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Abstract
For a Calabi–Yau variety X , Oguiso (Math Res Lett 25(1):181–198, 2018) gave a
useful criterion for primitivity of a self-map of X in terms of the associated linear map
on the Néron–Severi space of X . In this short note, we prove a variant of Oguiso’s
criterion and use it to verify primitivity of a certain birational automorphism of a
Calabi–Yau threefold, to which Oguiso’s original criterion does not apply.

1 Introduction

The purpose of this note is to prove a variant of a criterion of Oguiso [9] verifying
that a birational self-map of a Calabi–Yau variety is primitive. Roughly speaking,
a map is primitive if it does not “factor through” a birational automorphism of a
lower-dimensional variety; in studying dynamics of birational maps, this is a natural
condition to impose in order to exclude uninteresting examples such as product maps.
The precise defintion of primitivity was first formulated by Zhang [12], and is stated
by Oguiso [9] as follows:

Definition 1.1 Let X be a projective variety. A rational fibration means a dominant
rational map π : X ��� B where B is a projective variety and π has connected fibres.
The fibration π is nontrivial if 0 < dim B < dim X .

Let f : X ��� X be a birational map. A rational fibration π : X ��� B is called f -
equivariant if there is a birational map fB : B ��� B such that π ◦ f = fB ◦ π . The
birational map f is called primitive if there does not exist a non-trivial f -equivariant
rational fibration π : X ��� B.

A.P-S. and I.K. were supported by EPSRC grant EP/W026554/1.

B Inder Kaur
inder.kaur@glasgow.ac.uk

B Artie Prendergast-Smith
a.prendergast-smith@lboro.ac.uk

1 School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, UK

2 Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11565-024-00506-8&domain=pdf
http://orcid.org/0000-0003-2560-7784


ANNALI DELL’UNIVERSITA’ DI FERRARA

For a Calabi–Yau variety X , Oguiso [9, Theorem 1.2] gave a useful criterion for
primitivity of a birational map f : X ��� X in terms of the associated linear map f ∗
on the Néron–Severi space of X . The precise statement is Theorem 1.3 below; roughly
speaking, assuming general conjectures of minimal model theory, the criterion asks
that f ∗ should have no nontrivial invariant subspaces defined overQ. In Theorem 1.4,
we will prove a variant of Oguiso’s criterion, replacing his linear algebraic criterion
on f ∗ by one involving convex geometry.

We will also be interested in the dynamical complexity of a birational map, as
measured byDinh–Sibony’s notion of dynamical degrees [2]. To keep our presentation
simple, we only define the first dynamical degree of a birational map f : X ��� X ,
and moreover give a definition that is valid only in the special case when f is an
isomorphism in codimension 1.

Definition 1.2 Let f : X ��� X be a birational map which is an isomorphism in
codimension 1, and let f ∗ : N 1(X) → N 1(X) be the linear map induced by pullback
of divisors. The first dynamical degree d1( f ) is the spectral radius of the map f ∗, in
other words,

d1( f ) = max
{|λi ( f ∗)|}

where the maximum is taken over the set of all eigenvalues {λi ( f ∗)} of the linear map
f ∗.

As motivation, in the case where f : X → X is biregular, the Gromov–Yomdin
theorem [3, 11] says that the topological entropy of f equals

l( f ) := log max {di ( f ) | i = 1, . . . , dim X − 1} ;

in the birational case Dinh-Sibony showed that l( f ) is an upper bound for topological
entropy. So maps with d1( f ) > 1 can be considered as candidates for having positive
topological entropy.

Wenow introduce somenotation and terminology in order to give precise statements
of Oguiso’s criterion and our variant of it.

We work throughout over C. For a Q-factorial projective variety X , we write
N 1(X)Q to denote the vector space of divisors with rational coefficients modulo
numerical equivalence, and N 1(X) to denote N 1(X)Q ⊗R. The pseudoeffective cone
Eff(X) means the closed cone in N 1(X) generated by the classes of effective divisors.
A divisor D on X ismovable if the intersection of all effective divisors in the complete
linear system |D| has codimension at least 2 in X . The closed movable coneMov(X)

means the closed cone in N 1(X) generated by the classes of movable divisors.
A projective variety X is a minimal Calabi–Yau variety if X is Q-factorial and

terminal, we have h1(OX ) = 0, and the canonical divisor KX is trivial. We say a
minimal Calabi–Yau variety is m-abundant if, for any movable effective divisor D,
there is another minimal Calabi–Yau variety X ′ and a birational map g : X ′ ��� X
such that g∗D is semi-ample on X ′. By the existence of log minimal models and the
log abundance theorem in dimension 3 [5, 7, 10], every minimal Calabi–Yau variety
of dimension 3 is m-abundant.
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We can now state Oguiso’s criterion [9, Theorem 1.2]:

Theorem 1.3 (Oguiso). Let X be a minimal Calabi–Yau variety of dimension at least
3, of Picard number at least 2, and which is m-abundant. Let f : X ��� X be a
birational map such that f ∗ acts irreducibly on the Q-vector space N 1(X)Q. Then f
is primitive.

To state our variant, we fix some more terminology. Let V be a vector space and
g : V → V a linear endomorphism.The fixed subspace of gmeans the largest subspace
U ⊂ V such that gu = u for all u ∈ U . A subspace W ⊂ V is g-stable if gw ∈ W
for all w ∈ W . A face F a cone K is proper if F 	= {0} and F 	= K . We will show
the following:

Theorem 1.4 Let X be aminimal Calabi–Yau variety of dimension at least 3, of Picard
number at least 2, and which is m-abundant. Let f : X ��� X be a birational map
such that:

• the fixed subspace of f ∗ intersects the cone Eff(X) trivially;
• at least one of the following is true:

– Mov(X) does not have a proper f ∗-stable face defined over Q;
– Eff(X) does not have a proper f ∗-stable face defined over Q.

Then f is primitive.

Section 2 of this note will outline Oguiso’s proof of Theorem 1.3, and explain how
the proof can bemodified to give the statement of Theorem 1.4. In Sect. 3 wewill apply
this variant of the criterion to verify primitivity of a certain birational automorphism
to which Oguiso’s original form of the criterion does not apply. We also show that the
first dynamical degree of this map is strictly greater than 1.

2 Outline proof of Theorem 1.3 and proof of Theorem 1.4

In this section we outline Oguiso’s proof of Theorem 1.3. In particular we identify
those points in the proof where the assumption of irreducibility of f ∗ is used. We
then explain how to modify the proof so that it works under the weaker assumptions of
Theorem1.4. In various places in the proof, we take ν : X̃ → X to be a resolution of the
singularities of X and of the indeterminacy of π : X ��� B, take π̃ = π ◦ ν : X̃ → B,
and define X̃b to be the fibre of π̃ over a point b ∈ B.

Step 1: The first step is to prove the weaker statement that, under the hypotheses
of Theorem 1.3, there can be no nontrival f -equivariant fibration π : X ��� B such
that κ(X̃b) = 0. Oguiso shows that, in this situation, we can assume after replacing
X with a birational model X ′ that π is a morphism, and that the nontrivial subspace
π∗N 1(B) ⊂ N 1(X) is stable for the action of f ∗. This contradicts the assumption of
irreducibility of f ∗, showing that no such π exists.

Step 2: The next step is to show that if P is a very general point of X , then the
two-way orbit { f n(P) | n ∈ Z} is well-defined and is a Zariski-dense subset of X . As
a corollary of a result of Lo Bianco [8, Proposition 4.5.1] also proved by Oguiso [9,
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Proposition 2.5], this implies that for π : X ��� B as before, the general fibre X̃b is not
of general type. The proof of the first assertion uses a result of Amerik–Campana [1]
which shows that there is a dominant rational map ρ : X ��� C to a smooth projective
variety C such that ρ ◦ f = ρ and ρ−1(ρ(P)) is the Zariski closure of the two-way
orbit of P , for very general P . This implies that ρ∗N 1(C) is a well-defined subspace
of N 1(X) on which f ∗ acts as identity, again contradicting irreducibility of f ∗ unless
N 1(C) is trivial, i.e. unless C is a point and the orbit of P is Zariski-dense.

Step 3: The final step of the proof is to consider π : X ��� B a nontrivial f -
equivariant fibration, and to take the relative Iitaka fibration over B to get g : X ��� K .
By Step 2 we know that X̃b does not have general type, implying that dim K < dim X ;
also by definition we have dim K ≥ dim B. So this is again a nontrivial f -equivariant
rational fibration. Moreover, by construction of the Iitaka fibration it has the key
property that κ(X̃k) = 0 for a general point k ∈ K . The existence of such a fibration
contradicts the conclusion of Step 1, and so the proof is complete.

To generalise Oguiso’s proof, we need to show that Steps 1 and 2 above still work
under the weaker hypotheses of Theorem 1.4. Let us deal with Step 2 first. Keeping
the notation as above, we have the following:

Lemma 2.1 Suppose C is not a point. For any nonzero basepoint-free divisor D on C,
we have that ρ∗(D) is a nonzero effective divisor on X. In particular, the subspace
ρ∗N 1(C) intersects the cone Eff(X) nontrivially.

Proof By definition ρ∗ = ν∗ρ̃∗D where ν : X̃ → X is a resolution as before and
ρ̃ : X̃ → C is the induced morphism.

Now let D be a basepoint-free divisor class on C . Then ρ̃∗D is basepoint-free on
X̃ . In particular, we can choose an effecitve divisor in this class which is distinct from
the union of all exceptional divisors of ν. Then ν∗ρ̃∗D is an effective and nonzero
divisor on X . ��

We then get the conclusion of Step 2 above, under the weaker hypotheses of The-
orem 1.4. That is, if f : X ��� X is a birational map such that the fixed subspace
f ∗ intersects the effective cone Eff(X) trivially, then for a very general point closed
point P ∈ X the points f n(P) are defined for all n ∈ Z and the two-way orbit
{ f n(P) | n ∈ Z} is Zariski-dense in X .

Next we turn to Step 1. To adapt the proof to work under our weaker hypotheses,
we note that in the above setup, the f -stable subspace π∗N 1(B) contains an f -stable
full-dimensional cone K = π∗Nef(B). The relative interior of K consists of divisor
classes which are semi-ample on the birational model X ′, and hence movable on X
itself. So if B is not a point, the cone K is a nonzero f ∗-stable face of Mov(X) defined
overQ. Moreover if dim B < dim X then X is covered by curves on which all divisors
in K have degree 0, so no divisor whose class lies in K can be big. Therefore in this
case K is also a proper f ∗-stable face of Eff(X) defined over Q. Therefore, under
the hypotheses of Theorem 1.4, we conclude that there is no nontrivial f -equivariant
fibration π : X ��� B with κ(X̃b) = 0.

Finally, Oguiso’s argument in Step 3 does not use the assumption of irreducibililty
of f ∗, and so this step of the argument goes through unchanged. This completes the
proof of Theorem 1.4.
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3 Example

In this section, we give an example of a smooth Calabi–Yau variety X of dimension
3 with a birational map ϕ : X ��� X to which Oguiso’s Theorem 1.3 does not apply
but Theorem 1.4 does. This criterion shows that ϕ is a primitive birational map, and
we will also see that it has first dynamical degree d1(ϕ) strictly greater than 1.

Let X be a general complete intersection of 3 hypersurfaces of degree (1, 1, 1) in
P := P2 × P2 × P2. Bertini’s theorem shows that X is smooth, and the Lefschetz
hyperplane theorem shows that X is simply connected, in particular H1(OX ) = 0,
and H2(OX ) = 0 also. By adjunction we have KX = (KP)|X ⊗ detNX/P = OX .
So X is a smooth Calabi–Yau variety. Let πi : X → P2 denote projection onto the
i-th factor, and let Li = π∗

i (H) where H is the class of a line in P2. Note that

Pic(X) = ⊕3
i=1 Z · Li .

The following proposition gives the basic geometric properties that we need for the
fibres of the morphisms πi . The proofs are straightforward but tedious, so we defer
them to the end of this section.

Proposition 3.1 The fibres of πi are 1-dimensional. For each i , there is an open set
Ui ⊂ P2 such that P2 \ Ui consists of finitely many points, and for p ∈ Ui , the fibre
π−1
i (p) is reduced and irreducible.

By adjunction, the smooth fibres of each of the maps πi : X → P2 are elliptic
curves. For each i , let Xηi denote the generic fibre of the morphism πi . We have

Pic(Xη) ∼= Pic(X)/Vert(πi )

where Vert(πi ) denote the subgroup of Pic(X) spanned by effective divisors D such
that πi (D) 	= P2. By Proposition 3.1 any such D is a multiple of Li , so Pic(Xη) ∼=
Pic(X)/Li .

Let Ei j denote the restriction of the line bundle L j to Xηi . For j 	= i we have

L j · L2
i · (L1 + L2 + L3)

3 = 3

so Ei j is a line bundle of degree 3 on Xηi .
Now let i, j, k be any ordering of the indices 1, 2, 3. Then the line bundle Ei j −Eik

has degree 0 on Xηi . In general for a curve C and y ∈ Pic0(C), translation by y acts
on Pic(C) by the formula

x �→ x + (degx) y.

In particular taking C = Xηi and y = Ei j − Eik we have

Ei j �→ 4Ei j − 3Eik

Eik �→ 3Ei j − 2Eik
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The translation action of Pic0(Xηi ) on Xηi extends to a birational action on X . We
denote by ϕi jk : X ��� X the birational map corresponding to translation by Ei j −Eik .
Since X is smooth and KX is trivial, by [6, Theorem 3.52] the map ϕi jk in fact extends
to a pseudo-automorphism of X over P2, that is, a birational automorphism which is
an isomorphism in codimension 1 and preserves the fibration πi .

Fix i = 1, j = 2, k = 3. By the previous displayed equations the linear map
(ϕ123)∗ on N 1(X) is represented by a matrix of the form

M123 =
⎛

⎝
1 m n
0 4 3
0 −3 −2

⎞

⎠

for some integers m, n.
If now Mi jk represents the linear map (ϕi jk)∗ we observe that on one hand, M−1

123 =
M132, while on the other hand, M132 = T23M123T23 where T23 is the permutation
matrix corresponding to the transposition (23). This implies that m = 2n.

To determine the missing integer m, we can proceed as follows. Let H denote a
general line in P2, and let S = π−1

1 (H). Then S is a smooth surface. The map ϕ123
preserves H and hence restricts to an automorphism of S, which we denote by ϕS .
Denote the restriction of the line bundle Li to S by 	i . For i = 1, 2, 3 we have
ϕS(	i ) = ϕ123(Li )|S . So in particular we have ϕS(	2) = m	1 + 4	2 − 3	3. Since
ϕS is an automorphism of a smooth surface, it preserves intersection numbers, so we
get

(m	1 + 4	2 − 3	3)
2 = 	2

2 = 3

hence m = 12. Since m = 2n this implies n = 6, so we have

M123 =
⎛

⎝
1 12 6
0 4 3
0 −3 −2

⎞

⎠

Identical arguments give that (ϕ231)∗ and (ϕ312)∗ are represented respectively by the
matrices

M231 =
⎛

⎝
−2 0 −3
6 1 12
3 0 4

⎞

⎠ , M312 =
⎛

⎝
4 3 0

−3 −2 0
12 6 1

⎞

⎠ .

After this paper was completed, we discovered that these matrices had been computed
previously by Hoff–Stenger–Yáñez [4, Example 4.2] by a different method.

Finally, the birational map of X that we are interested in is

ϕ : X ��� X

ϕ = ϕ123 ◦ ϕ231 ◦ ϕ312.
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The pullback map ϕ∗ : N 1(X) → N 1(X) is then represented by the matrix

M = (M123M231M312)
−1

=
⎛

⎝
−44 −330 −615
60 451 840
165 1230 2296

⎞

⎠

We can now verify the claimed properties of our example:

Proposition 3.2 The birational map ϕ : X ��� X is primitive with first dynamical
degree d1(ϕ) > 1.

Proof Using the matrix M above we compute that the characteristic polynomial of ϕ∗
is

χ(ϕ∗)(t) = det
(
ϕ∗ − t · Id)

= 1 − 2703t + 2703t2 − t3

and the eigenvalues are

λ1 = 1, λ2,3 = 1351 ± 780
√
3.

In particular we get that the first dynamical degree d1(ϕ) of the birational map
ϕ : X ��� X is

d1(ϕ) = 1351 + 780
√
3.

It remains to prove that ϕ is a primitive birational map; for this we use Theorem 1.4.
Note that since f ∗ has the rational eigenvalue λ1 = 1, it does not act irreducibly on
N 1(X)Q and so Theorem 1.3 does not apply.

To show that Theorem 1.4 applies in our example, we first verify the condition
concerning the fixed subspace of ϕ∗. The fixed subspace is of ϕ∗ is 1-dimensional,
spanned by the divisor class

D f ixed = L1 − 2L2 + L3.

Lemma 3.3 Let r be a nonzero real number. Then r D f ixed /∈ Eff(X).

Proof First consider a divisor class D = aL1 + bL2 + cL3 with a, b, c ∈ R. We
claim that if any two of a, b, c are strictly negative, then D /∈ Eff(X). To see this,
suppose for simplicity that a < 0 and b < 0. Let C3 be any fibre of π3 : X → P2.
Then L1 · C3 > 0 and L2 · C3 > 0, while L3 · C3 = 0. So we have

D · C3 = aL1 · C3 + bL2 · C3

< 0.
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On the other hand, since curves algebraically equivalent to C3 cover X , if � is any
effective divisor on X we have � · C3 ≥ 0. The same inequality therefore holds for
any class � ∈ Eff(X), showing that such a class D cannot belong to Eff(X).

Now consider the class D f ixed = L1 − 2L2 + L3. If r < 0, then r D f ixed has
two negative coefficients, so by the previous paragraph r D f ixed /∈ Eff(X). If r > 0,
then r D f ixed ∈ Eff(X) if and only if D f ixed ∈ Eff(X). Since the cone Eff(X)

is preserved by birational automorphisms, this implies that ϕ∗D f ixed ∈ Eff(X) for
every ϕ ∈ Bir(X). But using thematrixM123 abovewe compute that (ϕ123)∗D f ixed =
−17L1 − L2 + 4L3, which by the previous paragraph cannot be in Eff(X). ��

This proves that the birational map ϕ satisfies the first condition of Theorem 1.4.
To prove the second criterion, we can argue as follows. A 1-dimensional ϕ∗-stable
face of Eff(X) would span a 1-dimensional eigenspace, but we have already seen that
the unique nontrivial Q-eigenspace is the fixed subspace, which does not span a face
of Eff(X) say. So we can restrict our attention to stable faces of dimension 2. If F is a
2-dimensional ϕ∗-stable face of Eff(X), then its linear span is a 2-dimensional stable
subspace VF ⊂ N 1(X). Consider the dual linear map (ϕ∗)∨ on

(
N 1(X)

)∨ = N1(X).
The annhilator V⊥

F of VF would then be a 1-dimensional eigenspace of (ϕ∗)∨ defined
over Q; moreover, the pseudoeffective cone Eff(X) is dual to the cone of nef curves,
so this 1-dimensional eigenspace would contain the class of a nef curve.

Computation shows that the only such eigenspace is spanned by the vector v =
L∨
1 − 2L∨

2 + L∨
3 , where {L∨

1 , L∨
2 , L∨

3 } is the dual basis to L1, L2, L3. Any nonzero
multiple of v is therefore negative on at least one of the effective divisors L1, L2, L3,
so this eigenspace cannot contain the class of a nef curve. By the last paragraph, this
shows that there is no 2-dimensional ϕ∗-stable face of Eff(X) defined over Q. ��

To finish, we give the proofs of the properties of the fibrations πi that were claimed
in Proposition 3.1. Recall that X is a general complete intersection of 3 hypersur-
faces of degree (1, 1, 1) in P2 × P2 × P2. To fix notation say that F1, F2, F3 ∈
H0

(
P2 × P2 × P2, O(1, 1, 1)

)
and

X = {
([X0, X1, X2], [Y0,Y1,Y2], [Z0, Z1, Z2]) | Fα(Xi ,Y j , Zk)

= 0 for α, i, j, k = 1, 2, 3} .

For i = 1, 2, 3, letπi : X → P2 denote projection onto the i-th factor. To keep notation
simple we write the required proofs for the case i = 1; identical proofs work for i = 2
and i = 3.

Proposition 3.4 The fibres of π1 are 1-dimensional.

Proof Choose p ∈ P2 and denote by F p
i the form obtained by substituting homoge-

neous coordinates of p in place of X0, X1, X2 in the forms Fi . So the fibre π−1
1 (p)

equals the intersection F p
1 ∩ F p

2 ∩ F p
3 .

Firstwe claim that, for all p ∈ P2, the vector space span
(
F p
1 , F p

2 , F p
3

) ⊂ H0(P2×
P2, O(1, 1)) has dimension 3. To see this, write Fi = ∑

	i jkY j Zk for linear forms
	i jk in the variables X0, X1, X2. Then
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dimspan
(
F p
1 , F p

2 , F p
3

) = rank

⎛

⎝
	100 	110 · · · 	122
	200 	210 · · · 	222
	300 	310 · · · 	322

⎞

⎠ (p)

Since the 	i jk are general, the locus of points p ∈ P2 where this matrix drops rank is
empty.

Next, since span
(
F p
1 , F p

2 , F p
3

)
has dimension 3, F p

3 say does not vanish identically
on F p

1 ∩ F p
2 . So the only way that the fibre can have dimension 2 is if all of the F p

i
vanish on a surface S ⊂ P2 × P2 which is a component of a reducible complete
intersection of the zero-loci of two sections of O(1, 1). A standard dimension count
shows that the subset R ⊂ Gr(3, V ) parametrising linear systems whose base locus
contains such a component has codimension 7 in Gr(3, V ).

The linear system span(F1, F2, F3) defines a morphism

φ : P2 → Gr(3, V )

p �→ span(F p
1 , F p

2 , F p
3 )

where V = V = H0(P2 × P2, O(1, 1)). The group GL(9) acts transitively on
Gr(3, V ), so by Kleiman’s theorem the general translate of φ(P2) is transverse to the
codimension-7 subset R defined above, hence disjoint from it. By computation we see
that the action ofGL(9) on V corresponds to changing the choice of forms F1, F2, F3.
So the general translate equals φ(P2) for a suitable choice of forms F1, F2, F3. Hence,
for a general choice of forms F1, F2, F3, the fibres of π1 are all 1-dimensional. ��
Lemma 3.5 Let M denote the parameter space of complete intersection curves in
P2 × P2 which are defined by the vanishing of 3 sections of O(1, 1). The locus of
curves which are reducible or generically non-reduced has codimension 2 in M.

Sketch of proof The variety M is an open subset of the Grassmannian Gr(3, V ). The
dimension of V equals 9, so M has dimension 18. A curve parameterised by a general
point ofM has bidegree (3, 3). Now suppose that F is a reducible curve corresponding
to a point of M ; for simplicity assume it has 2 components. Then we have

F = Ci, j ∪ C3−i,3− j

where Cl,m denotes a smooth rational curve of bidegree (l,m) in P2 × P2 and the
intersection of the two components is a zero-dimensional scheme of length 2. We
claim that for each possible type of reducible curve, the space of such curves has
dimension at most 16.

We give full details in the case F = C2,3 ∪ C1,0; other cases are similar. Let
pri : P2 × P2 → P2 denote the projections to the two factors. The space of smooth
rational curves of bidegree (2, 3) has dimension 16. LetC be such a curve: then pr2(C)

is a cubic in P2, which must be rational and therefore has a singular point p. Now let
C ′ be the component of bidegree (1, 0). It is contained in a fibre pr−1

2 (q) for some q.
But C ∩ C ′ has length 2 and pr2 maps C isomorphically onto its image away from
pr−1

2 (p), so we must have C ′ ⊂ pr−1
2 (p). If pr2(C) has a node at p then C ′ must
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be the line joining the two points of pr−1
2 (p) ∩ C ; if pr2(C) has a cusp at p then C ′

must be the tangent line to C at the point pr−1
2 (p) ∩ C . In both cases C ′ is uniquely

determined by C , so the space of such curves has dimension 16. ��
Now we can complete the proof of Proposition 3.1.

Proposition 3.6 (=Proposition 3.1). The fibres of π1 are irreducible and generically
reduced in codimension 1.

Proof Again we consider the morphism

φ : P2 → M ⊂ Gr(3, 9)

p �→ span(F p
1 , F p

2 , F p
3 )

defined by our choice of 3 forms. Let S denote the subset of M parametrising curves
which are reducible or generically non-reduced. Lemma 3.5 shows that S has codi-
mension 2 in M . As before, the general GL(9)-translate of φ(P2) is transverse to R
and therefore R ∩ φ(P2) has codimension 2 in P2. Again, the general translate equals
φ(P2) for a suitable choice of forms F1, F2, F3.
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