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Abstract
The gender recognition is an important research field to study evidence regarding some personal characteristics in the

information and data society. However, some current traditional methods such as vision and sound have been exposed their

own security weaknesses. Recently, biometric gender recognition based on Electroencephalography (EEG) signals has

been widely used in information safety and medical fields. It is necessary to explore potential of using EEG to present a

more robust and accurate result with larger training data based on sophisticated machine learning approaches. In this

contribution, we present an automated gender recognition system by a hybrid model based on EEG data of resting state

from twenty-eight subjects. These data are useful and handy to get insights into assessing the differences in personal

gender. For achieving a good performance and a strong robustness, the system develops a hybrid model of combining

random forest and logistic regression, and employs four common entropy measures to analyze the non-stationary EEG

signals. Result also suggests that the recognition performance achieve an improved progress with an accuracy of 0.9982

and AUC of 0.9926 based on a nested tenfold cross-validation loop, implying that show a significant potential applicability

of the proposed approach and is capable of recognizing personal gender.

Keywords Gender recognition � Electroencephalogram (EEG) � Entropy measures � Random forest (RF) �
Logistic regression (LR)

Introduction

Gender recognition using the cutting-edge computer

approaches is a meaningful research topic for revealing

personal characteristics in the information society (Udry

1994). The research of gender analysis is one of the most

important fields with huge potential applications such as

human–computer interaction (Beckwith et al. 2006),

information security (Demirkus et al. 2010), commercial

exploitation (Maldonado et al. 2003), cultural exploration

(Gul and Humphreys 2014) and population research

(Hoffmeyer-Zlotnik and Wolf 2003). Thus, promoting

recognition technologies for distinguishing individuals

according to their gender characteristics is critical and

valuable.

Actually, there are two common ways for human beings

to accurately and quickly recognize individual gender in

daily life, sight and sound (Bruce et al. 1993). However, it

is a difficult challenge for the automatic equipment or

system to actively judge individual gender at present. With

the rapid rise of information technology and artificial

intelligence, it provided more opportunities to promote the

gender recognition technologies based on computational

methods (Miller 2013). Mendoza et al. (1996) discussed

acoustical differences between male and female voices by

using of the long-term average spectrum. The facial

expression changes were also exploited to reveal gender

differences in numerous studies recently. Azzopardi et al.

(2016) proposed a novel descriptor based on COSFIRE

filters for gender recognition from face images and

achieved an accuracy rate of 93.7%. Ergen and Abut

(2013) performed the gender classification based on front

façade photos of 100 male and 100 female and obtained the

highest achievement of 88%. In another work, Zhang et al.

(2016) compared the encoded features from both 2D and

3D face images in order to achieve automatic gender

recognition with an average high accuracy of 96.23%. Shan
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(2013) investigated gender recognition on real-life faces by

using the Labeled Faces in the Wild and AdaBoost clas-

sifier to obtain the performance of 94.81%. In addition,

some detailed reviews discussed and analyzed the gender

recognition about face of humans by various methods (Ng

et al. 2015; Rai and Khanna 2012). Besides, other parts of

the body such as hand shapes, fingernails and fingerprints

were also used to identify gender, but the stability of the

results is not very good (Murdan 2011; Gnanasivam and

Muttan 2012; Amayeh et al. 2008). Through the above,

current approaches for gender recognition were largely

determined by facial photographs.

However, there is very little investigation into gender

recognition based on physiological measurements such as

electrocardiogram (ECG) and electroencephalogram

(EEG), which also can show different characteristics for

individual gender (Moss 2010; Hu 2017). Due to the fact

that there are some limitations for the existing methods

about identifying gender, it is necessary to consider other

feature methods especially physiological measurements.

For example, the recognition for gender relied on body part

features, most of which are face expression, involved in

poor accuracy or personal privacy. Facial recognition also

needs a large amount of sample datasets that computed

with complex high-dimensional algorithms. In addition,

there are application limitations in some specific areas such

as senior crime and transsexual study (Bilodeau 2005;

Sherer 1992). In order to achieve the good performance and

the strong reliability of automatic gender recognition sys-

tem, some hybrid algorithms and new gender features

should be taken into considered. According to its inherent

uniqueness, versatility, and ability to resist deception,

physiological measurements can be adopted to study and

analyze the gender recognition from some biomedical

signals such as blood, heart and brain. Pham et al. (2014)

explored the potential of using EEG for user authentication

by taking the advantage of rich information including age

and gender, and adopting autoregressive features and

power spectral density features for analyzing EEG signals

in multi-level security systems, which showed a very

promising result with a recognition rate of 97.1% for

gender authentication. Bilalpur et al. (2017) examined the

utility of implicit user behavioral signals including EEG

brain signals and eye movements for gender and emotion

recognition based on ERP analysis and eye-tracking anal-

ysis, obtained a peak AUC of 0.714 for gender recognition.

Due to the fact that the analysis and research of these

signals is very important for gender recognition, previous

studies have shown that the potential effectiveness of

biomedical signals in the gender determination was proved

by the obvious gender differences existed in physiological

measurements. Xue and Farrell (2014) discussed some

major gender differences in 12 lead ECG measurements

based on automatic algorithms including global measure-

ments and lead-by-lead measurements, obtained a high

specificity of 98%. Ku et al. (2012) extracted HRV features

in a gender classification system based on ECG signals

from 12 samples and obtained an accuracy of 92% by LS-

SVM classifier. In another work, Borghetti et al. (2006)

studied a face gender recognition tasks based on EEG

analysis. Phung et al. (2015) used conditional entropy

approach as a feature extraction method for multi-channel

EEG-based person identification, compared with the

baseline Autoregressive modelling method and achieved a

higher identification rate. Nguyen et al. (2013) developed

an automatic age and gender recognition system based on

EEG signal from 40 samples, achieved a near accuracy of

97% by using SVM classifier. Since EEG is a direct

response to the state of the brain, it helps to establish an

automatic gender recognition system based on individual

signal characteristics (Arya et al. 2013).However, few

studies have employed the hybrid model method based on

EEG signals to study gender recognition, which may be a

promising application of EEG-based systems for assessing

and analyzing user gender in biometric authentication

systems.

In recent years, various machine learning techniques

have been expanded and applied widely in several different

fields, which more or less show the strengths and weak-

nesses of their individual application (Mu et al. 2017; Hu

et al. 2015; Kotsiantis 2007; Hu 2017; Min et al. 2017).

The random forest (RF) classifier is likely to be a better fit

for problems with a small number of features and plenty of

training examples. In such a case, variance is a smaller

concern and one would likely be better off opting for RF

with low bias. The RF assumes the splits are axis-parallel

and will become more complex with the increase in the

number of features and multiple decision boundaries are

possible. On the other hand, logistic regression (LR)

assumes there is only one decision boundary that is smooth

and non-linear. The RF constructs decision boundaries as

follows: (1) selecting the best attribute/feature to divide a

set at each branch; and (2) deciding whether each branch is

justified adequately. The LR constructs decision bound-

aries as follows: (1) stepwise selections of the variables and

the corresponding coefficients computed; and (2) The

maximum-likelihood ratio is used to determine the statis-

tical significance of the variables which will be part of the

LR equation. A complex RF may over-fit the data and trees

will become unstable (Anděl et al. 2015). With very high

dimensional (and possibly sparse) features, LR regular-

ization is critical to avoid over-fitting (Huttunen and Tohka

2015).

Using RF over LR is suitable when their performance is

equal and the additional accuracy of RF does not weigh on

the increased complexity of the implementation of the
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model. He et al. (2014) applied the Decision Tree

(DT) ? LR and Gradient Boost Decision Tree

(GBDT) ? LR model with Facebook data and found that it

worked well. In this study, we explore the application of

RF ? LR in gender recognition, and determine if it is

possible to further improve the recognition performance,

and if there is a certain robustness.

In this paper, we present an EEG-based biometric

authentication system to effectively access and analyze

personal gender by applying a hybrid model combining RF

over LR based on four common entropy measures, i.e., FE,

SE, AE and PE. According to the influence of the number

of electrodes and the fraction of training data, we evaluated

and analyzed this hybrid model by using thirty electrodes

to improve the authentication results. In addition, this

approach was founded on a nested tenfold cross-validation

loop that embedded an inner tenfold cross validation for

determining parameters that would yield the best classifi-

cation performance in detector design. Twenty-eight heal-

thy participants performed continuous rest-EEG

experiment. The nested 10-fold cross-validation method

obtained an accuracy of 0.9982 and an AUC of 0.9926 in

average. The EEG-based biometric authentication system

is of potential benefit for medical diagnosis and informa-

tion security in relevant areas and may have a comple-

mentary role in existing methods. Figure 1 shows the

operation process of an EEG-based gender recognition

systems, which primarily includes EEG acquisition, EEG

preprocessing, segment, feature extraction, and classifica-

tion and results analysis.

Materials and methods

Subjects

Twenty-eight healthy participants (13 males and 15

females, 18–30 years old), were enrolled in the gender

recognition experiment. They were in good health and had

not substance abuse. Meanwhile, each participant was not

allowed to have the stimulant drink such as tea or alcohol

on the day before the experiment. In addition, all subjects

understood the experimental procedures and purposes. It

should be specially explained that this gender recognition

experiment based on multi EEG channels could not cause

any damage to the human body, approved by the academic

ethics committee of the Jiangxi University of Technology

and provided the hand-written informed consent by each

subject.

Data recording and preprocessing

The subjects sat in a quiet room, free from sound and

electromagnetic interference. They kept their eyes open

and did nothing, staying awake for 20 min. The EEG sig-

nals of the first few minutes in the recording process were

discarded due to the fact that the subjects needed some

time to calm down completely. Thus the EEG data was

recorded in the last 5 min and it was labeled as the dataset

in this study. Meanwhile, EEG data from all electrodes

were referenced to two electrically linked mastoids at A1

and A2, digitized at 1000 Hz from the 32-channel electrode

Fig. 1 A workflow of the

proposed study
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cap (including 30 effective channels and two reference

channels), according to the international 10–20 system, as

shown in Fig. 2.

After the EEG signals were collected, the main steps of

data preprocessing were implemented by a comprehensive

EEG/ERP acquisition and analysis software (Neuroscan

scan 4.5, Compumedics in Australia). It should be pointed

out that the original EEG was firstly filtered with a 50 Hz

notch filter, and then a 0.15–45 Hz band pass filter was

used. Next, the EEG signals of the recorded 5 min were

segmented into one-second epoch, resulting in 300 epochs

for each electrode. Then, a total of 8400 epochs of datasets

from 28 subjects were fully obtained at all electrodes.

Finally, a total of 8400 (300 9 28) units were randomly

constructed for training and testing datasets, in which 4500

units were available for females and 3900 for males.

Feature extraction

Though EEG is assumed to be a non-stationary time series,

most feature extraction methods are only applicable to

stationary signals. Some researchers have also used power

spectrum density (PSD) and autoregressive (AR) models,

but these methods are difficult to use with non-stationary

EEG signals. To solve this problem, the EEG data is split

into several short windows, and the statistics are assumed

to be approximately stationary, just like many articles used

this same method (Min et al. 2017). The following feature

extraction method is applied to each of the one-window

signals. The EEG signals are segmented without

overlapping, and finally all the electrodes in each 1-s

window are extracted from the feature set.

As the nonlinear parametric, entropy factors have been

widely used to assess the uncertainty of a system. Due to

the fact that entropy evaluators can quantify the complexity

of a time series degree, which can be used to describe non-

linear, unstable dynamic EEG signal, have been broadly

applied in recent years (Acharya et al. 2012; Mu et al.

2016; Phung et al. 2014). A variety of different methods of

collection have been proposed in the last few decades,

including fuzzy entropy (FE), sample entropy (SE),

approximate entropy (AE), permutation entropy (PE),

information entropy, Renyi entropy, and others. Specifi-

cally, in the field of EEG signal processing, the four most

widely used entropy estimators are FE (Chen et al. 2009),

SE (Richman and Moorman 2000), AE (Pincus 1991) and

PE (Reyes-Sanchez et al. 2016). It is worth pointing out

that the two parameters m and r in FE, SE and AE should

be considered, which described respectively the dimen-

sions of phase space and similarity tolerance in entropy

measures. In this article, we adopted m = 2 and

r = 0.25*SD (SD denotes the standard deviation) according

to the literatures (Yentes et al. 2013). For optimizing the

detection quality, the features were normalized for each

subject by scaling between - 1 and 1 based on the min–

max normalization after building a feature vector via the

concatenation process.

The ability to distinguish between men and women

depends largely on the quality of the input vectors in the

classifier. To capture gender-related EEG features, four

feature sets were measured, including FE, SE, AE and PE,

and using a combination feature set (FE ? SE ? AE ?

PE). In this section, the calculation method of the entropy

set is described in detail (Mu et al. 2016, 2017; Hu 2017;

Hu and Wang 2017).

Classification

Logistic regression (LR)

As a generalized linear model, LR is widely used in various

fields including machine learning and most medical fields,

which describing the probability of a binary response based

on one or more predictor variables by using a logistic

function (Prasad et al. 2014). Two main parameters require

tuning: penalty and C. Parameter penalty is used to specify

the norm used in the penalization. C represents the inverse

of the regularization strength, and smaller C values specify

stronger regularization. In this work, penalty is l1 regu-

larization and C is 1.0, unless otherwise stated.

Fig. 2 Electrodes position according to the international 10–20

system standard
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Random forest (RF)

RF is defined as a group of unpruned classification or

regression trees, trained on bootstrap samples of the

training data using randomly-selected variables or features

in the process of tree generation (Surhone et al. 2010). RF

fits a number of decision tree classifiers on various sub-

datasets and averages the predicted accuracy. Two

parameters require tuning: number of trees (nt) and the max

depth of the tree (md). In this work, the md is 5 and nt is

200, unless otherwise stated.

Hybrid model

After building entropy feature vectors, the concatenation of

the RF and LR classifiers should be established, shown in

Fig. 3. First, we fit a random forest on the training set via

inputting the feature vectors. Then, sparse vector from each

leaf of subtree in RF model is assigned a fixed arbitrary

feature index in a new feature space. The RF classifier can

transform the feature vectors into a higher dimensional and

sparse feature space. Thus these leaf indices are encoded in

a one-shot fashion according to the input entropy features.

Each sample is encoded by setting the feature values for

these leaves to 1 and the other feature values to 0, while the

weight Wi can been optimal via cross validation. Finally,

we train a LR model on the combination of these sparse

features and original features. A hybrid method is being

built in this paper, which makes use of ensemble learning

from RF and LR classification method.

Parameter setting

A multi-classifier optimizing strategy is an important part

in machine learning, and there are many methods to reach

and evaluate the best optimized performance. The classi-

fier, in general, has two types of parameters: a class of

parameters from the data can be estimated by learning

processes, and other parameters cannot be estimated from

the data, which are called hyperparameters. For example,

penalization and regularization strength for LR, the number

of trees, the number of features, and maximum depth of the

tree for RF. In this study, a grid hyperparameter search was

used to achieve better results vid an inner 10-fold cross-

validation approach. A grid hyperparameter search usually

consists of several parts: a classifier, parameter space,

search mechanism, cross validation, and performance

function. In this article, the performance function is used

directly with the accuracy rate. By testing in advance to

reduce the parameter space range, and then small steps and

a global search were used, generating the test set and

training set reasonably. According to different analysis

objectives, special optimization was performed for differ-

ent subjects and/or different feature sets, and so on.

Performance metrics

In order to assess the potential application performance of a

sex detector, it is important to correctly compare the

quality of the detector and weight the phenomenon of

overfitting. Therefore, a nested 10-fold cross validation

loop is used to evaluate the performance of the gender

identification system, where 10% of dataset defined as test

dataset while the remaining subjects used to train with

model evaluation in outer loop and an inner loop for tuning

parameters, see Fig. 4. In the next iteration, another 10% of

dataset feature vectors are considered as test sets, and the

rest are training sets until all the feature vectors are

involved in the test phase. The final result is achieved by

averaging the results produced at the corresponding cor-

ners. In addition, performance indicators include the

average accuracy and the curve area under the receiver

operating characteristic curve (ROC curve) for perfor-

mance evaluation. The average accuracy of this paper

refers to the average recognition rate of all subjects of a

feature set and/or classifier. The AUC illustrates the per-

formance of the two-classifier system because its discrim-

inant threshold is variable.

Fig. 3 Proposed hybrid model structure. Input entropy values are

transformed to sparse vectors that can been created by subtrees of RF.

The output of each subtree is treated as a categorical input feature to

LR classifier. Here, Xj represents the j-th entropy feature vector, Treei

(i = 0, 1,…) is the i-th subtree constructed by RF model and Wi is the

weight value of the i-th subtree in RF model
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Calculation tool

We used the scikit-learn toolbox (Pedregosa et al. 2011) to

train and test. The regularization parameter was optimized

using an inner 10-fold cross-validation procedure. For

example, RF models were trained with the sklearn.en-

semble.RandomForestClassifier module of the Python

library scikit-learn using the following parameters: (1)

number of trees in the forest; (2) criterion to assess the

quality of a split; (3) minimum number of data points to

split a node; and (4) minimum number of data points in a

leaf to keep a given node split. LR models were trained

using the sklearn.linear_model.LogisticRegression module

of the Python library scikit-learn using the following

parameters: (1) tolerance for stopping criteria; and (2)

inverse of regularization strength.

Results

The main idea behind this paper was to find a more effi-

cient method for gender recognition, and to explore the

hybrid model combining RF and LR.

Comparison of entropy between male
and female

In this study, for evaluating the performance influence on

different entropies for personal gender, we calculated the

values of different entropies between PE, AE, SE and FE as

features according to EEG channels. The paired-samples

t test was employed to evaluate the quantified results

between male and female. Thus a comparison of different

entropy measures between male and female was shown in

Fig. 5. As you can see from this figure, there are significant

differences for different entropy values from EEG signals

between male and female with the electrode subscript

changed. For example, for the forehead electrode of great

importance (No.1, Fp1), the values of FE from female

subjects is significantly higher than that from male subjects

(0.37 ± 0.13 vs. 0.09 ± 0.06, p\ 0.001), SE is

0.62 ± 0.19 vs. 0.25 ± 0.10 and p\ 0.001, AE is

0.68 ± 0.19 vs. 0.27 ± 0.11 and p\ 0.001, and the

combined entropy (FE ? SE ? AE ? PE) is 0.54 ± 0.13

vs. 0.28 ± 0.08 and p\ 0.001. However, the values of PE

don’t present the difference between female and male

subjects. Furthermore, other electrodes also show this

gender difference from these four common entropies.

A significant difference in the entropy values was

determined based on personal gender between FE, SE, AE

and the combined entropy in Fig. 5, which reveals that the

entropy meatures can exhibit a good performance for rec-

ognizing personal gender. In addition, observation of

electrode channels can be found that the top three elec-

trodes from relatively independent area with the largest

entropy difference for FE between female and male sub-

jects were No.20 of CPz, No.10 of FCz and No.1 of Fp1,

No.28 of O1, No.25 of Pz and No.26 of P4 for SE, No.2 of

Fp2, No.17 of T4 and No.1 of Fp1 for AE, and No.2 of Fp2,

No.20 of CPz and No.17 of T4 for the combined entropy.

Therefore, the forehead electrode Fp1 and Fp2 may have

potential applications when we use only one (or two)

electrode(s) to detect personal gender in the field of prac-

tical applications due to the importance distinction based

on different entropies from EEG signals.

Comparison of classifiers

To show the performance of the hybrid model, this article

compares it to the recognition performance of LR and RF.

The results of ten independent rounds are used to draw

mean ROC curves. Different feature sets or classifiers were

compared by analyzing their ROC curves and areas under

the ROC curves (AUC). In Fig. 6A–E, their performance in

the ROC curves produced was compared by different

classifiers on the FE feature set, SE feature set, AE feature

set, PE feature set, and the combined entropy feature set,

respectively. This shows that the FE feature set and com-

bined feature set outperform other feature sets significantly

(paired t test, p\ 0.01). For example, the best AUC of the

FE feature set and the combined feature set are 0.9982 and

0.9983, respectively, while the best AUC of the SE, AE,

and PE feature sets are 0.9421, 0.9483, and 0.7118,

respectively. Consequently, adding more features results in

no changes for gender detection. Therefore, the FE feature

set is selected for the next experiments.

Fig. 4 A nested 10-fold cross-validation loop
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Taking the FE of the 30 electrodes as the feature sets,

with AUC as the index, it can be seen that the performance

of RF ? LR (0.9982)[RF (0.9926)[LR (0.9801) from

Fig. 6A. The other three types of entropy as feature sets,

shown in Fig. 6B–D, show similar results, but PE is not

significant. Can multiple features improve performance?

As shown in Fig. 6E, the four entropy values are simply

combined into the combined feature set as input feature

sets, and it can be seen that the performance of RF ? LR

(0.9983)[RF (0.9891)[LR (0.9911). The ACC and

AUC of the five entropy feature sets are shown in Table 1,

which LR-ACC, RF-ACC and RF-LR-ACC represent the

average accuracy of using classifier by LR, RF and RF ?

LR respectively while LR-AUC, RF-AUC and RF-LR-

AUC represent the value of AUC by the above similar

classifiers. It can be obviously observed from the table that

the classifier by using hybrid model RF ? LR can obtain

the better classification accuracies based on different

entropy feature sets and hit a highest average accuracy of

99.83% by using combined entropy features based on

RF ? LR classifier. Similarly, it achieved a better perfor-

mance of the AUC by using a hybrid model RF ? LR

classifier based on different entropy feature sets. But the

highest value of AUC with 0.9926 was reached by using

FE feature sets based on RF ? LR classifier, which

implying that fuzzy entropy could have a significant

influence on the gender recognition and maybe superior to

or close to the combined entropy features. Furthermore, it

could be effective and convenient for just using fuzzy

entropy to recognize the gender of persons in practical

application.

Fig. 5 Entropy feature comparison for male and female according to

EEG channels (shown in Fig. 2). The vertical coordinate represents

the magnitude of entropy, while the horizontal coordinate is the index

of EEG channels. represents that the difference is not significant

(p[ 0.01)
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Effect of parameters

The performance of the classifier model is affected by the

parameters, and RF and LR have different parameters.

Does the change of parameters of a single classifier affect

the performance of the hybrid model? This study explored

this.

The main parameters to be adjusted in RF are parameter

max depth (md) and number of trees (nt). The best per-

formance of the RF model can be yielded through carefully

choosing the optimal combination of these parameters. The

parameter md controls the maximum depth of the tree. As

shown in Table 2, accuracy of RF reaches the maximum of

0.9409 when nt is 50, while the AUC reaches the maximum

of 0.9931 when nt is equal to 20, accuracy of hybrid model

reaches the maximum value of 0.9915 when nt is 2000, and

AUC of hybrid model reaches the maximum value of

0.9986 when nt is equal to 1000. As shown in Table 3, the

larger the md, the greater the ACC and AUC. When md

equals 20, both the ACC and AUC of RF reach the max-

imum, while AUC of hybrid model also reaches the max-

imum, and ACC of hybrid model reaches the maximum

when md equals 7. As mentioned above, the hybrid model

does not require larger md, and the larger depth does not

increase the hybrid model’s ACC and AUC, although the

larger md will increase the RF performance.

As shown in Table 4, whether the value of penalty is l1

or l2, and the effect on the LR and the hybrid models are

not significant, but the value of C has a greater impact on

the performance of recognition.

Comparison of number of electrodes

Is it possible to achieve satisfactory performance with

fewer electrodes and enough features? To explore the

effect of the number of electrodes for the detection system,

we evaluated the system performance with respect to the

number of electrodes. For each number m (from 1 to 30), a

Fig. 6 ROC curves for different feature sets and different classifiers. A, B, C, D and E respectively represent FE, SE, AE, PE and combined

feature sets

Table 1 Average accuracy and AUC for various classifiers based on

different feature sets

FE SE AE PE Combined

LR-ACC 0.9801 0.8952 0.8910 0.7508 0.9911

RF-ACC 0.9926 0.9578 0.9539 0.7811 0.9891

RF-LR-ACC 0.9982 0.9785 0.9792 0.7850 0.9983

LR-AUC 0.9187 0.7980 0.7845 0.6847 0.9507

RF-AUC 0.9384 0.8929 0.8818 0.7007 0.9286

RF-LR-AUC 0.9926 0.9421 0.9483 0.7118 0.9717

LR-ACC, RF-ACC and RF-LR-ACC represent average accuracy for

LR classifier, RF classifier and RF ? LR classifier, respectively.

Similarly, LR-AUC, RF-AUC and RF-LR-AUC represent average

AUC for LR classifier, RF classifier and RF ? LR classifier,

respectively
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random combination (m out of 30 channels) was repeated

10 times to calculate the classification accuracy, and the

accuracy was averaged.

As shown in Fig. 7, the variation trend of the average

accuracy of different classifies is similar. For example, for

the classifier LR, the average accuracy basically increases

(p\ 0.01) with the number of electrodes increasing. In

other words, more electrodes do improve the performance

significantly.

The greater the number of electrodes, the more feature

sets, and the accuracy may be more ideal. However, a

greater number of electrodes will increase the computa-

tional complexity and the discomfort of subjects. If pos-

sible, under the premise of maintaining a certain

performance, as few electrodes as possible should be used.

Effect of fraction of the training data

The ratio of test samples to all samples is important for the

performance of the classifier. To determine the robustness

of the classifier against the size of the test sample, the ratio

of test samples to all samples is set varying from 0.01 to

0.97. The ACC and AUC of different classifiers based on

the FE feature set against different ratios are shown in

Fig. 8. When the test sample is small, there will be more

training samples, learning will be more complete, such as

changes in the range of 0.01–0.8, and ACC and AUC are

not obvious; on the other hand, when testing more samples,

there will be fewer training samples, the lack of learning

can affect performance, such as in the range of 0.9–0.97,

and ACC and AUC decline significantly. The performance

of the three classifiers is similar.

Table 2 Influence of the

parameter nt of RF classifiers on

the average accuracy for three

classifiers with FE feature set

nt 1 10 20 50 100 200 500 1000 2000

RF-ACC 0.8670 0.9236 0.9384 0.9409 0.9360 0.9384 0.9323 0.9347 0.9335

RF-LR-ACC 0.6256 0.9052 0.9470 0.9754 0.9840 0.9926 0.9963 0.9963 0.9975

RF-AUC 0.9304 0.9871 0.9931 0.9930 0.9920 0.9926 0.9925 0.9926 0.9925

RF-LR-AUC 0.9322 0.9930 0.9971 0.9969 0.9975 0.9982 0.9983 0.9986 0.9985

Bold indicates the highest recognition rate in this row

RF-AUC and RF-LR-AUC represent average AUC for RF classifier and RF ? LR classifier, respectively.

RF-ACC and RF-LR-ACC represent average accuracy for RF classifier and RF ? LR classifier,

respectively

Table 3 Influence of the parameter md of RF classifiers on the average accuracy for three classifiers with FE feature set

md 1 2 3 4 5 6 7 8 9 10 20

RF-AUC 0.9194 0.9410 0.9644 0.9824 0.9926 0.9969 0.9990 0.9995 0.9998 0.9998 0.9999

RF-LR-AUC 0.9358 0.9879 0.9946 0.9970 0.9982 0.9989 0.9988 0.9993 0.9995 0.9994 0.9995

RF-ACC 0.8534 0.8941 0.9064 0.9175 0.9384 0.9532 0.9680 0.9766 0.9828 0.9865 0.9938

RF-LR-ACC 0.9483 0.9741 0.9852 0.9865 0.9926 0.9889 0.9963 0.9926 0.9914 0.9951 0.9938

Bold indicates the highest recognition rate in this row

RF-AUC and RF-LR-AUC represent average AUC for RF classifier and RF ? LR classifier, respectively. RF-ACC and RF-LR-ACC represent

average accuracy for RF classifier and RF ? LR classifier, respectively

Table 4 Influence of the parameters (penalty and C) of LR classifiers

on the average accuracy for three classifiers with FE feature set

Penalty C LR-

AUC

RF-LR-

AUC

LR-

ACC

RF-LR-

ACC

l2 10 0.985 0.996 0.936 0.973

l2 1 0.980 0.997 0.919 0.975

l2 0.1 0.960 0.997 0.884 0.968

l2 0.01 0.929 0.994 0.867 0.948

l2 0.001 0.917 0.983 0.860 0.903

l1 10 0.986 0.993 0.942 0.972

l1 1 0.985 0.994 0.936 0.977

l1 0.1 0.971 0.984 0.909 0.957

l1 0.01 0.910 0.818 0.839 0.887

l1 0.001 0.500 0.500 0.528 0.528

Bold indicates the highest recognition rate in this column

LR-AUC represents average AUC for LR classifier and RF-LR-AUC

represents average AUC for RF ? LR classifier. LR-ACC represents

average accuracy for LR classifier and RF-LR-ACC represents

average accuracy for RF ? LR classifier
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Effect of ratio of male subjects and female
subjects

The number of subjects is an important parameter in the

gender detection system. More subjects can provide more

information that may improve or reduce detection perfor-

mance. Generally speaking, when average performance is

poor, any subject with higher accuracy can improve the

overall performance, and vice versa. Sometimes, the clas-

sifier model that is suitable for small samples may lose

performance when large samples are used. However, when

more subjects are involved, the system costs, including

hardware and computation time, will also increase.

Therefore, a tradeoff between the system performance and

system cost should be based on the specificity of the

application. In addition, the proportion of male and female

samples may also affect the performance, when the male

and female samples less samples, or male samples and less

female samples, or both samples almost, whether the per-

formance of gender recognition have similar effects, this

study designed 27 specific cases, both the total number of

samples, but also considering the gender proportion of the

sample, the 27 fraction are {13:1, 13:2, 13:3, 13:4, 13:5,

13:6, 13:7, 13:8, 13:9, 13:10, 13:11, 13:12, 13:13, 13:14,

13:15, 12:15, 11:15, 10:15, 9:15, 8:15, 7:15, 6:15, 5:15,

4:15, 3:15, 2:15, 1:15}. For each fraction, a random com-

bination was repeated 10 times for calculating classifica-

tion accuracy. Three classifiers approaches were calculated

for comparison.

In Fig. 9, it can be seen that with the increase in the

number of samples, the ACC and AUC of RF and LR

decreased quickly, while the hybrid model changes little,

such as the 13:1 three LR RF, RF-LR classifier, ACC

(AUC) were 0.9951 (0.9991), 0.9901 (0.9997), 0.9901
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Fig. 7 Average accuracy with
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shown in Fig. 2
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(0.9989), and the 13:15 is 0.9187 (0.9801), 0.9409

(0.9930), 0.9754 (0.9969); and 1:15, three kinds of classi-

fiers of ACC (AUC) were 0.9978 (1.0000), 0.9978

(1.0000), 0.9978 (1.0000). The effect of the male to female

ratio appears to be a U-type change. In the case of more

males and females, the ACC of the three classifiers did not

differ significantly, and the ACC of the three classifiers

decreased significantly when the ratio of male and female

approached. The hybrid model is less affected, and effect

of RF and LR are about the same.

Discussion and conclusion

The strategy of using a hybrid model via combining ran-

dom forest and logistic regression classifiers based on four

common entropy factors can remarkably improve the

recognition quality of a predictor for person’s gender, as

indicated by the nested cross-validation tests in which a

wider pool of participants was examined. The hybrid model

was initially started by training several trees for each

instance and then obtained the prediction results with the

leaf index for each tree. Finally, the LR classifier was

continued to train based on the binary data of leaf index in

hybrid model.

Put in the context of RF ? LR, what are the assump-

tions made? RF assumes that decision boundaries are

parallel to the axes. Thus, RF chops up the feature space

into higher dimensions, which can create a problem with

over-fitting. Despite the probabilistic framework of LR, LR

assumes that there is one smooth linear decision boundary.

It finds that linear decision boundary by making assump-

tions that the P(Y|X) of some form, like the inverse logit

function, is applied to a weighted sum of our features. Then

it finds the weights by a maximum likelihood approach.

Thus, if you have data where the decision boundary is not

parallel to the axes, then LR picks it out rather well,

whereas RF will have problems. LR will work better if

there is a single decision boundary, not necessarily parallel

to the axis. RF can be applied to situations where there is

not just one underlying decision boundary, but many, and

will work best if the class labels roughly lie in hyper-

rectangular regions. LR is intrinsically simple: it has low

variance and, thus, is less prone to over-fitting. RF can be

scaled up to be very complex, are more liable to over-fit.

In this paper, an objective approach based on entropy

feature sets and various classifiers was proposed to rec-

ognize gender in EEG-based systems and the results

demonstrated its promise as a method to identify gender by

achieving higher success rates. In addition, the related

classification performance adopted in some previous stud-

ies are listed in Table 5. Compared with other existing

EEG-based methods, the proposed method for gender

authentication achieved an improved performance and a

more robust detector, for studying personal gender conve-

niently and effectively. It also shows a significant potential

applicability of the proposed approach and is capable of

identifying personal gender in an EEG-based biological

recognition system.

With the purpose of providing a more efficient method

for recognizing gender, a hybrid model, LR classifier, and

RF classifier were compared. It was found that: (1) It is

possible to use EEG signals for gender recognition. The

highest recognition rate in this work could reach 0.9982

accuracy based on a combination of FE and hybrid models,

which could meet the needs of daily applications. (2) The

effect of parameters of single classifiers on the hybrid

model (RF ?LR) is smaller than that of a single classifier
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Fig. 9 Performance evaluation

with respect to the ratio of male

subjects and female subjects

based on FE feature set. LR-
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ACC represent average

accuracy for LR classifier, RF
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Similarly, LR-AUC, RF-AUC

and RF-LR-AUC represent

average AUC for LR classifier,

RF classifier and RF ? LR

classifier, respectively
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(RF or LR). (3) The number of electrodes has great influ-

ence on the performance of the classifiers, and the influ-

ence of a single classifier (RF or LR) is greater than that of

the hybrid model. (4) The number of training samples has

an impact on the recognition effect, but fewer training

samples can also achieve satisfactory results. (5) For the

recognition rate, a different fraction of male subjects and

female subjects have different effects.

In conclusion, EEG-based biological gender recognition

by using different entropies has a potential application for

information safety and clinical research, referred to social

emotion, person identification, treatment uptake, clinical

efficacy and adverse reactions (Freeman et al. 2017;

Shearer et al. 1984). For example, Thul et al. adopted

Permutation entropy and Symbolic Transfer entropy to

analyze EEG signals for clinical assessments, which

implying that the utilized EEG entropy analyses were able

to relate to patient groups with different disorders of con-

sciousness (Thul et al. 2015). Jausovec et al. concluded that

males and females differ in the local as well as long range

coding of information as well as in the excitability

dynamics of their cortical network by using the total

power, coherence and approximate entropy measures from

EEG signals (Jausovec and Jausovec 2010). In addition,

some cutting-edge technologies should be benefit for pro-

moting the robustness and stability of the recognition

performance for personal gender, especially used of deep

learning technique (Faust et al. 2018). In this work (Ma-

mun K 2017), deep learning had been used for MI EEG

signal classification. Robin et al. studied deep learning with

convolutional neural networks for EEG decoding and

visualization, which boosted the deep convnets decoding

performance. Other biological clinical researches such as

seizure diagnosis also adopted deep learning techniques

(Acharya et al. 2017), which can be very useful for us to

learn in the following research work.

However, some limitations of this study were: (1) The

sample size was small, with only 28 subjects and 504,000

units for 30 electrodes. To extend our research, the number

of subjects should be increased to improve the validation of

results. (2) Only four entropy feature sets and a combined

feature set were compared in this study, some other entropy

measures such as Wavelet entropy, Permutation entropy,

HOS phase entropy, Bispectrum entropy and Tsalli’s

entropy also have been widely used and should be studied

further for EEG-based gender recognition in our ongoing

researches. (3) Different brain areas may have different

gender characteristics so the classifiers should be area-

specific or subject-specific. (4) This study used EEG sig-

nals in the resting state, so specific tasks, such as move-

ment imagination, event-related potentials (ERPs), and

other behaviors that may make gender differences more

pronounced may achieve better performance. (5) The

effects of various parameters on the hybrid model need to

be further investigated, and these will be explored in future

research. (6) One problem with the proposed approach

using EEG signals is that these signals cannot be easily

acquired in an unobtrusive way. In other words, subjects

need to wear sensors to acquire data. The invasiveness

makes such signals difficult to acquire and are not practical

for real-time applications. For this actual application, an

offline analysis on EEG datasets was performed and

recorded from online experiments in this study. However,

owing to the fact that the offline and online classifications

have distinct characteristics, a further study in a real-time

online experimental environment should be conducted to

confirm the present findings. It is suggested that a real-time

gender recognition system with wireless EEG device such

as smartphone, tablet and cloud server could be widely

used in the future. Thus it is necessary to build a platform

for mobile gender identifying system meeting the require-

ments of real-time online modality. A global sensitivity

and uncertainty analysis of personal identifying model/

system would be useful to capture the robustness of the

identification results in the future (Convertino et al. 2014).

Further research may solve these problems and lead to a

better approach to EEG signal-based gender classification.

Table 5 A performance comparison with the previous works

Authors Feature set Classifier Stimulus type Sample size Accuracy (%)

Phung et al. (2014) AR and PSD SS2LM-SVDD Rest 40 97.1

Ku et al. (2012) HRV LS-SVM Rest 12 92.0

Nguyen et al. (2013) Conditional entropy SVM Rest 40 97.0

Hu et al. (2015) AR BP Visual stimuli 15 92.9

Phung et al. (2014) Shannon entropy SVM Rest 40 94.9

Maiorana et al. (2016) PSD Nearest-neighbor EC and EO 30 87.9

This paper Four entropies A hybrid model Rest 28 99.8

552 Cognitive Neurodynamics (2019) 13:541–554

123



Acknowledgements This work was supported by National Natural

Science Foundation of China (61762045), Natural Science Founda-

tion of Jiangxi Province, China (Nos. 20171BAB202031 and

20181BBE50018), Educational Commission of Jiangxi Province,

China (Nos. GJJ171030, GJJ161143) and Postdoctoral Assistance

Project of Jiangxi Province, China (2017KY33).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Acharya UR, Molinari F, Sree SV, Chattopadhyay S, Ng KH, Suri JS

(2012) Automated diagnosis of epileptic EEG using entropies.

Biomed Signal Process Control 7:401–408

Acharya UR, Oh SL, Hagiwara Y et al (2017) Deep convolutional

neural network for the automated detection and diagnosis of

seizure using EEG signals. Comput Biol Med. https://doi.org/10.

1016/j.compbiomed.2017.09.017

Amayeh G, Bebis G, Nicolescu M (2008) Gender classification from

hand shape. pp 1–7
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