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Abstract This paper explores the functional role of
noise in synthetic biology and its relation to the concept
of randomness. Ongoing developments in the field of
synthetic biology are pursuing the re-organisation and
control of biological components to make functional
devices. This paper addresses the distinction between
noise and randomness in reference to the functional rela-
tionships that each may play in the evolution of living
and/or synthetic systems. The differentiation between
noise and randomness in its constructive role, that is,
between noise as a perturbation in routine behaviours
and noise as a source of variability that cells may exploit,
indicates the need for a clarification and rectification
(whenever necessary) of the conflicting uses of the notion
of noise in the studies of the so-called noise biology.
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Stochasticity

Because they behaved withme at random, I will as
well behave with them at random.
—Leviticus 26:40-411

Introduction

Information theory generally understands noise as the
opposite of information—be this a physical magnitude
or knowledge obtained from data. Nonetheless, noise is
also understood as source of novelty and variation in the
biological gene pool. Therefore, within synthetic biology
research, the use of the term noise often refers to stochas-
tic fluctuations which have a functional status. It is im-
portant to understand that the word “stochastic” does not
entail that an entire cellular system behaves in an entirely
random way; it stands for the impossibility of determin-
ing with absolute certainty how the system will evolve
from a certain initial state. Even considering events that
could be “more probable” than others (depending on the
physico-chemical properties of the species involved) the
global state of the system will always exhibit a certain
degree of unpredictability. The disciplines of information
theory, statistical thermodynamics and biochemistry offer
sufficient evidence to assert that fluctuations in gene
expression are inevitable in biological systems [2]; they
are the consequence of the intrinsically stochastic nature
of molecular interactions. Thus, it is not surprising that
the expression levels of individual proteins are subject to
random fluctuations over time.

Shannon’s traditional characterisation of information
as the measure of the diminishment of uncertainty does
not suffice for the richness of a “biotic system” ([3], p.
37) that propagates its organisation (or instructional in-
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formation) by transforming free energy into work. DNA’s
information is not riveted like Shannon’s information as
the selection of message elements from a set—“selective
information” in MacKay’s words [4]—but it is context-
dependant like MacKay’s “structural information” [4].
This is in such a way that the same genotypes can bring
about different phenotypes depending on the environ-
ment or context. Contemporary “teleosemantic” ap-
proaches to genetic information were introduced by
Sterelny et al. [5], Maclaurin [6] and Maynard Smith
[7]. These depart from the idea of genes as “carriers of
a message”, a message which conveys a prescriptive or
imperative content, in contraposition with an indicative
or descriptive one. Their “direction of fit” to their goals is
so unobjectionable that if the genes and the phenotype
mismatch, what we find is an instance of unaccomplished
instructions rather than imprecise descriptions.

This notion of information in biology (biotic infor-
mation) understands that the constraints that make pos-
sible the propagation of organisation in a living organ-
ism stand for the information content of that organism
[3]. Gene expression is a stochastic (or noisy) process,
and gene regulation is decisive for adaptation and bio-
logical signals processing.

This paper explores the functional role of noise in
synthetic biology and its relation to the concept of ran-
domness. Ongoing developments in the field of synthetic
biology are pursuing the re-organisation and control of
biological components to make functional devices. This
paper addresses the distinction between noise and ran-
domness in reference to the functional relationships that
each may play in the evolution of living and/or synthetic
systems. The differentiation between noise and random-
ness in its constructive role, that is, between noise as a
perturbation in routine behaviours and noise as a source
of variability that cells may exploit, indicates the need for
a clarification and rectification (whenever necessary) of
the conflicting uses of the notion of noise in the studies of
the so-called noise biology (e.g. [8, 9]), developmental
noise (e.g. [10–14]) and noise-induced and noise-
oriented phenomena (e.g. [15]).

This paper will therefore argue that the investigation
of the role of the concept of noise in synthetic biology
should contain an account of both the structural resil-
ience of a system to noise and an investigation of the
functional integration of randomness. The response to
this issue is relevant both to techniques used in synthetic
biology and to how the field of synthetic biology con-
ceptualises the functional dimensions of the systems that

noise is altering or constructing. In the last decade there
have been remarkable efforts challenging the problem-
atic misconceptualisation of chance and noise in the
form of random fluctuations and perturbations (e.g.
[16–18]; or [19]).2 In what follows, we will cover their
progress as we need to provide another account of the
phenomenon of noise as it enters a system in many
different structural-functional configurations.

What We Are Talking About when We Talk
About Noise and (Synthetic) Biology

Whenever matter is rearranged to create a new informa-
tion structure, the introduction of an element of chance is
needed. Without alternative possibilities, no new infor-
mation is possible. It seems contradictory that noise, in
the form of randomness, can be the paradigm source of
variability (or new information), aligning its definition
with low or negative entropy—the very opposite of our
common understanding of noise as positive entropy.3 But
systems are never sufficient to cancel the relative univer-
sality of what is not a system. The informational con-
straints and boundary conditions are together with noise
co-determining and co-enabling biological systems.
Since quantum level processes bring in noise, informa-
tion stored may contain errors. When information is
recalled, it is again exposed to noise and this may also

2 A criticism already outlined by Thom and Chumbley in “Stop
Chance! Silence Noise!” [20] against the work of Monod [21],
Prigogine and Stengers [22], Atlan [23], and Serres [24].
3 Entropy and noise are equated inWiener [25]. Wiener established the
connection between Shannon’s concept of entropy as a measure of
uncertainty in communication with Schrödinger’s concept of negative
entropy as a source of order in living organisms. Shannon’s theory
looked at the accurate transmission of messages. In this context, the
information transmitted is equivalent to the entropy of the information
source: the higher the initial uncertainty (entropy), the higher the
amount of information achieved in the end. For Shannon, higher
entropy indicated more information; for Schrödinger, on the other
hand, higher entropy indicated less order. Wiener brought into line
these approaches. He redefined the notion of entropy, related not to the
initial uncertainty (as in Shannon’s definition) but to the degree of
uncertainty remaining after the message has been received. Higher
entropy (noise) now entailed less information. Thus, while Shannon’s
information is equivalent of regular entropy, Wiener’s information is
equivalent of negative entropy. Due to this alteration in sign, informa-
tion (order) now opposes entropy both in information theory and in
biological organization. Wiener successfully presented a notion of
information (negative entropy) as a general measure of certainty, order
and organization in any given “system”, whether living or technical.
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corrupt the information content. Despite the constant
presence of noise inherent to biological systems, these
have accumulated and increased their consistent4 infor-
mation content over billions of generations. In Monod’s
words, noise is the “progenitor of evolution in the bio-
sphere and accounts for its unrestricted liberty of creation,
thanks to the replicative structure of DNA: that registry of
chance, that tone-deaf conservatory where the noise is
preserved along with the music.” ([21], pp. 116–117).

At first, synthetic biologists considered stochastic gene
expression (or noise) an important obstacle to overcome.
Nowadays, it has arguably become one of the main in-
sights contributed by the discipline, since it reconstructs
our comprehension of why, how and when specific genes
are expressed. However, it is not clear yet how cells
actually manage to deal with random outcomes in their
expression, and how they achieve robustness. To what
extent is noise expression tolerable? Is it just innocent of
effect, or can it lead to adverse consequences? If cells can
actually use their internal noise to cope with the external
noise of an unpredictable environment [26], does it mean
that cells have adapted (in the course of evolution) to cope
with or (perhaps much more interesting) to take advantage
of and to be optimised to function in the presence of
stochastic fluctuations?

Case Studies on Noise and Synthetic Biology

The landmark characterisation of stochastic gene ex-
pression was carried out in the field of synthetic biology.
In their experiments, researchers found noisy behaviour
in gene expression, interfering with the operation of
engineered genetic circuits. This is the case of one of
the first practical examples of synthetic biology: the
Repressilator [27]. The fluctuations they found involve
non-linear feedback mechanisms that lead to complex
behaviours. The Repressilator is a circular system of
three genes, arranged in a feedback loop that results in
oscillatory behaviour and in which products sequential-
ly inhibit the expression of the next gene. Elowitz and
Leibler discovered that the oscillations were ruled by
marked fluctuations in their period and magnitude and
hypothesised that stochastic behaviour in gene expres-
sion was responsible for these effects. It is important to
add that the stochastic fluctuations found in the
Repressilatorwere in fact unwanted perturbations, mud-
dling deterministic behaviour.What is interesting is how

it triggered the enquiry to modify the design of the
Repressilator in order to achieve more robust behaviour.
Particularly fascinating for the researchers was the ques-
tion of whether the stochastic fluctuations they detected
could also perform a functional role. In later research
within synthetic biology, noise based on stochastic fluc-
tuations gained a functional status [28]. In another ex-
periment (unequivocally oriented towards the control of
fluctuations) Becskei and Serrano [29] demonstrated
that engineering a circuit with negative feedback could
decrease cell-to-cell variability in expression. The pro-
cess of pattern formation in living systems is also of
capital interest to synthetic biologists attempting to de-
velop living tissue in the laboratory. Synthesised tissues
could have innumerable potential medical applications,
but in order to engineer living tissues, researchers need
to understand the genesis of pattern formation in living
systems. Recently, Karig et al. [30] engineered bacteria
that, when incubated and grown, exhibited stochastic
Turing patterns. It is the first in vivo proof of the
principle that patterns can be stabilised by noise [31].
Turing patterns can be spots, stripes or spirals that arise
naturally in a species. In 1952, Turing’s groundbreaking
paper “The chemical basis of morphogenesis” provided
a theory for the formation of patterns in systems under-
going reaction and diffusion of their ingredients; this is
so-called a reaction–diffusion theory of morphogenesis:
stationary chemical patterns can be achieved from a
system of two different interacting molecules (called
morphogens) if they have specific characteristics [32].
One is an “activator”, which is autocatalytic and so
introduces positive feedback. The other is an “inhibi-
tor”, which represses the autocatalysis of the activator,
and so enhances negative feedback. It is essential that
they have different rates of diffusion: the inhibitor must
be faster. Turing patterns were originally observed in
some specific chemical reactions, but such patterns have
proven very difficult to verify in biological systems.
Goldenfeld explains that the problem with Turing’s
mechanism is:

that it hinges on a criterion that isn’t satisfied in
many biological systems, namely that the inhibitor
must be able to move much more quickly than the
activator. For example, if instead of chemicals, we
were looking at two creatures in an ecosystem,
like wolves and sheep, the wolves would need be
able to move around much faster than the sheep to
get classic Turing patterns. What this would look4 Please note that I am not talking of physical invariance/stability.
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like, you would first see the sheep grow in num-
ber, feeding the wolves, which would then also
grow in number. And the wolves would run
around and contain the sheep, so that you would
get little localized patches of sheep with the
wolves on the outside. That’s essentially the
mechanism in animal terms for what Turing dis-
covered. [33]

In their recent research, Karig et al. [30] devised a
theory of stochastic Turing patterns, wherein patterns
develop from the noise of stochastic gene expression
instead of relying on a high inhibitor–activator ratio.
The researchers used synthetic biology to engineer bac-
teria, based on the activation–inhibition idea from Tu-
ring. They built a maximally exhaustive stochastic mod-
el of the process occurring in these synthetic pattern-
forming gene circuits, and they established a compari-
son between the theoretical predictions with what the
bioengineers observed in the petri dishes. Resorting
again to the analogy of wolves and sheep, Goldenfeld
addresses the issue of the speed difference between the
activator and the inhibitor by asking:

what happens if there is only a small number of
sheep, so that there are large fluctuations in pop-
ulation numbers? Now you get processes where
sheep die at random. And we discovered, when
you give birth to randomness, that actually drives
the formation of stochastic Turing patterns.” […]
“The theory of stochastic Turing patterns doesn’t
require a great difference in speed between the
prey and the predator, the activator and the inhib-
itor. They can be more or less the same, and you
still get a pattern. But it won’t be a regular pattern.
It’ll be disordered in some way. [33]

Turing patterns can in fact be achieved even in situ-
ations where you would not expect to be able to observe
them, but they are disordered patterns—stochastic Tu-
ring patterns. Noise causes the formation of transient,
stochastic Turing patterns for parameter values in which
deterministic patterns do not form. In this case, it is the
noise of stochastic gene expression that originated these
patterns. These results show that Turing-type pattern-
forming mechanisms, if driven by stochasticity, can
potentially underlie a broad range of biological patterns.
These experiments provide the groundwork for a unified
portrait of biological morphogenesis, emerging from the

compound of stochastic gene expression and dynamical
instabilities.

Even though these different research projects con-
firmed that noise in gene expression is important and
could even be controlled, the molecular basis for the
perceived variability remained unclear. Elowitz et al.
[34] and Ozbudak et al. [35] were the pioneers exploring
the reasons behind stochastic gene expression.

Distinction Between Intrinsic/Extrinsic Noise
and Stochastic Pulsing

Elowitz et al. introduced the concepts of extrinsic and
intrinsic noise in gene expression (analysed mathemat-
ically by [36]). The overall variability in gene expres-
sion within an isogenic population (those characterised
by substantially identical genes) is described by biolog-
ical noise. The gene expression in these populations is
not consistent from cell-to-cell, even in cases of popu-
lations with a stable average expression level or steady-
state. This occurs because of the variations in “‘hard-
ware’ units, such as transcriptional–translational ma-
chinery and regulatory molecules (resulting in extrinsic
noise), as well as the inherent stochasticity attributed to
the random nature of single-molecule kinetics (resulting
in intrinsic noise).” ([37], p. 384). These are the two
principal typologies of biological noise that have been
defined within the realm of systems biology. These two
kinds of noise highly enrich the phenotypic heterogene-
ity of genetically identical populations.

According to Elowitz et al. [34] extrinsic noise in
gene expression is caused by cell-to-cell differences.
These differences between cells, whether in local envi-
ronment or in the concentration or activity of any con-
dition that influences gene expression, will cause extrin-
sic noise. This entails the fluctuations in the volume or
activity of molecules such as the proteins that influence
the regions of DNA or the enzymes that synthesise
DNA, which in turn produce subsequent fluctuations
in the output of the gene. These fluctuations are
regarded as sources of extrinsic noise that are global to
a single cell but deviate from one cell to another. That is
to say, extrinsic noise indicates the evidence that a cell is
not an autonomous thing; it is ingrained in an organism
and sustains links with it by integration and regulation
mechanisms in various directions.

On the other hand, intrinsic noise refers to the sto-
chastic fluctuations within the system being considered.
Generally, they are the product of the inherently
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probabilistic nature of the underlying biochemical reac-
tions. In other words, it is called intrinsic noise as it is
originated from the very nature of elements of the sys-
tems and not from external disturbances. Determined by
the structure, reaction rates, and species concentrations
of the underlying biochemical networks, biological in-
trinsic noise is directly correlated to the expression of a
single gene. The reason for this noise is the fact that all
transcription and translation events have their origin in
stochastic collisions between the components of the
transcription and translation machinery of each gene.
Thus, the same gene will almost never be expressed at
the exact same time in two different cells.

Noise-dependence is also a key factor in the dynamic
cell reactions to varying environmental conditions. Liv-
ing organisms respond and react to changes in their
environment. They do so by decoding the information
contained in these changes; this entails stochastic pulses
in activation and deactivation of regulatory factors with-
in a population. Negative and positive feedback are
characteristic kinds of regulation in genetic networks.
Stochastic pulsing is the result of the interaction be-
tween the positive and negative feedback loops of such
systems [38], where the negative feedback loop pro-
duces pulses and the positive feedback loop serves to
amplify them. Additionally, the fluctuations arising out
of noise appear to be an intrinsic attribute of gene
expression, as can be noticeable in artificial cells made
up of cell membrane-mimetic vesicles. Synthetic biolo-
gy needs a proper understanding of cellular noise—
considering that its goal is to engineer gene circuits with
well-defined functional properties. We gain understand-
ing about the regulatory mechanisms that tune biologi-
cal noise in natural networks from the application of
synthetic biology tools in the research of the diverse
components of stochasticity, via the analysis, control
and exploitation of biological noise (e.g. [26, 37]). If
noise can be a positive, enhancing factor in a system’s
robustness, this could support the design of innovative
synthetic devices, with potential benefits in multiple
fields around biotechnology.

The “Information Metaphor Falsehood”
and the Glorification of Noise

Both the field of epistemology [28, 39, 40] as well as
philosophy of biology [16–18, 41] have recently raised
concerns about the dominance of reductionism in the

field of biology, and in particular biological engineering.
Stressing as well a problem of nomenclature, when from
these disciplines, we see examples of what is called
noise that in fact might be randomness playing a posi-
tive role for an organism. This would conform to an
image of biological phenomena which match up with
physical explanations [18], so there is a reduction of the
theories of the special sciences to fundamental physical
theories. Epistemic reductionism would assume that
even complex systems share the same basic processes
which are mechanistic, and could be understood in
terms of the behaviour of micro-physical entities.

In a gesture against this epistemic reductionism
Perret and Longo (Ibid, p. 1) state:

[T]he adoption of information in biology is an
erroneous transposition from a specific mathemat-
ical domain to one where it does not belong.
Indeed, the mathematical framework of the infor-
mation theory is too rigid and discrete to fit with
biological phenomena. Therefore, information in
biology represents an inappropriate metaphor.

They maintain that the breeding ground for our cur-
rent Information Age is the theory of the elaboration of
information (Turing-Kolmogorov) [42] and the theory
of the transmission of information (Shannon-Brillouin)
[43, 44], both based on computing discrete values, but
wrongly assuming the “independence of the encoding
from its material embodiment” ([18], p. 3). They state
that there is no discrete informational value for any part
of a biological system but, on the contrary, only a
context-specific meaning. They elaborate a critique of
the current trend in genetics which is characterised by a
“central dogma” circumscribed by a “genocentric view
of DNA” ([19], 43) which considers the process of gene
expression as a unidirectional flow of information. This
has the result that any other variables are understood and
processed as noise, and any unpredictable outcomes are
understood and processed as results of noise. Such a use
of the concept in Longo’s view is an illegitimate and
misleading overextension of the term “noise”. They find
an example of this in Monod’s well known statement:
“[F]rom a source of noise natural selection alone and
unaided could have drawn all the music of the bio-
sphere.” ([21], p. 118).

We cannot argue against the evidence that a computer
(Turing) or a cable (Shannon) implies material
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determinations that differ fundamentally from the con-
tinuous dynamics that take place in the morphological
constitution of a biological organism. Perret and Longo
rightly warn that applying the mathematical framework
of the information theory entails a theoretical account of
Laplacian predictability “that opposes determination to
noise and that is largely superseded, even in classical
physics, by the modern theory of dynamical systems
[…]. [A]pplying information theory to biology is not
free from the attitude that tries to reduce complex bio-
logical systems to deterministic systems” ([18], p. 5).
However, the allegation of a scientifically erroneous
exportation of theories of elaboration and transmission
of information to biology (as a gesture of methodolog-
ical reductionism) fails to acknowledge that it is not the
case that applying the metaphor of computation/
information to biology is wrong but what it is that the
wrong image of computation/information that was ap-
plied. This is because what constitutes information is
locally determined by the process of which its epistemic
metarepresentation forms part. Information can never be
meaningfully considered in isolation; it must always be
seen in the context of its language processing system
and the work module that this is in turn connected with
(and this is the reason that for Shannon information is an
inadequate measure of biological information). As Wil-
kins [19] explains, Perret and Longo argue that in op-
position to reductionist and deterministic images of
biological processes as composed of generic particles
and discrete data points, we should make a case for the
specificity of the material arrangement of living systems.
Instead of understanding biological systems as “noise-
immunised informational processes, the ‘default state’
of the living (on analogy with Galileo’s principle of
inertia) should be understood as (random) variability”
(Ibid, p. 43), and biological organisation as the
sustainment and dissemination of materially specific
constraints which render that randomness, so that any
element of the system does not contain a discrete infor-
mational value but a context specific meaning.

According to Longo [16], a system is robust when it
resists noise. This is particularly true of living systems,
where randomness has a functional role that contributes
(in an essential way) to the structural stability of system
dynamics. Random mutation and copying errors in ge-
netic replication have also been theorised as noise; how-
ever, Longo et al. argue that this kind of variability is so
functional in biological evolution that describing it as
noise is a spurious scientific characterisation. Longo

understands that noise refers to small (and frequent)
fluctuations (2018) in general, which may actually dis-
turb the achieved stability of a biological system. He
argues that we should not call these intrinsically random
aspects of onto-phylogenesis [16] noise, but rather con-
sider them indispensable components of stable biologi-
cal complexity. For him, randomness is so intrinsic to
the evolutionary stability of those systems that it can be
argued there is no noise for such systems. Noise is
recognised by Longo as an information-theoretic notion,
totally unsuitable for theorising in the realm of biology.
Moreover, he maintains that if there is a productive role
for noise, we should replace the term “noise” with
another concept that would also encapsulate random-
ness and model deviation as playing a functional role by
stimulating variability and diversity. But is this use of
the notion of randomness in the organisation of infor-
mation an instance of the functionality of noise?

In order to proceed with this clarification, I will first
develop an ultimately problematic idea initially articu-
lated by René Thom and Robert Chumbley [20]: ran-
domness and noise are relative to the specification of a
scale and language for analysis. I argue that Thom’s
understanding of noise as subjective or belonging only
to the process of conceptualisation functions as a pro-
ductive argumentative foil through which to rehabilitate
noise as a concept applicable to certain cases emerging
from (synthetic) biology. Thom’s approach, which
stands in explicit contrast to Darwinism, thus remains
fruitful if we understand it beyond the scope of his
Laplacian Worldview.

Central to Thom’s argument is a critique of
Darwin’s notion of “descent with modification”
([45], p. 171) for making “an illegitimate use of
chance” (Thom 1994, p. 12). Darwin’s principle is
premised on the “extreme sensitivity” ([45],
Chapter 5) of biological dynamics to minor changes
in external and internal conditions. For Darwin, ran-
dom variation or noise is at the core of variability and
diversity production in evolution, which makes selec-
tion and, actually, life possible (and understandable).
Thom extended this critique of Darwin to Prigogine,
Monod and other “fetishists” of noise. Thom’s
counter-argument is that noise is in our process of
conceptualisation. Moreover, he explicitly claims that
intelligibility cannot include randomness as an intrin-
sic component of the analysis of a system’s dynamics.
He maintains that “the signal-noise distinction is then
fundamentally subjective” (1994, p. 20).
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Where Is Noise Located?

I saw the earth in the Aleph and in the earth the
Aleph once more and the earth in the Aleph…
([46], p. 151)

Thom’s position runs counter to the understanding of
randomness and noise I wish to argue for. Contra Thom
and Prigogine, Longo contends that randomness is nei-
ther in nature (Prigogine) nor exclusively in the theories
that we use to talk about nature (Thom). Rather, Longo
argues it is in the interface between our theoretical
proposals and reality, which is whatever we may access
by measurement and by measurement only [17]. That is,
Longo considers that randomness appears as a result of
measurement. Measurement is understood by him as the
classical and quantum interface between our human
computational models and the world, and is either treat-
ed as epistemic (typically, we expect causes for the
fluctuations) or intrinsic to the theory—quantum me-
chanics contemplates some acausal phenomena found at
measurement. According to this, Longo (personal com-
munication, 2018) sees randomness located at the inter-
face, where measurement, by various a priori principles
grounding each theory, is either indeterminate or
approximate.

Yet if noise and stochastic processes are closely
linked together and all processes in nature are funda-
mentally stochastic [47], where this interface would
credibly lie? Stochastic processes are frequently
neglected in the macroscopic world due to the law of
large numbers, which states that a given random opera-
tion, provided some initial constraints, will tend to even
out towards an average result the higher its number of
iterations. While this is understandable for systems at
equilibrium, where the relative magnitude of fluctua-
tions for a system with N degrees of freedom scales as
1/√N, the central limit theorem does not always apply
(Ibid). Biology deals with living systems that are man-
ifestly non-equilibrium, and even macroscopic systems
can exhibit anomalously large fluctuations [48]. But we
could argue that randomness is only at the interface
when made relative to a particular information process-
ing model. Model as regards its distribution of subjec-
tive and objective constituents can be considered an
epistemic truth because it is relative to measurement
and the capacity of an information-processing agent to

predict, but this does not entail a denial of its ontological
status—a process/event/object has an objective degree
of randomness for any computational system relative to
its computational power. There are various measures of
randomness/complexity that are objective because they
are true for any information processing system, such as
Chaitin-Kolmogorov complexity [49–51]. Kolmogorov
complexity theory or algorithmic information theory
states the minimum amount of information you need
to replicate a given signal. It could be understood as the
shortest computer program that produces a certain be-
haviour. An infinite string of 0s is very simple: nomatter
how long it is, it is just one character. The sequence
“8.1446925...” is more complex; it might look random,
but we could generate a relatively elementary program
to reproduce it to any given level of precision. The
shortest length description gets the picture about the
objective degree of randomness of a sequence/object,
but the randomness still is relative to the information
processing system and comes into view, at the interface
between the observer and the sequence/object. We can
draw a parallel between this and the problem of the
ontological status of information: the world is informa-
tional but you need information processing for informa-
tion to exist. Is it credible to make any sort of distinction
between a theoretical proposition and a reality which is
definable only and exclusively in terms ofmeasurability,
i.e. a mathematisable reality?

I argue that even if randomness is located at the
interface constituted by the computational bond of the
measuring/cognising mind plus body, this should be
considered part of the nature wherein measurement
cannot but be applied. If this point is accepted, more-
over, then what is there for the so-called interface to
mediate? Between what, that is, does it intervene, and
from where?

Final Remarks on the Definitional Spectrum
of Noise

In the “The ‘Information Metaphor Falsehood’ and the
‘Glorification of Noise’” section, we acknowledged that
there is no discrete informational value for any part of a
biological system. For this reason, a taxonomical clas-
sification of the different types of noise or its potential
interchangeability with stochasticity, randomness, vari-
ation, variability or uncertainty does not seem to be
advisable.
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We should now make a technical distinction (as per
different fields of research and where they are actually
useful) between the terms “variation”, “variability”,
“randomness” and “uncertainty”.

We can conceive variability and uncertainty as
two different classes of variation, each involving
different sources and kinds of randomness. Authors
such as Van Belle [52] understand variability as
referring to natural variation, whereas uncertainty
refers to the degree of accuracy with which a quan-
tity is measured. According to Bravi and Longo [16]
randomness “may be understood as unpredictability
with respect to an intended theory” and measure-
ment. For Longo it is a constructive or enabling
constraint5; similar to Kauffman et al.’s [3] informa-
tion, “constraints are information and information is
constraints” but randomness (as well as noise) dif-
fers insofar as it presents a limit to predictability.
Longo tries to make this limit precise in biology as
“a component of production of an unpredictable”
and “constructive production of diversity”. The
overall problem of noise should be then reframed
into an

… alternative epistemology of living beings
which accounts for the structures of determination
inherent to biology and for an autonomous defini-
tion of randomness sticking to this idea, history
and contexts, as well as internal constraints of
integration and regulation mechanisms, can be
thought to constrain possible evolutionary paths
that dynamically arise in the interaction with the
environment rather than to determine the outcome
(as determinism requires that the same effects
derive from the same causes). ([16], p. 9)

According to Longo et al., as soon as we perceive
what commonly is understood as noise taking a
constructive role that leads the system towards ro-
bustness, they advocate for moving it into the cate-
gory of functional randomness. The distinction be-
tween noise and randomness in its constructive role
is thus of paramount importance. In agreement with
Wilkins, Longo and his collaborators, I contend that
they are not interchangeable. Rather, I argue that
randomness is noise when it is interfering with a

system, but as soon as it is integrated by the system
as a stabilising element it becomes problematic to
use the concept of noise, precisely because it is no
longer perturbing the system. Thus, the distinction
between the two is in reference to their functional
roles. For Bravi and Longo (Ibid, p. 17) randomness
in physics is “non deterministic or deterministic non-
predictability within a pre-given phase space” while
in biology randomness is “intrinsic indetermination
given also by changing within a pre-given phase
spaces (ontogenesis and phylogenesis)”.

We do need an alternative definition of noise as
an enabling constraint, at once biophysical and cog-
nitive, for the functioning of complex adaptive sys-
tems: a definition that helps us to overcome our own
slippery understanding of the “botched dialectic”6

([19], p. 7) that makes perturbations below the
threshold of measurement and self-organising sys-
tems (that create spontaneous “order out of random-
ness”) intrinsic components of everything we quali-
fy as something producing freedom, novelty, crea-
tivity and invention, in opposition to reductionist
perspectives that align scientific knowledge with
the characterisation of systems in terms of mecha-
nistic determinism.
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