent component analysis (ICA)

ICA is a linear data-driven technique that reduces the high-

dimensional fMRI F(t, x, y, z) space in a set of M statis-

tically independent components. This reduction can be

represented as:

Fðt; x; y; zÞ ¼
XM

i¼1

AiðtÞCiðx; y; zÞ; ð1Þ

where F(t, x, y, z) is the measured BOLD signal, AiðtÞ is

the temporal amplitude (the matrix A containing all tem-

poral amplitudes is known as mixing matrix) and Ciðx; y; zÞ
is the spatial magnitude of the i-th ICA component. While

PCA requires that the principal components are uncorre-

lated and orthogonal, ICA asks for statistical independence

between the ICs. Generally, ICA algorithms are based

either on the minimization of mutual information or the

maximization of non-Gaussianity among components. As

discussed in the introduction, most of the standard imple-

mentations of ICA, such as the one in MELODIC (Multi-

variate Exploratory Linear Optimized Decomposition into

Independent Components) (Beckmann and Smith 2004),

which is part of FSL (fMRIB’s Software Library) share

similar gradient-based optimization algorithms using an

iterative scheme whose initial values are generated ran-

domly, thus making the whole process stochastic. As a

consequence, results over repeated runs may differ signif-

icantly (Himberg et al. 2004). A solution to this problem is

provided by the so-called Ranking and Averaging ICA by

Reproducibility (RAICAR) (Yang et al. 2008) that we

briefly describe in the following section.

Ranking and averaging ICA by reproducibility (RAICAR)

The RAICAR methodology developed by Yang et al.

(2008) was introduced to tackle the problem of the ICs

variability by performing K ICA realizations. Thus, RAI-

CAR leads to K ‘‘slightly’’ different mixing matrices

A1;A2. . .AK and K different sets of spatial maps

S1; S2. . .SK . Each realization finds a fixed number M of

spatial ICs. Then, a cross realization correlation matrix

(CRCM) of size M � K�M � K is constructed and the
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alignment (ICA produces unaligned components) of ICs

across realizations takes place on the basis of the absolute

maximum spatial correlation among components. Thus, the

cross realization correlation matrix reads:

CRCM ¼

R1;1 R1;2 . . . R1;K�1 R1;K

R2;1 . . . . . . R2;K

..

.
. . . . .

.
. . . ..

.

RK�1;1 . . . . . . RK�1;K

RK;1 RK;2 . . . RK;K�1 RK;K

2
66666664

3
77777775

Ri;j with i; j ¼ 1; 2. . .K are submatrices of size M�M and

their elements represent the absolute spatial correlation

coefficients among components and across realizations.

CRCM is a symmetric matrix and its diagonal consists of

identity matrices which are ignored for the next steps of the

algorithm.

The procedure starts with the identification of the global

maximum of the CRCM, thus finding the matched com-

ponent based on two realizations. At the next step, the

methodology seeks for the highest absolute spatial corre-

lation coefficients of the identified component in the

remaining realizations factoring out all others. The proce-

dure is repeated M times until M aligned components are

found.

The next step involves the computation of the repro-

ducibility index for each of the aligned components. This is

done by constructing the histogram of the absolute spatial

correlation coefficients of the upper triangle matrix of the

CRCM. This histogram tends to be bimodal, as in general,

we expect a low spatial correlation among most of the ICs

and a high spatial correlation only for a few of them. A

spatial correlation threshold is applied with the desired

value lying in the valley of the histogram between the two

modes (Yang et al. 2008). Finally, the reproducibility

index is computed for each one of the aligned components.

This is done by aggregating the supra-threshold absolute

spatial correlation coefficients of the CRCM for each of the

aligned components.

The last step of the algorithm is the ranking and aver-

aging of the aligned components in descending order based

on the reproducibility index. The selective averaging is

applied so that the components are averaged if and only if,

the given aligned component has at least one absolute

spatial correlation coefficient above the threshold across

realizations.

After applying RAICAR, the ICs are chosen via a cut-

off threshold based on the reproducibility index (of each

component) that indicates how consistent is the appearance

of an IC across realizations.

Here, we have set K ¼ 30 realizations (same also in

Yang et al. 2008); taking more realizations did not change

the outcomes of the analysis. The spatial correlation

threshold was chosen by localizing the minimum of the

histogram of the absolute spatial correlation coefficients of

the CRCM. This threshold was specified separately for

each subject. The reproducible ICs were determined by

calculating the reproducibility index. The cut-off threshold

was set as the half of the maximum reproducibility index

value possible
KðK�1Þ

2
� 0:5 (this choice is the same with the

one used in Yang et al. 2008). This cut-off threshold was

set equal for all subjects.

Subjects with less than 20 reproducible ICs were

excluded from further analysis as this number of compo-

nents resulted in disconnected graphs. Thus, we ended up

with 104 subjects out of which 57 were healthy controls

and 47 schizophrenia patients.

Construction of functional connectivity networks

For the construction of FCN, we used all combinations

between five manifold learning algorithms, namely MDS,

ISOMAP, diffusion maps, LLE , kPCA and two widely

used metrics, namely the cross correlation (Anderson and

Cohen 2013; Meszlényi et al. 2017; Hyde and Jesmanow-

icz 2012) and the Euclidean distance (Sipola et al. 2013;

Venkataraman et al. 2009; Goutte et al. 1999).

Construction of FCN based on cross correlation

For every pair of the associated time courses of the ICs, say

Ai and Aj, the cross correlation function (CCF) over l time

lags reads:

CCFðAi;Aj; lÞ ¼
E½ðAi;tþl � AiÞðAj;t � AjÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðAi;t � AiÞ2�E½ðAj;t � Aj

q
Þ2�

; ð2Þ

where l is the time lag, and Ai is the mean value of the

whole time series. Here, we considered a maximum of

three time lags (as in Anderson and Cohen (2013)).

For the construction of the connectivity/ correlation

matrices, we used a pseudo-distance measure dc defined as

(see also Anderson and Cohen (2013)):

dcðAi;AjÞ ¼ 1� max
l¼0;1;2;3

ðjCCFðAi;Aj; lÞjÞ: ð3Þ

The resulting (dis)similarity matrices are fully connected

and therefore are hardly comparable between subjects (see

the discussion in Anderson and Cohen 2013). Thus, here as

a standard practice, (and in all other algorithms described

below), we applied thresholding to the (dis)similarity

matrices in order to keep the strongest connections of the

derived functional connectivity matrices. In order to factor

out the influence of the variable network density on the

computation and comparison of graph-theoretic measures
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across groups (van den Heuvel et al. 2017), we have

implemented the approach of proportional thresholding

(PT) (van den Heuvel et al. 2017). In particular, we con-

sidered a range of levels of PT from 20 to 70% with a step

of 2%. Below the threshold of 20%, some graphs became

too fragmented (i.e the graph breaks down to subgraphs

with a small number of nodes), while thresholds above the

70% comprised of edges with low functional connections

(see in Algunaid et al. 2018). Despite the fact that there is

no consensus upon the ideal range of PT in the literature

[studies typically report a PT range of 10–50% of the

strongest edges (Algunaid et al. 2018; Xiang et al. 2020)],

we decided to include a wide range of thresholds to assess

the performance of each method/combination used. Using a

narrow range of thresholds could result to incomplete or

misleading results (Garrison et al. 2015).

Finally, if a graph was fragmented after thresholding,

the largest component (i.e. the subgraph with the largest

number of nodes) was used for further analysis.

Construction of FCN based on the Euclidean distance

The Euclidean distance is used in many studies to assess

(dis)similarities between fMRI time series (Sipola et al.

2013; Venkataraman et al. 2009; Goutte et al. 1999). For

time series associated with the independent spatial maps,

Ai and Aj, the Euclidean distance reads:

L2ðAi;AjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

t¼1

ðAi;t � Aj;tÞ2
vuut : ð4Þ

For the construction of FCN, PT was applied to the

Euclidean distance matrices for each individual over the

range of 20–70%.

Construction of FCN with manifold learning
algorithms

Below, we present how MDS, ISOMAP, diffusion maps,

kernel PCA and LLE can be exploited to construct (em-

bedded) FCN.

Construction of FCN with MDS

The classical multidimensional scaling (Kruskal 1964) is a

form of dimensionality reduction that can be used to find

similarities between pairs of objects in a low-dimensional

(embedded) space. Given a set of M objects/observables

x1; x2; . . .; xM 2 RN , MDS produces a low-dimensional

data representation y1; y2; . . .; yM 2 Rp; p � N minimizing

the objective function:

X

i;j; i 6¼j

�
kxi � xjk � dðxi; xjÞ

�2
; ð5Þ

where dðxi; xjÞ is the (dis)similarity obtained (eg. by any

(dis)similarity measure of choice, however, when using the

euclidean distance, the classical MDS produces a linear

mapping equivalent to PCA) between all pairs of points

x1; x2; . . .; xM 2 RN . In our case, the observables xi are the

amplitudes of the spatial ICs Ai; i¼1;...M 2 RN . Here, N ¼
150 (number of time points).

The coordinates of the embedded manifold

y1; y2; . . .; yM are given by:

½y1; . . .; yM� ¼ Kp�p � VT
p�M: ð6Þ

Kp�p contains the square roots of the p largest eigenvalues,

and VT
p�M are the corresponding eigenvectors of the matrix:

B ¼ � 1

2
HD2H: ð7Þ

HM�M is the centering matrix defined as:

H ¼ I� 1

M
1 � 1T ; 1 ¼

1

1

..

.

1

2
66664

3
77775

M�1

: ð8Þ

The dimensionality reduction of the original data X ¼
x1; x2; . . .; xM 2 RN yields the embedding of

Y ¼ y1; y2; . . .; yM 2 Rp, p � N. Here, for the construction

of the embedded FCN, we produced distance matrices DY

of size M �M. For the implementation of the MDS algo-

rithm, we used the ‘‘cmdscale’’ function contained in the

package ‘‘Stats’’ in the R free Software Environment

(Team 2014).

Construction of FCN using ISOMAP

ISOMAP is a non-linear manifold learning algorithm that

given a set of M objects/observables x1; x2; . . .; xM 2 RN

produces a low-dimensional data representation

y1; y2; . . .; yM 2 Rp, p � N minimizing the objective

function:

X

i;j; i 6¼j

�
dGðxi; xjÞ � dðxi; xjÞ

�2
; ð9Þ

where dGðxi; xjÞ is the shortest path (geodesic distance) and

dðxi; xjÞ is the (dis)similarity obtained (by any (dis)simi-

larity measure of choice) between all pairs of points

x1; x2; . . .; xM 2 RN .

In our case, the observables xi are the amplitudes of the

spatial ICs Ai; i¼1;...M 2 RN .
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The above minimization problem is solved as follows

(Tenenbaum et al. 2000):

• Construct a graph G ¼ ðV ;EÞ, where the vertices V are

the ICs Ai; its links E are created by using either the k-

nearest neighbors algorithm or a fixed distance between

nodes, known as the � distance. For example, a link

between two ICs is created if

di;j � dðAi;AjÞ\� ; 8 i 6¼ j. Here, we used the k near-

est neighbours algorithm with k ¼ 3; 4; 5; 6 (Tenen-

baum et al. 2000). A general rule of thumb is to select

k as the square root of the number of samples (here the

number of ICs per subject). In our study the number of

samples varied over subjects in the range of 20–40.

Additionally, Anderson and Cohen (2013) use a similar

approach by selecting k as 10% of the number of nodes.

For k ¼ 2, we had some graphs that were disconnected

and so we chose not to include this value. Set the

weight wi;j of the link (if any) between Ai;Aj as

wi;j ¼ 1
dðAi;AjÞ. If there is not a link set: wi;j ¼ 0.

• Approximate the embedded manifold by estimating the

shortest path (geodesic distance) dGðAi;AjÞ for each

pair of nodes based on the distances di;j; this step can be

implemented for example using the Dijkstra algorithm

(Dijkstra 1959). This procedure results in a matrix, DG

whose elements are the shortest paths:

DGij
�dGðAi;AjÞ

¼ min
�
di;j; di;k þ dk;j

�
; k ¼ 1; 2; . . .;M k 6¼ i; j:

ð10Þ

• Estimate the coordinates of the low-dimensional (em-

bedded) manifold y1; y2; . . .; yM exploiting the MDS

algorithm (Kruskal 1964) on the geodesic distance

matrix DG.

Here, for the implementation of the ISOMAP algorithm,

we used the package ‘‘vegan’’ (Oksanen et al. 2007) in the

R free software environment (Team 2014).

Construction of FCN using diffusion maps

Diffusion maps (Coifman and Lafon 2006) is a non-linear

manifold learning algorithm that given a set of M objects/

observables X ¼ x1; x2; . . .; xM 2 RN produces a low-di-

mensional representation Y ¼ y1; y2; . . .; yM 2 Rp, p � N,

addressing the diffusion distance among data points as the

preserved metric (Nadler et al. 2006). The embedding of

the data in the low-dimensional space is obtained by the

projections on the eigenvectors of a normalized Laplacian

graph (Belkin and Niyogi 2003). The diffusion maps

algorithm can be described in a nutshell in the following

steps:

• Construction of the affinity matrix WM�M , here M is the

number of ICs for each subject. The elements Wij

represent the weighted edges connecting nodes i and j

using the so-called heat kernel:

Wi;j ¼ exp � dðxi; xjÞ2

r

 !
; ð11Þ

where xi is a N-dimensional point (here, N=150),

dðxi; xjÞ are the (dis)similarities obtained (by any dis-

similarity measure of choice) between all pairs of points

x1; x2; . . .; xM 2 RN and r is an appropriately chosen

parameter which can be physically described as a scale

parameter of the heat kernel (Coifman and Lafon 2006).

The heat kernel W satisfies two important properties,

the one of symmetry and the other of the positive semi-

definite matrix. The latter property is crucial and allows

the interpretation of weights as scaled probabilities of

‘‘jumping’’ from one node to another. The parameter r
of the neighborhood size is data-dependent and here, it

was determined by finding the linear region in the sum

of all weights in W, say Sw, using different values of r
(Singer et al. 2009; Sipola et al. 2013). Sw is calculated

through the formula:

Sw ¼
XM

i

XM

j

Wij; ð12Þ

In order to use a single value of r for all participants,

we computed a super-distribution of the sum of weights

across subjects (taking the median value of the distri-

butions) using different values of r. Thus, we consid-

ered values of r lying in the linear region of the super-

distribution. Because the sum of weights is a sigmoidal

function of r, we found the value of r where the

maximum slope is attained. We then considered as

‘‘linear region’’, the neighborhood of r with small

bidirectional changes around that point (accounting to 5

% of the maximum slope).

• Formulation of the diagonal M �M normalization

matrix K along with the diffusion matrix P:

Kii ¼
XM

j¼1

Wij; ð13Þ

P ¼ K�1W: ð14Þ

Each element of the symmetric and normalized diffu-

sion matrix P reflects the connectivity between two data

points xi and xj. As an analogy, this connectivity can be

seen as the probability of ‘‘jumping’’ from one point to

another in a random walk process. Consequently, rais-

ing P to a power of t can be thought of as a diffusion

process. As the number of t increases, paths with low
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probability tend to zero, while the connectivity between

paths with high probability remains high enough gov-

erning the diffusion process (Coifman and Lafon 2006).

Thus, the algorithm of diffusion maps preserves the

diffusion distance among points in a low-dimensional

Euclidean space. The diffusion distance is closely

related to the diffusion matrix P; for two distinct points

xi, xj and for specific time instance t is defined as (De la

Porte et al. 2008):

Dtðxi; xjÞ ¼
X

m

jPt
im � Pt

mjj
2: ð15Þ

Unlike the geodesic distance, the diffusion distance is

robust to noise perturbations, as it sums over all pos-

sible paths (of t steps) between points (Coifman and

Lafon 2006).

• Construction of the conjugate matrix

P ¼ K1=2PK�1=2; ð16Þ

substituting Eq.(14) to Eq.(16) we get

P ¼ K�1=2WK�1=2: ð17Þ

This is the so-called graph Laplacian matrix (Belkin

and Niyogi 2003). The matrix P is adjoint to the

symmetric matrix P. Thus, P and P share the same

eigenvalues (Nadler et al. 2008).

• Singular Value Decomposition (SVD) of P yields

P ¼ UKU	; ð18Þ

where K is a diagonal matrix containing the M eigen-

values of P and U the eigenvectors of P. The eigen-

vectors V of P can be found by (Nadler et al. 2008):

V ¼ K�1=2U: ð19Þ

• By taking out the trivial eigenvalue k ¼ 1 of the matrix

K and the corresponding eigenvector contained in V,

the coordinates of the low dimensional embedded

manifold y1; y2; . . .; yM are given by:

½y1; . . .; yM � ¼ Kp�p � VT
p�M ; ð20Þ

where Kp�p contains the p largest eigenvalues, and

VT
p�M are the corresponding eigenvectors of the diffu-

sion matrix P.

For the implementation of the above algorithm, we used

the package ‘‘diffusionMap’’ (Richards 2014) in the R free

software environment (Team 2014).

Construction of FCN using kernel principal component
analysis

Kernel PCA (Schölkopf et al. 1997) is an extension of the

linear PCA (Jollife 2002) to produce a non-linear mapping

(Muller et al. 2001) of the data. Given a set of M objects/

observables X ¼ x1; x2; . . .; xM 2 RN , kPCA produces a

low-dimensional representation Y ¼ y1; y2; . . .; yM 2 Rp,

p � N. The standard procedure follows three simple steps:

• Introduce a non-linear mapping X ! /ðxÞ.
• Calculate the covariance matrix C ¼ E

n
/ðxÞ/ðxÞT

o
.

• Solve the eigenvalue problem Cu ¼ ku.
• project C on the eigenvectors that correspond to the

largest eigenvalues (that account for most of the

variance).

Using the so called ‘‘kernel’’ trick, we can rule out the

actual mapping and dot product operations (Schölkopf

et al. 1997). Instead, we simply have to estimate a kernel

function. Here, we use the Gaussian kernel (following

notation in Tsatsishvili et al. 2018):

Ki;j ¼ exp � dðxi; xjÞ2

2c2

 !
: ð21Þ

where dðxi; xjÞ are the (dis)similarities obtained (by any

dissimilarity measure of choice) between all pairs of points

x1; x2; . . .; xM 2 RN and c is a free parameter of the

Gaussian kernel. For each subject, we considered c to be

the median of the minimum values of distances among data

points (as proposed also in Tsatsishvili et al. (2018)). As K

is not guaranteed to be centered, it is required to ‘‘cen-

tralize’’ K using the centering matrix H :

K0 ¼ HKH: ð22Þ

Next we need to solve the eigenvalue problem:

K0 � V ¼ K � V ð23Þ

where V contains the eigenvectors and the diagonal matrix

K contains the eigenvalues of K0.
The coordinates of the embedded manifold

y1; y2; . . .; yM are finally obtained by projecting the cen-

tered kernel matrix K0 onto its eigenvectors that correspond
to the p largest eigenvalues:

½y1; . . .; yM� ¼ ðK0
M�M � VM�pÞT : ð24Þ

For the implementation of the kernel PCA, we used the

package ’’kernlab’’ (Karatzoglou et al. 2004) in the R free

software environment (Team 2014).

Construction of FCN using locally linear embedding

Locally Linear Embedding (LLE) (Roweis and Saul 2000)

is a non-linear manifold learning technique that given a set

of M objects/observables X ¼ x1; x2; . . .; xM 2 RN pro-

duces a low-dimensional representation

Y ¼ y1; y2; . . .; yM 2 Rp, p � N, that preserves the local
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topology (i.e the distance between neighbouring data

points). The LLE assumes that even if the high dimensional

data points lie on a highly non-linear manifold, the mani-

fold can be still considered as locally linear. Provided that

the manifold is well sampled, then we would expect that

every data point has neighbours that lie on or close to a

linear patch of the global manifold. According to this

assumption, LLE approximates every data point in a low-

dimensional space by calculating a weighted linear com-

bination of its neighbours. Thus, LLE yields a low

dimensional representation of data by learning the global

structure, from local relationships (Roweis and Saul 2000).

The main procedure can be described in three steps:

• Find the nearest neighbours of data points by using

either the k-nearest neighbors algorithm or a fixed

distance between data points, known as the � distance.

Here, we used the k-nearest neighbors algorithm.

• Compute the weights Wi that best reconstruct linearly

each data point xi from its neighbours with respect to

the following optimization problem:

Wi ¼ argmin xi �
X

k

wikxk

�����

�����

2

: ð25Þ

Constraints to the above minimization scheme include:

wik ¼ 0, if xk is not a neighbour of xi (each data point is

reconstructed only from its neighbours),
P

k wik ¼ 1

(all weights of neighbouring points k sum to 1).

• Embedding coordinates yi that best preserve the local

structure of neighbourhoods of xi in the low dimen-

sional space are given by:

yi ¼ argmin yi �
X

k

wikyk

�����

�����

2

; ð26Þ

with respect to yi 2 Rp, p � N. For the problem to

be well posed, the following constraints are set:

1

M

X

i

yiy
T
i ¼ I;

X

i

yi ¼ 0 ð27Þ

To find the embedding coordinates, we construct

W0 ¼ ðI�WÞTðI�WÞ and solve the eigenvalue

problem. Here, I is the identity matrix and M is the

number of the eigenvalues of W0. The first constraint
1

M

X

i

yiy
T
i ¼ I forces the embedding vectors to have

unit covariances to avoid degenerate solutions (Roweis

and Saul 2000), while the second constraint requires

the coordinates to be centered at the origin. The

eigenvectors of W0 are all solutions of Y, but those

correspond to the p smallest eigenvalues are the ones

that minimize (26). The smallest eigenvalue of W0 will

always be zero and it is discarded. The next M � 1

eigenvalues can be used as the new dimensions of the

transformed data. Estimation of the final dimensionality

of the transformation can be made by selecting eigen-

vectors that correspond to the number of the smallest

eigenvalues that form a cluster (Kayo 2006).

For the parameter k, we considered values of k ¼ 2; . . .10.

The number of nodes (for each subject) in this study varied

in the range of 20–40. Thus, the largest k accounts for the

25–50% of the nodes of a subject. For larger values of k the

LLE algorithm uses too many neighbours and each data

point is no longer ‘‘locally’’ retrieved from its nearest

neighbours.

Here, we employed a variant of the above LLE algo-

rithm that takes as inputs only the pairwise distances (DX)

among the data points on the initial space (this extension of

the LLE is thoroughly described in Saul and Roweis 2003).

This was necessary as we wanted to test different metrics.

For the implementation of this variant of the LLE algo-

rithm, we modified the code offered by the ‘‘lle’’ package

(Diedrich et al. 2012) in the R free software environment

(Team 2014).

Choice of the embedding dimension

The embedding dimension was determined via the eigen-

spectrum of the final decomposition for every dimension-

ality reduction/manifold learning algorithm, as identified

by the gap between the first few larger eigenvalues (smaller

eigenvalues for the LLE) and the rest of the eigenspectrum.

These first few eigenmodes capture most of the distance

differences between data points and are able to represent

and uncover intrinsic properties of the data structure

(Nadler et al. 2008; Strange and Zwiggelaar 2014; Saul

et al. 2006). In order to determine the embedding dimen-

sion for the methods described above, we considered the

following steps: we sorted the eigenvalues in decreasing

order k1 
 k2 
 k3 � � � 
 kM (k1 is discarded for diffusion

maps and kM for LLE). Then, for each subject, we calcu-

lated the pairwise differences k1 � k2, k2 � k3; . . .
; kM�1 � kM . A large numerical gap between two elements

of this sequence of pairwise differences indicates the

dimension beyond which the relative contributions are

redundant (or small contributions are made for the recon-

struction of the embedded FCN).

Graph-theoretic measures

We analyzed the topological properties of the binary FCN

graphs on the basis of three fundamental graph measures

for neuroscience, namely, the average path length, the

global clustering coefficient, and the median degree (Stam
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and Reijneveld 2007; Khajehpour et al. 2019; Anderson

et al. 2010; Parhizi et al. 2018). In particular, given a graph

G ¼ ðV;EÞ with gij representing the link (0: unconnected

or 1: connected) from node i to node j and ki ¼
P

j;j 6¼i gij

the degree of node i, the graph measures are computed as

follows:

(a) The average path length is defined by:

L ¼ 1
NV ðNV�1Þ

P
i 6¼j DGij

, i.e. is the average number

of steps along the shortest paths DGij
for all possible

pairs of the network nodes. This is a measure of the

efficiency of information or mass transport on a

network between all possible pairs of nodes.

(b) The global clustering coefficient is defined by:

Cg ¼
P

tcP
t
, where t is a triplet and tc is a closed

triplet. A triplet of a graph consists of three nodes

that are connected by either open (i.e open triplet) or

closed (i.e closed triplet) ties. In general, this

measure indicates how random or structured a graph

is (in our case, in terms of functional segregation).

(c) The median degree Mk is the median value of the

degree distribution of G. This measure reflects how

well connected is the ‘‘median’’ network node in

terms of the number of links that coincide with it.

An extensive review of the definitions and the meaning of

the above key graph-theoretic measures with respect to

brain functional networks can be found in Rubinov and

Sporns (2010), Stam and Reijneveld (2007), Bullmore and

Sporns (2009).

The computations for the graph analysis were performed

utilizing the ‘‘igraph’’ (Csardi and Nepusz 2006) package

in the R free software environment (Team 2014).

Classification/ Machine Learning algorithms

Classification was assessed using machine learning algo-

rithms, namely Linear Support Vector Machines (LSVM),

Radial Support Vector Machines (RSVM), Artificial Neu-

ral Networks (ANN) and k-Nearest Neighbours (k-NN)

classification (for a brief description of the above algo-

rithms and their parameter grids see the ‘‘Appendix’’). The

features that were considered for classification were the

three key graph measures (as stated in ‘‘Graph-theoretic

measures’’ section) which are the most frequently used in

neuroscience (Stam and Reijneveld 2007; Khajehpour

et al. 2019; Anderson et al. 2010; Parhizi et al. 2018;

Bullmore and Sporns 2009). Our intention was not to

implement a feature selection algorithm but to assess the

efficiency of the methods based only on these three fun-

damental measures. All three measures were given as input

to the classifiers. The classification algorithms were

trained, validated and tested using a tenfold cross valida-

tion scheme which was repeated 100 times. Thus, we

separated the data in ten distinct sub-samples; nine of them

were used as training sets and one of them was used for

validation purposes. This process was repeated 10 times

leaving out each time a different sub-sample which served

as a validation set. The whole procedure was repeated 100

times. The overall classification rate was determined via

the computation of the average classification rate over all

the repetitions of the tenfold cross validation for each

model.

The average confusion matrix (over all repetitions of the

tenfold cross validation) was also computed for each

classification model. The confusion matrix is a 2� 2 (in

the case of binary classification) square matrix containing

all true positives TP, false positives FP, true negatives TN

and false negatives FN. Here, we considered as positives P

the schizophrenia cases and as negatives N the healthy

control cases. Sensitivity (also called the True Positive

Rate) and specificity (also called the True Negative Rate)

are basic statistical measures for the assessment of binary

classifications. The sensitivity TPR is given by

TPR ¼ TP
TPþFN, while the specificity TNR is given by

TNR ¼ TN
TNþFP. Here, sensitivity characterizes the ability of

the classifier to correctly identify a schizophrenic subject,

while specificity is the ability of the classifier to correctly

identify a healthy subject.

Here, we used the algorithms contained in the package

‘‘caret’’ (Kuhn et al. 2008) in the R free software envi-

ronment (Team 2014).

Results

Signal extraction via RAICAR methodology

Out of 72 patients only 47 of them exhibited 20 or more

reproducible components. In comparison, 57 out of 74

healthy controls had 20 or more reproducible components.

Figure 1 shows the mean of the reproducible components

found for the group of healthy controls (red,‘‘HC’’) and

schizophrenic subjects (blue,‘‘SC’’) along with the standard

deviation (error bars). No statistically significant differ-

ences were found in the number of reproducible compo-

nents between groups (Welch’s t test: p = 0.43).

Classification performance using the cross
correlation metric

In Table 1, we present the best classification accuracy,

along with the corresponding sensitivity and specificity rate

obtained for each manifold learning algorithm
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(see ‘‘Construction of FCN with manifold learning algo-

rithms’’ section), PT point and classifier (see ‘‘Classifica-

tion/ Machine Learning algorithms’’ section) with the cross

correlation metric (see ‘‘Construction of FCN based on

cross correlation’’ section). The optimal values of the

parameters (i.e the embedding dimension p and method’s

tuning parameter, see ‘‘Construction of FCN with manifold

learning algorithms’’ section) for each method are also

shown. At the end of Table 1, we also provide the results

obtained by the ‘‘conventional’’ (thresholded) cross corre-

lation matrix (see ‘‘Construction of FCN based on cross

correlation’’ section). The best classification rate obtained

for each method is marked with bold. Finally, the classi-

fication accuracy is reported along with the standard

deviation (SD) over 100 repetitions of a tenfold cross

validation scheme (see ‘‘Classification/ Machine Learning

algorithms’’ section).

Figure 2 provides a visualization of the cross correlation

matrix of a patient and a healthy control across different

values of PT (at 20%, 35%, 50% and 65% of the strongest

edges). The metric used for the construction of the con-

nectivity matrices is the pseudo-distance measure dc
(see ‘‘Construction of FCN based on cross correlation’’

section) based on cross correlation. The lower the value of

dc between 2 ICs, the more functionally connected they

are.

Figure 3 shows the super-distribution of the sum of

weights of all subjects with respect to different values of r
used for the construction of the FCN with diffusion maps;

the red dotted vertical line shows the optimal r (here, r =

0.325) while the black vertical lines bound the linear region

(r 2 ð0:28; 0:35Þ). The results were robust to different

choices of the time step of the diffusion maps algorithm,

namely t ¼ 0; 1; 2.

Figure 4 depicts the classification rates for all manifold

learning algorithms and the cross correlation matrix for all

classifiers and PTs. The overall classification pattern over

all PT points based on the optimal embedding dimension

p and parameter for each method (marked on the top of

each panel) is also shown. PT points with the best classi-

fication rates for each method are marked with an asterisk.

Figure 5 shows the classification performance of all

parametric manifold learning techniques with respect to

different values of the corresponding parameters. This

figure shows how sensitive each method is (ISOMAP,

diffusion maps, kPCA and LLE) to the changes of the

parameter values. Details on the parameter grid selection

are given in ‘‘Construction of FCN with manifold learning

algorithms’’ section.

As shown, diffusion maps resulted in the best classifi-

cation accuracy (79.3%, using RSVM and 52% PT), thus

appearing more robust over a wide range of PTs (Fig. 4).

With respect to the maximum classification accuracy

obtained by diffusion maps, results were robust over a wide

range of values of r 2 ð0:28; 0:35Þ as it can be seen in

Fig. 5B. All classifiers had maximum classification rates

above 70%.

ISOMAP performed relatively better for lower PTs

(Fig. 4), with the best classification rate being at 74.4%

(using RSVM and 24% PT). Its performance was however

sensitive to the choice of the number k of nearest neigh-

bors; with k ¼ 5, we got a 74.4% classification accuracy

while for k ¼ 4, we got a classification rate below 70% for

all classifiers (Fig. 5A). In terms of the maximum classi-

fication rate, kPCA and LLE performed similarly to the

cross correlation matrix (see Table 1). LLE was sensitive

to the choice of k nearest neighbours; with k ¼ 7, LLE

peaked at 70.7 % classification accuracy (using ANN and

52% PT ) while for most of the other values of k, the

accuracy was below or nearly 65% (Fig. 5D). For kPCA

and MDS the linear classifier (LSVM) consistently per-

formed poorly resulting in most cases to a classification

accuracy below 60% (Figs. 4, 5C). MDS was outperformed

by all other methods (Table 1); only the RSVM’s perfor-

mance was relatively robust against thresholding (Fig. 4).

At most of the PT points, the performance of all the other

classifiers was poor (the accuracy rates were below 60 %).

On the other hand, diffusion maps and kPCA appeared

more robust to the choice of parameter values (Fig. 5B, C).

For most of the manifold learning methods, the classifier

that worked better was the RSVM classifier both in terms

of the maximum classification rate but also with respect to

Fig. 1 Reproducible components for the 57 healthy controls

(red,‘‘HC’’) and 47 schizophrenic subjects (blue,‘‘SC’’) that resulted

to 20 or more reproducible components. Each bar depicts the mean of

the reproducible ICs extracted while the error bar represents the

standard deviation for each group
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different PT points (Table 1, Fig. 4). RSVM gave the

highest maximum classification rate for the four out of the

five manifold learning methods. Only for LLE, the ANN

produced the highest accuracy rate at 70.7%.

Figure 6 shows the characteristic eigenspectrum of

MDS, ISOMAP, diffusion maps, kPCA and LLE. As it is

shown, in most of the cases there are three gaps: the first

gap appears between the first eigenvalue and the rest of the

spectrum, the second gap between the first two eigenvalues

and the rest of the spectrum, and a third gap appears

between the first four-five eigenvalues and the rest of the

spectrum. Especially for the case of the LLE, we are

interested in the smallest eigenvalues (see ‘‘Construction of

FCN using locally linear embedding’’ section) of the final

decomposition. For visualization purposes, we show the

eigenspectrum in a similar manner using the function

lði; jÞ ¼ 1
kM�i�kM�j

, which is the inverse of the pairwise

differences between the 15 smaller eigenvalues. In all

cases, as dictated by the corresponding gaps, we considered

a maximum of five eigendimensions for the construction of

the embedded FCN (see ‘‘Choice of the embedding

dimension’’ section).

Classification performance using the Euclidean
distance

The same analysis was performed for the Euclidean dis-

tance. The best classification rates using the Euclidean

distance for all manifold learning methods and classifiers

are presented in Table 2. At the end of Table 2, we present

the results for the (thresholded) Euclidean matrix.

Figure 7 provides a visualization of the connectivity

matrices for the same patient and the same healthy control

of Fig. 2 across different values of PT (at 20%, 35%, 50%

and 65% of the strongest edges). The metric used is the

Euclidean distance L2 (see ‘‘Construction of FCN based on

the Euclidean distance’’ section).

Figure 8 depicts the accuracy of all methods across all

thresholds and classifiers. Figure 9 shows the maximum

classification accuracy of all parametric methods for dif-

ferent values of the parameters.

Here, the best classification accuracy was obtained with

ISOMAP (72.9% using RSVM and 68 % PT ); ISOMAP

slightly outperformed the Euclidean matrix (which yielded

72% using the k-nn classifier and 64% PT). The choice of

k nearest neighbours affected the performance of ISOMAP

as for any other k the accuracy was below 70% (Fig. 9A).

Table 1 Best classification rates

over all manifold and machine

learning methods using the

cross correlation pseudo-

distance measure dc; optimal

parameters are also shown for

each method along with the

corresponding PT, classifier,

accuracy (Acc), sensitivity

(Sens) and specificity (Spec)

rate. Classifiers are noted as

RSVM (Radial SVM), LSVM

(Linear SVM), k-NN (k-NN

classifier) and ANN (Artificial

Neural Networks)

Method Parameters PT Classifier Acc ± SD (%) Sens (%) Spec (%)

MDS p = 3 0.3 RSVM 68.4 ± 1.3 51.1 77.8

0.36 LSVM 58.6 ± 1.7 28.8 78.9

0.3 k-NN 63.2 ± 2.1 51 68.8

0.3 ANN 63.6 ± 2.6 50.7 69.8

ISOMAP p = 2, k = 5 0.24 RSVM 74.4 ± 1.9 69.4 73.1

0.28 LSVM 64.4 ± 1.7 55.8 67.1

0.24 k-NN 71 ± 2.1 62.9 72.7

0.24 ANN 68.8 ± 3 63.1 68.6

Diffusion maps p = 4, r = 0.325 0.52 RSVM 79.3 ± 1.2 74.1 77.9

0.56 LSVM 72.2 ± 1.7 66.6 71.8

0.52 k-NN 74.7 ± 1.4 72.3 71.5

0.52 ANN 78.6 ± 2 74.1 76.8

kPCA p = 4, c = 0.575 0.42 RSVM 69.5 ± 1.6 45.4 84.3

0.3 LSVM 59.5 ± 2.4 19.1 88.6

0.42 k-NN 67.1 ± 1.9 51.7 75.1

0.42 ANN 69.4 ± 2.4 60.3 72

LLE p = 4, k = 7 0.46 RSVM 68.3 ± 1.9 49 79.4

0.46 LSVM 69.2 ± 1.4 48.6 81.3

0.26 k-NN 66.1 ± 2.2 52.8 71.5

0.46 ANN 70.7 ± 1.3 56 77.9

Cross corr. matrix – 0.52 RSVM 69.5 ± 1.5 77.1 58.3

0.52 LSVM 71 ± 1.5 75.8 61.9

0.34 k-NN 67.2 ± 2.2 57.8 70.1

0.52 ANN 68.8 ± 1.6 68.3 64.3

596 Cognitive Neurodynamics (2021) 15:585–608

123



The LSVM performed poorly for most manifold learning

methods with the exception of the LLE (Fig. 8); LLE was

more robust with respect to different thresholds (Fig. 8)

with the maximum classification rates reaching 70% for the

three out of the four classifiers used (only the k-NN clas-

sifier peaked at 65.3%); Its best performance was 70.3%

using RSVM and 48% PT. LLE was again sensitive to the

choice of k nearest neighbours as for larger numbers of k,

the accuracy dropped for all classifiers (Fig. 9D). The

kPCA was not robust against thresholding (Fig. 8) while

different parameter values did not change much its per-

formance (Fig. 9C). In terms of maximum classification

accuracy kPCA performed worse than any other method

used (Table 2), with a peak at 67.2% using ANN and 62%

PT. Diffusion maps yielded a maximum classification of

68.8 % using RSVM and 66% PT; the performance was

generally similar to the one of the Euclidean matrix, yet

with a lower maximum classification rate; different values

of the parameter r did not change a lot the classification

rates for most classifiers (Fig. 9B). Finally, MDS yielded a

72.3% using RSVM and 54% PT. In terms of the maximum

classification accuracy, MDS performed similarly to the

Euclidean matrix and ISOMAP (Table 2). Finally, RSVM

produced again the highest classification accuracy for most

of the manifold learning algorithms.

Finally, Fig. 10 depicts characteristic eigenspectrums

for all manifold learning algorithms.

Comparison between metrics

Figure 11 illustrates the accuracy rates (as boxplots) for

every method used based on the optimal parameters. The

first panel (A) shows the accuracy rates when using the

cross correlation metric, (B) shows the accuracy rates when

using the Euclidean distance. At the extreme left of each

panel the accuracy rates of the cross correlation matrix

(Fig. 11A, Corr.Matrix) and the Euclidean matrix

Fig. 2 Visualization of the cross correlation matrix based on the pseudo-distance measure dc (see ‘‘Construction of FCN based on cross

correlation’’ section) of a patient and a healthy control across different values of PT

Fig. 3 Super-distribution of all subjects of the sum of the weights (see

Eq. 12). The red dashed vertical line shows the optimal r that was

found to be r = 0.325. The other two vertical black lines bound the

linear zone in which we investigated values of r
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(Fig. 11B, Eucl.Matrix) are also shown. For each method,

there are four boxplots of different colours, one for each

classifier (i.e Linear SVM, Radial SVM, k-NN classifier

and artificial Neural Nets). The black points denote an

outlier of the distribution (here, the classification rates

across all PTs) while the black horizontal lines mark the

median value of the distribution.

Comparison between the cross correlation
and the Euclidean matrix

The cross correlation matrix yielded in general better

results compared to the Euclidean matrix judging by the

overall performance [i.e the median classification rates

depicted by the black horizontal lines (see Fig. 11A, B)].

Fig. 4 Overall classification performance for all thresholds (from 20

to 70% of the strongest edges with 2% as step) and classifiers using

the optimal parameters. The metric used is the cross correlation based

pseudo-distance measure dc (see ‘‘Construction of FCN based on

cross correlation’’ section). The PT point with the best classification

rate is marked with an asterisk ‘‘*’’

Fig. 5 Classification performance of the parametric manifold learning

techniques with respect to different parameter values. A ISOMAP (k),
B diffusion maps (r), C kPCA (c), D LLE (k). The metric used is the

pseudo-distance measure dc (see ‘‘Construction of FCN based on

cross correlation’’ section) based on cross correlation
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Performance comparison of manifold learning methods

The general performance of MDS was relatively poor for

both metrics. When using the cross correlation metric, the

MDS was outperformed by any other method [the maxi-

mum classification accuracy for every classifier was lower

compared to other methods (see Table 1)]. On the other

hand, with the Euclidean metric, only the RSVM resulted

in high classification rates, thus performing similarly and/

or slightly better than the Euclidean matrix (see Table 2).

ISOMAP performed similarly to the correlation matrix

[when using the cross correlation metric (see Fig. 11A)]

and the Euclidean matrix [when using the Euclidean dis-

tance (Fig. 11B)] but in both cases yielded better single

maximum classification rates (74.4 % when using the

correlation metric and 72.9% when using the Euclidean).

An exception was the LSVM’s poor performance, espe-

cially when the Euclidean metric was used.

The diffusion maps with the cross correlation metric was

superior to all other methods with respect to the overall

performance, robustness against thresholding (Fig. 4) and

maximum classification rate (see Table 1). The diffusion

maps scored the best classification rate (79.3% using

RSVM). However, this was not the case when using the

Euclidean metric. The overall performance of diffusion

maps with the Euclidean metric was similar to the one of

the Euclidean matrix but with lower maximum classifica-

tion rates for two (RSVM and k-NN) out of the four

classifiers used.

The performance of kPCA was poor for both metrics.

The linear classifier’s accuracy rates (in both cases) was in

general under 60%. Only the RSVM classifier performed

similarly and sometimes better than the cross correlation

matrix when using the cross correlation metric. Using the

Euclidean as a metric for kPCA all median classification

rates for all classifiers was below 60% (Fig. 11B).

The LLE with the cross correlation metric performed

relatively poor for three (knn classifier, LSVM and ANN)

out of the four classifiers used. Only the RSVM classifier

performed similarly to the cross correlation matrix. On the

other hand, when using the Euclidean distance, the LLE

performed better (Fig. 11B). Despite the fact that it did not

produce the best maximum classification rate, LLE was

more robust against different values of PT and reached 70

% classification accuracy for three out of the four classi-

fiers used.

Fig. 6 Mean differences of the 15 largest (smallest for the LLE)

eigenvalues (see ‘‘Choice of the embedding dimension’’ section) for

all manifold learning algorithms using the cross correlation-based

pseudo distance measure dc (see ‘‘Construction of FCN based on

cross correlation’’ section). A MDS (see in ‘‘Construction of FCN

with MDS’’ section), B ISOMAP (see in ‘‘Construction of FCN using

ISOMAP’’ section), C diffusion maps (see in ‘‘Construction of FCN

using diffusion maps’’ section), D kPCA (see in ‘‘Construction of

FCN using kernel principal component analysis’’ section), E LLE (see

in ‘‘Construction of FCN using locally linear embedding’’ section)

based on the optimal parameters. The red dashed vertical line marks

the maximum number of dimensions considered in this study [i.e. the

5 dimensions (see ‘‘Choice of the embedding dimension’’ section)].

For the case of LLE, the function lði; jÞ ¼ 1
kM�i�kM�j

was used for

visualization purposes as we are interested in the smallest eigenvalues

(trivial eigenvalue kM ¼ 0 is discarded). (Color figure online)
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Discussion

In this study, we constructed embedded FCN from rsfMRI

data using linear and non-linear manifold learning tech-

niques. Based on fundamental graph theoretic measures of

the constructed FCN, we then used machine learning

algorithms for classification purposes. We also compared

the performance of two widely used metrics in neu-

roimaging, namely the cross correlation and the Euclidean

distance. For our demonstrations, we used a publicly

available dataset of resting-state fMRI recordings taken

from healthy and patients with schizophrenia. This is the

first study that performs such a systematic comparative

analysis between various manifold learning algorithms,

machine learning algorithms and metrics. To the best of

our knowledge, it is also the first study that shows how the

algorithm of diffusion maps can be exploited to construct

FCN from rsfMRI data.

At this point we should note that our intention was not to

try to obtain the best possible classification performance by

‘‘optimising’’ the pre-processing of the raw fMRI data and/

or by trying to find the best set of graph-theoretic measures

[other studies have already shed light towards this direction

(Čukić et al. 2020; Xiang et al. 2020; Vergara et al.

2017)]. For example Čukić et al. (2020) showed that suc-

cessful discrimination of depression from EEG could be

attributed to proper feature extraction and not to a partic-

ular classification method. Thus, here we aimed at com-

paring mainly the manifold learning methods by factoring

out the influence of a specific feature selection method;

classification was based only on three key global graph-

theoretic measures that are widely used in neuroscience

(Stam and Reijneveld 2007; Bullmore and Sporns 2009),

namely, the average path length, the global clustering

coefficient and the median degree of the embedded binary

networks. Indeed as also discussed in Bullmore and Sporns

(2009) the general brain network can be described at a

global scale by the shortest path length which is associated

with the transfer of information, the clustering coefficient

associated with robustness to random error, and the degree

associated with the existence of hubs, and a modular

community structure. Even though, we could consider a

few more global graph measures, we decided not to do so,

as other measures like the global efficiency (in essence, the

inverse of average path length) or the diameter of a graph

(the largest path length of a graph from one vertex to

another) are highly correlated with one (or more) of the

three basic measures stated above (e.g. the global

Table 2 Best classification rates

over all manifold learning

methods and classifiers with the

use of the Euclidean distance L2
(see ‘‘Construction of FCN

based on the Euclidean

distance’’ section); parameters,

PT, classifier, accuracy (Acc),

sensitivity (Sens) and specificity

(Spec) rates. Classifiers are

noted as RSVM (Radial SVM),

LSVM (Linear SVM), k-NN (k-

NN Classifier) and ANN

(Artificial Neural Networks)

Method Parameters PT Classifier Acc ± SD (%) Sens (%) Spec (%)

MDS p = 3 0.54 RSVM 72.3 ± 1.7 52.8 83.4

0.36 LSVM 57.9 ± 2.5 26.6 79.6

0.26 k-NN 65.7 ± 2.2 59.6 66.1

0.44 ANN 64.9 ± 2.6 53.7 69.5

ISOMAP p = 2, k = 5 0.68 RSVM 72.9 ± 2 55.8 81.9

0.42 LSVM 54.6 ± 0.1 0 95.9

0.68 k-NN 65 ± 2.3 47.7 74.7

0.66 ANN 68.2 ± 1.8 47.4 80.4

Diffusion maps p = 5, r = 110 0.66 RSVM 68.8 ± 2.2 57.7 73.1

0.52 LSVM 62.9 ± 1.9 56.7 63.5

0.26 k-NN 65.1 ± 2.5 63.3 61.7

0.5 ANN 63.9 ± 2.6 71.4 53.2

kPCA p = 5, c = 11.5 0.62 RSVM 67.1 ± 1.3 37.1 87.1

0.28 LSVM 62.1 ± 1.6 56.8 62.9

0.64 k-NN 62.7 ± 2.8 56.7 63.3

0.62 ANN 67.2 ± 1.6 62.1 66.8

LLE p = 3, k = 3 0.48 RSVM 70.3 ± 2.6 67.9 67.3

0.26 LSVM 70.2 ± 1.4 68.9 66.4

0.28 k-NN 65.3 ± 2.7 59.4 65.4

0.26 ANN 70 ± 2 64.3 70

Euclidean matrix – 0.64 RSVM 71.6 ± 1.7 60.1 76.1

0.58 LSVM 59.2 ± 2.5 62.5 52.3

0.64 k-NN 72 ± 2.2 67.5 70.6

0.70 ANN 62.1 ± 2.6 60.4 59.1
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Fig. 7 Visualization of the connectivity matrix constructed with the Euclidean distance L2 (see ‘‘Construction of FCN based on the Euclidean

distance’’ section) of a patient and a healthy control for different values of PT

Fig. 8 Classification performance using the Euclidean distance L2
(see ‘‘Construction of FCN based on the Euclidean distance’’ section)

for all thresholds (from 20 to 70% of the strongest edges with 2% as

step) and classifiers. The PT point with the best classification rate is

marked with an asterisk ‘‘*’’
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efficiency is the inverse of characteristic path length and

the diameter of a graph is likely to be higher as the average

path length gets larger). Based on the above fundamental

graph measures, our best reported accuracy obtained with

diffusion maps and cross correlation was 79.3 % (evaluated

with a 10 fold cross validation scheme, repeated 100

times). The conventional methodology was outperformed

in both overall performance and with respect to the maxi-

mum classification accuracy as there was an 8.3% differ-

ence in classification accuracy in favor of the diffusion

maps.

For the same benchmark fMRI dataset, Anderson and

Cohen (2013) used ISOMAP for the construction of

embedded FCN for the classification between heatlhy

controls and schizophrenia patients. ROIs were acquired as

here using single subject ICA and functional connectivity

was accessed using the cross correlation distance. The

analysis revealed differences in small-world properties

among groups and 13 graph theoretic features led to a

reported 65% accuracy rate. Xiang et al. (2020) reported a

93.1% accuracy (with sparse group Lasso and 78.6% with a

Welch’s t test) testing more than 1000 graph-based

Fig. 9 Classification

performance of the parametric

manifold learning techniques

with respect to different

parameter values. A ISOMAP

(k), B diffusion maps (r),
C kPCA (c), D LLE (k). The
metric used is the the Euclidean

distance L2 (see ‘‘Construction

of FCN based on the Euclidean

distance’’ section)

Fig. 10 Mean differences of the 15 largest (smallest for the LLE)

eigenvalues (see ‘‘Choice of the embedding dimension’’ section) for

all manifold learning algorithms using the Euclidean distance L2.
AMDS (see ‘‘Construction of FCN with MDS’’ section), B ISOMAP

(see ‘‘Construction of FCN using ISOMAP’’ section), C diffusion

maps (see ‘‘Construction of FCN using diffusion maps’’ section),

D kPCA (see ‘‘Construction of FCN using kernel principal compo-

nent analysis’’ section), E LLE (see ‘‘Construction of FCN using

locally linear embedding’’ section) using the optimal parameters. The

red dashed vertical line marks the maximum number of dimensions

considered (i.e. 5 dimensions, see ‘‘Choice of the embedding

dimension’’ section). For the case of LLE, the function lði; jÞ ¼
1

kM�i�kM�j
was used for visualization purposes as we are interested in

the smallest eigenvalues (trivial eigenvalue kM ¼ 0 is discarded).

(Color figure online)
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features. An anatomical atlas was used for signal extraction

and ROI selection, while an SVM-based classifier was used

along with a ‘‘leave one out’’ scheme to evaluate its per-

formance. In the same study, the authors compare their

method with other novel approaches that have been pre-

viously proposed (Cheng et al. 2015; Huang et al. 2018) by

applying them on the COBRE dataset. Cheng et al. (2015)

calculated the betweenness centrality of nodes and used

their ranks to classify patients with schizophrenia and

healthy controls. For the COBRE dataset, this approach

yielded a 74.4% classification accuracy. Finally, Huang

et al. (2018) used a tree-guided group sparse learning

method to extract key information in four frequency bands.

Applied on the COBRE dataset, the classification perfor-

mance peaked at 77.3%.

Our best reported accuracy (79.3% evaluated with ten-

fold cross validation repeated 100 times) is still higher than

some of the previously proposed methods applied to the

same dataset.

Some recent studies have suggested that the correlation

matrices lie on a non-linear manifold (Venkatesh et al.

2020). Regarding our results, the diffusion maps algorithm

(based on the diffusion distance) and the ISOMAP (based

on the geodesic distance) managed to outperform the cor-

relation matrix (that is most frequently used in constructing

FCN from fMRI data) in terms of classification accuracy.

However, other techniques such as the LLE (locally pre-

serving the distance among neighbours), the gaussian

kernel PCA (the non linear extension of PCA) and the

MDS (which preserves the Euclidean distances on the

embedded manifold) performed similarly or poorer com-

pared to the cross correlation matrix. On the other hand,

when using the Euclidean distance as a metric of functional

connectivity none of the methods used in this study

exhibited much higher results than the Euclidean matrix

(which was slightly outperformed by ISOMAP and MDS).

However, LLE provided a more robust classification pat-

tern with most of the classifiers reaching a 70% accuracy.

Though in general, there is no single best manifold learning

method outperforming all the others for both metrics, our

study showed that the diffusion maps result in higher

classification accuracy when using the cross correlation

distance (10.5% difference with respect to the Euclidean

distance) outperforming the ‘‘conventional’’ method for

constructing FCN from fMRI data.

However, this study does not come without limitations.

For example, the method chosen for signal extraction is the

single-subject ICA (Anderson and Cohen 2013). While this

methodology holds the advantage of yielding subject-

specific ICs (taking into account the within-subject varia-

tion), yet, due to this fact, we could not utilize local fea-

tures in our graph theoretic analysis as the ICs (the nodes in

the constructed graphs) were not the same across partici-

pants (even the number of ICs were different just like in

Anderson and Cohen 2013). Thus, in order to factor out the

influence of specific features, as discussed above, we used

Fig. 11 Boxplots of classification rates over all classifiers and

thresholds, using the (A) cross correlation pseudo-distance dc, (B) the
Euclidean distance L2. The labels at the bottom of each panel

correspond to the method used for the construction of the FCN: the

cross correlation matrix (Corr. Matrix), the Euclidean matrix

(Eucl.Matrix), MDS, ISOMAP, diffusion maps(DMaps), kPCA,

LLE. The black horizontal lines mark the median values of the

distributions
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the three fundamental global theoretical measures to

quantify differences among groups in the global topology

of the network (Stam and Reijneveld 2007; Bullmore and

Sporns 2009). An alternative method for the signal

extraction could be the use of group-ICA. For example, a

group-ICA analysis has been recently applied in a large

fMRI dataset (151 healthy controls and 163 schizophrenia

patients) for classification purposes (Salman et al. 2019);

under this methodology the authors reached a maximum of

76.4% classification accuracy. While studies have shown

that group-ICA can capture inter-subject spatial variability,

it is not without limitations (Allen et al. 2012). For

example group-ICA makes the assumption that each sub-

ject makes the same contribution to the observed ‘‘group’’

ICs, discarding random subject to subject variations. Thus,

one cannot generalize the conclusions to the population

(Friston et al. 1999). Hence, different approaches (such as

the Independent Vector Analysis) have been suggested that

seek for an optimal trade-off between group and individual

representation, trying to preserve subject’s variability

within a group (Michael et al. 2014).
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Appendix

For classification we used Linear Support Vector Machines

(LSVM), Radial (Radial basis function kernel) Support

Vector Machines (RSVM), one hidden layer Artificial

Neural Networks (ANN) and k-NN classifier (k-NN). All

classifiers were trained and evaluated via repeated tenfold

cross validation scheme repeated 100 times. For the clas-

sification we used the three key graph theoretic measures as

described in ‘‘Graph-theoretic measures’’ and ‘‘Materials

and methods’’ sections. Training and classification were

implemented using algorithms contained in package

‘‘caret’’ (Kuhn et al. 2008) publicly available in R free

software environment (Team 2014).

Support vector machines (SVM)

Support vector machines (SVM) aim at finding the optimal

separating plane or hyperplane in the feature space among

groups. In particular, for a set of points ðxi; yiÞi¼1;2...N ,

where N is the number of subjects, xi 2 Rd contains d at-

tributes/features selected for subject i and yi 2 ð�1; 1Þ the
subject’s class (here, either healthy or patient), SVM

attempts to find the optimal plane or hyperplane that

divides the two classes by maximizing the margin of sep-

aration. Any hyperplane can be modelled as w � xi þ b ¼ 0

where w represent the weights of features xi. Parallel

hyperplanes can be described as w � xi þ b
 1 if yi ¼ 1 and

w � xi þ b� � 1 if yi ¼ �1. The optimization problem

then aims at maximizing the margin between hyperplanes
2

kwk such that for every ðyiÞi¼1;2...N ; yi � ðw � xi þ bÞ
 1.

One can take advantage of a regularization parameter C

indicating the penalty of error zi that gives a trade-off

between misclassifications and the width of the separating

margin. This leads to the final optimization problem, which

minimizes
kwk2
2

þ C �
P

i zi subject to yi � ðw � xi þ bÞ
 1�
zi, i ¼ 1; 2. . .N.

Based on the idea that the data maybe better separable in

a higher dimensional space, SVM may utilize a kernel

function to map xi 2 Rd to /ðxiÞ 2 RD, D[ d. In our

study, besides standard linear SVM (LSVM), we also used

radial SVM (RSVM) making use of the radial basis func-

tions kernel given by Kðxi; xjÞ ¼ exp � kxi�xjk2
2�c2

� �
, where c

is the kernel’s scale parameter.

k-Nearest neighbours classifier(k-NN)

k-Nearest neighbours algorithm is one of the simplest

classification/machine learning algorithms. Given

ðxi; yiÞi¼1;2...N , where N is the number of subjects, xi 2 Rd

contains d attributes/features selected for subject i and yi
the subject’s class (here, either healthy or patient), k-NN

utilizes Euclidean distance in the feature space to perform a

voting system among k closest neighbours. In this manner,

each point is classified as ‘‘control’’, if the number of

‘‘control’’ neighbours is greater than the number of ‘‘pa-

tient’’ neighbours and inversely. The number k of closest

neighbours is a parameter of choice that plays a crucial role
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in method’s performance. In this study, it is important to

note that we chose odd values of k (i.e how many neigh-

bours we take into consideration) in order not to have to

break possible ties in the voting system among neighbours

Artificial neural networks (ANN)

In this study, we also used feed-forward artificial neural

networks (ANN) consisting of one hidden layer. The input

units were three as the number of the features considered

for classification. We have chosen one hidden layer con-

sisting from 1 to 5 neurons along with a bias term. The

activation function used for all neurons was the logistic

transfer function (Ripley 2007). The output was one node

(reflecting simple binary classification control/patient). The

training procedure of the model was done via back-prop-

agation (Hecht-Nielsen 1992) using a tenfold cross vali-

dation scheme. Finally a weight decay parameter

a (regularization parameter) was used to prevent over-fit-

ting and improve generalization (Krogh and Hertz 1992) of

the final model. For the implementation of the ANN we

used the ‘‘nnet’’ software package (Ripley and Venables

2011) publicly available in R free software environment

(Team 2014).

Parameters tested for each classifier

We tuned the parameters of the algorithms via grid search.

For the SVM:

C ¼ ð0:1; 0:25; 0:5; 0:75; 1; 2:5; 5; 7:5; 10;
25; 50; 75; 100; 250; 500; 750; 1000Þ
c ¼ ð0:001; 0:01; 0:1; 0:25; 0:5; 0:75; 1; 2:5; 5;
7:5; 10; 25; 50; 75; 100; 250; 500; 750; 1000Þ:

For the k-NN classifier: j ¼ ð1; 3; 5; 7; 9Þ.
For the ANN: number of neurons in the hidden layer

p ¼ ð1; 2; 3; 4; 5Þ, decay level

a ¼ ð0:0001; 0:001; 0:01; 0:025; 0:05; 0:075; 0:1Þ.
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