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Abstract
Westudy the zero locus of the Futaki invariant onK-polystable Fano threefolds, seen as
amap from the Kähler cone to the dual of the Lie algebra of the reduced automorphism
group. We show that, apart from families 3.9, 3.13, 3.19, 3.20, 4.2, 4.4, 4.7 and 5.3 of
the Iskovskikh–Mori–Mukai classification of Fano threefolds, the Futaki invariant of
such manifolds vanishes identically on their Kähler cone. In all cases, when the Picard
rank is greater or equal to two,we exhibit explicit 2-dimensional differentiable families
of Kähler classes containing the anti-canonical class and on which the Futaki invariant
is identically zero. As a corollary, we deduce the existence of non Kähler–Einstein
cscK metrics on all such Fano threefolds.
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1 Introduction

The Futaki invariant was introduced by Futaki [9, 10] as an obstruction to the existence
of Kähler–Einstein metrics on Fano manifolds. Its definition extends to any compact
polarised Kähler manifold, and its vanishing is a necessary condition for the existence
of a constant scalar curvature Kähler metric (cscK for short) in a given Kähler class.

In this note, we study the zero locus of the Futaki invariant, seen as a map from the
Kähler cone to the dual of the Lie algebra of the reduced automorphism group (see
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Sect. 2 for the definitions). This locus is fully understood for Fano surfaces from the
works [21, 23, 24], which we recall in Sect. 2.1. Here we will focus on K -polystable
Fano threefolds. The description of this class of manifolds has seen recently great
progress, in particular with [1] (see also references therein).

Relying on a case by case analysis, our little contribution to “Fanography” is the
following:

Theorem 1 Let (X ,−K X ) be a K -polystable Fano threefold that belongs to family
N°N , with

N /∈ {3.9, 3.13, 3.19, 3.20, 4.2, 4.4, 4.7, 5.3}.

Then, the Futaki invariant of X vanishes identically on its Kähler cone.

The numbering in the above is the same as the numbering of the families of the
Iskovskikh–Mori–Mukai classification of Fano threefolds given in [1].

Note that when Aut(X) is finite or when the Picard rank ρ(X) = 1, the Futaki
invariant vanishes identically on the Kähler cone, as soon as X is K -polystable in the
second case. From the classification in [1], there exists 33 families of Fano threefolds
with ρ(X) ≥ 2 that admit members which are K -polystable with respect to the anti-
canonical polarisation and which have infinite automorphism group. We verify that
of these, all but 8 families have vanishing Futaki invariant for every K -polystable
member. Further, for every K -polystable member of the remaining 8 families, we
provide explicit 2-dimensional families of Kähler classes that contain c1(X) and on
which the Futaki invariant vanishes.

Theorem 2 Let (X ,−K X ) be a K -polystable Fano threefold that belongs to family
N°N , with

N ∈ {3.9, 3.13, 3.19, 3.20, 4.2, 4.4, 4.7, 5.3}.

Then, there is at least a 2-dimensional family of Kähler classes on X, containing
c1(X), where the Futaki invariant vanishes.

Note that this a 2-dimensional family in the actual Kähler cone of X . The Futaki
invariant of a vector field ν with respect to a class � rescales as the scaling factor to
the dimension of themanifold. Thus one always knows there is at least a 1-dimensional
family of Kähler classes near a given class with vanishing Futaki invariant, on which
the Futaki invariant vanishes. For the smooth Fano varieties considered in the above,
we show that the actual locus around the anti-canonical classwhere the Futaki invariant
vanishes is at least one dimension higher than this.

From the LeBrun–Simanca openness theorem ( [13, Section 2.3]), we deduce the
following corollary.

Corollary 3 Let X be a K -polystable Fano threefold with Picard rank ρ(X) ≥ 2. Then
X admits a 2-dimensional family of cscK metrics parametrised by a 2-dimensional
family of Kähler classes containing c1(X).
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The above uses LeBrun–Simanca’s openness of the extremal cone, togetherwith the
fact that an extremal metric is cscK precisely when the classical Futaki invariant van-
ishes. From the algebro-geometric perspective, assuming the Yau–Tian–Donaldson
conjecture to be true in full generality [7, 22, 26], this means that for the members of
the families considered in Theorem 1 with an arbitrary polarisation, and for the polar-
isations considered in Theorem 2, relative K -stability is equivalent to K -polystability
(see e.g. [18] for the relative version of K -stability and its relation to extremal Kähler
metrics).

Remark 1 For K -polystable members of the familiesN ∈ {4.2, 4.4, 4.7} with infinite
automorphism group, we actually show that there is a 3-dimensional family of Kähler
classes near −K X with vanishing Futaki invariant.

Remark 2 It would be interesting to find an example of Kähler–Einstein Fanomanifold
with Picard rank greater than two but with no non Kähler–Einstein cscK metric in
Kähler classes near the anticanonical one.

Remark 3 Our results should be compared with the recent [16], where the Futaki
invariant of Bott manifolds is studied. In contrast to our results, which guarantee the
vanishing of the Futaki invariant in many cases, it is shown in [16] that the only
Bott manifolds for which the Futaki invariant vanishes on the whole Kähler cone are
isomorphic to products of projective lines. The key observation to prove our results is
the existence of enough discrete symmetries that preserve every Kähler class on Fano
threefolds, which in the majority of the cases considered here will be responsible for
the vanishing of the Futaki invariant.

Notations and conventions

Throughout the paper, for a compact Kähler manifold X , we will denote by Aut(X)

(respectively Aut0(X)) its automorphism group (respectively the connected compo-
nent of the identity of the reduced automorphism group of X ), and by aut(X) the Lie
algebra of Aut(X). If Z ⊂ X is a subvariety (not necessarily connected), Aut(X , Z)

stands for elements in Aut(X) that leave Z globally invariant. We denote by KX the
Kähler cone of X . We will identify a divisor D withO(D), and use the notation c1(D)

for its first Chern class.

2 Preliminaries

Let X be a compact Kähler manifold, and � ∈ KX a Kähler class on X . We denote
the Futaki invariant of (X ,�) by

Fut(X ,�) : aut0(X) → C

v �→ − ∫
X fv,g scalg dμg,

where aut0(X) is the Lie algebra of the reduced automorphism group of X , g denotes
a Kähler metric with Kähler form in � and volume form dμg , fv,g is the normalised
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holomorphy potential of v with respect to g, and scalg denotes the scalar curvature of
g (see e.g. [4], [14, Section 3.1] or [11, Chapter 4] for this formulation of the Futaki
invariant, initially introduced in [9]).

We will be interested in K -polystable Fano manifolds, or equivalently Fano mani-
folds admitting a Kähler–Einstein metric of positive curvature by the resolution of
the Yau–Tian–Donaldson conjecture [6, 7, 22, 26]. For such manifolds, by Mat-
sushima’s result [15], and from Bochner’s formula (see [11, Section 3.6]), we have
aut0(X) = aut(X). We will therefore consider the Futaki invariant as a map

FutX : KX → aut(X)∗.

By construction, FutX vanishes on any class that admits a cscK metric, and it is then
straightforward that FutX ≡ 0 whenever X is a K -polystable Fano manifold with
Picard rank 1, or when the automorphism group of X is finite.

2.1 The case of smooth Del Pezzo surfaces

We refer here the reader to [17, Section 2] and [1, Section 2]. If X is a smooth Del
Pezzo surface with infinite automorphism group, then K 2

X ∈ {6, 7, 8, 9}. Moreover, it
is K -polystable and of Picard rank ρ(X) ≥ 2 if and only if X = P

1 × P
1 or K 2

X = 6,
i.e. when X is a blow-up of P

2 along three non-collinear points [21, 23]. In the first
case, X admits a product cscK metric in each class, and FutX ≡ 0, while in the latter
case, the vanishing locus of FutX is described in [24, Section 5] (see Sect. 4.2 for the
exact description).

2.2 Further properties of the Futaki invariant

The key property that we will use is the invariance of FutX under the Aut(X)-action.
This was already used in [10, Chapter 3] to show the vanishing of FutX on specific
examples.

We will use the following proposition repeatedly.

Proposition 4 Let (X ,�) be a polarised Fano manifold. Assume that there is τ ∈
Aut(X) and v ∈ aut(X) such that

(i) τ ∗� = �,
(ii) there is c ∈ C

∗ \ {1} with Adτ (v) = c · v.

Then Fut(X ,�)(v) = 0.

Proof This follows from the Ad-invariance of the Futaki invariant, which implies that

Fut(X ,(τ−1)∗�)(Adτ (v)) = Fut(X ,�)(v),

see [10, Chapter 3] or [14, Section 3.1]. 	

Remark 4 The anti-canonical class c1(X) is always Aut(X)-invariant.
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As an application, we have the following useful corollary:

Corollary 5 Let π : X → Y be the blow-up of a smooth Fano manifold Y along smooth
and disjoint subvarieties Zi ⊂ Y . Assume that there is a finite group G ⊂ Aut(Y )

such that:

(i) Each Zi is G-invariant;
(ii) Each class � ∈ H1,1(Y , R) is G-invariant;

(iii) For any v ∈ aut(Y ) that lifts to X, there is τ ∈ G and c ∈ C
∗ \ {1} such that

Adτ (v) = c · v.

Then FutX ≡ 0.

Proof Fromhypothesis (i), theG-action onY lifts to aG-action on X . The vector space
H1,1(X , R) is spanned by the pullback of the classes in H1,1(Y , R) and the exceptional
divisors of π . By hypothesis (i) and (ii), any class in H1,1(X , R) is then G-invariant.
The Lie algebra aut(X) is spanned by lifts of elements in aut(Y ) that preserve the
Zi ’s. For any such element, the identity Adτ (v) = c · v holds on X\⋃

i π−1(Zi ),
hence on X , by continuity. The result follows from Proposition 4. 	

Remark 5 In practice, we will mainly use Corollary 5 with

G � Z/2Z, aut(X) � C, c = −1.

To prove item (i) of Proposition 4 or item (i i) of Corollary 5, we will use the fact that
in homogeneous coordinates, the Fubini–Study metric

ωF S = i

2
∂∂ log(|z|2),

and hence its class [ωF S] ∈ H1,1(Pn, R), is invariant under theSn+1-action on P
n by

permutation of the homogeneous coordinates.

2.3 The list to check

From the discussion in the beginning of this section, to prove Theorem 1, it is enough
to consider K -polystable Fano threefoldswith infinite automorphism group and Picard
rank ρ(X) ≥ 2. From [1, Section 6], this reduces to Fano threefolds in family N°N ,
for

N ∈
⎧
⎨

⎩

2.20, 2.21, 2.22, 2.24, 2.27, 2.29, 2.32, 2.34, 3.5, 3.8, 3.9,
3.10, 3.12, 3.13, 3.15, 3.17, 3.19, 3.20, 3.25, 3.27, 4.2, 4.3,
4.4, 4.6, 4.7, 4.13, 5.1, 5.3, 6.1, 7.1, 8.1, 9.1, 10.1

⎫
⎬

⎭
.

The strategy of the proof is then direct – we will use the invariance of FutX to show
its vanishing onKX using a case by case study. For X belonging to family N°N with

N ∈
⎧
⎨

⎩

2.20, 2.21, 2.22, 2.24, 2.27, 2.29, 2.32, 2.34,
3.5, 3.8, 3.10, 3.12, 3.15, 3.17, 3.25, 3.27,
4.3, 4.6, 4.13, 5.1, 6.1, 7.1, 8.1, 9.1, 10.1

⎫
⎬

⎭
,
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we will see that FutX ≡ 0.
For the remaining 8 families, we will obtain explicit Kähler classes of the form

c1(X) + εc1(D) ∈ KX

with D ⊂ X a divisor and ε ∈ R a parameter such that Fut(X ,c1(X)+εc1(D)) = 0.
As the vanishing of the Futaki invariant is preserved under scaling of the Kähler
metric, this provides the 2-dimensional families of Kähler classes with vanishing
Futaki invariant alluded to in the introduction. Corollary 3 then follows from LeBrun–
Simanca’s openness theorem [13], which asserts that the locus in the Kähler cone of
Kähler classes that admit an extremal metric in the sense of Calabi [3] is open, together
with the characterisation of cscK metrics amongst extremal metrics as the ones with
zero Futaki invariant [4].

3 Families with aut(X) � sln(C)

Here we will consider families N°N , with

N ∈ {2.27, 2.32, 3.17, 4.6, 6.1, 7.1, 8.1, 9.1, 10.1}.

The Lie algebra sln(C) is simple, hence equal to its derived ideal [sln(C), sln(C)].
As the Futaki invariant is a character from aut(X) to C (see e.g. [10, Chapter 3]
or [14, Section 3.1]), it vanishes on the derived ideal [aut(X), aut(X)]. Hence, if
aut(X) � sln(C), [aut(X), aut(X)] = aut(X) and the Futaki invariant vanishes
identically on the whole Kähler cone of X . From

PGLn(C) � SLn(C)/μn,

the Lie algebra of PGLn(C) is sln(C). From [1, Section 6, Big Table], this settles the
case of all the K -polystable Fano threefolds in families N°N , with

N ∈ {2.27, 2.32, 3.17, 4.6, 6.1, 7.1, 8.1, 9.1, 10.1},

and also some cases in families {2.21, 3.13}.

4 Products

Next, we consider families N°2.34, N°3.27 and N°5.3, which are products of lower
dimensional Fano manifolds.
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4.1 Families 2.34 and 3.27

The unique members in these two families are P
1 × P

2 and P
1 × P

1 × P
1, which both

carry a product of cscK metrics in any class, and thus has vanishing Futaki character
for any Kähler class.

4.2 Family 5.3

The unique Fano threefold in family 5.3 is P
1 × S6, where S6 is the Del Pezzo surface

with K 2
S6

= 6. It is K -polystable as a product of Kähler–Einstein manifolds from
[21, 23]. The surface S6 is the unique (up to isomorphism) toric surface obtained by
blowing-up P

2 in the three fixed points under the torus action. We denote by H (the
strict transform of) a generic hyperplane and D1, D2 and D3 the three exceptional
divisors in S6. From [24, Section 5, Proposition 5.2 and Remark 5.1.(iii)], the Futaki
invariant of S6 vanishes exactly in the following families of Kähler classes

3c1(H) − ac1(D1) − bc1(D2) − (3 − a − b)c1(D3)

and

3c1(H) − c(c1(D1) + c1(D2) + c1(D3)),

where a, b, c are positive constants satisfying a + b < 3 and c < 3
2 . As the

Futaki invariant vanishes on P
1, we easily deduce the vanishing locus of the Futaki

invariant on X = P
1 × S6. In particular, as c1(X) = c1(P1) + c1(S6), and as

c1(S6) = 3c1(H)−(c1(D1)+c1(D2)+c1(D3)), we deduce the existence of differen-
tiable families of Kähler classes on X containing c1(X) for which the Futaki invariant
vanishes identically.

5 Blow-ups of projective space

In this section we address families N°N , with

N ∈ {2.22, 3.12, 3.25}.

All the members of these families are obtained by blowing up certain curves in pro-
jective space P

3.

5.1 Family 2.22

Members of the family 2.22 of Fano threefolds are obtained as blowups of certain
curves in P

3. More precisely, let 
 : P
1 × P

1 → P
3 be the Segre embedding

([x : y], [u : v]) �→ [xu : xv : yu : yv].
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The image of 
 is the surface

S = {z0z3 − z1z2 = 0}.

A Fano threefold X is in the family 2.22 if it is the blowup of the image via 
 of
a curve Č with O(Č) = O(3, 1). Such X have Picard rank 2, generated by the line
bundle associated to the proper transform of a hyperplane and of that generated by the
exceptional divisor E of the blowup. The K -polystability of members of this family
(with respect to the anticanonical polarisation) is discussed in detail in [5].

Up to biholomorphism, there is a unique member X0 of this family with infinite
automorphism group. It is K -polystable, and can be obtained by picking the curve Č
to be Č0 = {ux3 − vy3 = 0}, so that

X0 = BlC0 P
3,

where C0 = 
(Č0). The C
∗-action

λ · ([z0 : z1 : z2 : z3]) = [λz0 : λ4z1 : z2 : λ3z3]

preserves C0 and so lifts to X0. This generates Aut0(X0) (see [17, Lemma 6.13]).
The curve C0 is a rational curve, which can e.g. be seen by applying the Riemann–

Hurwitz formula to the restriction to Č0 ⊂ P
1 × P

1 of the projection to the second
factor. An explicit parametrisation φ : P

1 → P
3 is given by

[τ0 : τ1] �→ [τ0τ 31 : τ 40 : τ 41 : τ1τ
3
0 ].

Note that the action of the involution τ given by

τ · ([z0 : z1 : z2 : z3]) = [z3 : z2 : z1 : z0]

on P
3 preserves C0 and so lifts to X0. We will then apply Corollary 5 to the blow-up

X0 → P
3 with the group G = 〈τ 〉 � Z/2Z. First, hypothesis (i) of Corollary 5 can be

checked by using the change of variables [τ0 : τ1] → [τ1 : τ0] for the parametrisation
of the curve

τ(φ([τ0 : τ1])) =τ [τ0τ 31 : τ 40 : τ 41 : τ1τ
3
0 ]

=[τ1τ 30 : τ 41 : τ 40 : τ0τ
3
1 ]

=φ([τ1 : τ0]),

so C0 is invariant under the action. Then, as the variety we are blowing up is P
3,

hypothesis (i i) comes from the invariance of the Fubini-Study metric, cf Remark
5. Finally, a direct computation gives τλτ−1 = λ−1, so that Adτ (v) = −v for v a
generator of theλ-action.Hencewe can applyCorollary 5,which implies the vanishing
of the Futaki invariant on the Kähler cone of X0.
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5.2 Family 3.12

From [1, Section 5.18], the only element in Family 3.12 with infinite automorphism
group is given, up to isomorphism, by X = BlL∪C (P3) the blow up of P

3 along the
disjoint curves

L = {x0 = x3 = 0} ⊂ P
3

and

C = {[s3 : s2t : st2 : t3], [s : t] ∈ P
1} ⊂ P

3.

The reduced automorphism group of X is isomorphic to C
∗, and its action is given by

the lift of the C
∗-action on P

3 described by

λ · ([x0 : x1 : x2 : x3]) = [x0 : λx1 : λ2x2 : λ3x3].

Then, we can consider the Z/2Z-action given by

τ([x0 : x1 : x2 : x3]) = [x3 : x2 : x1 : x0].

The group generated by τ in Aut(P3) satisfies hypothesis (i) − (i i i) from Corollary
5, and we deduce that the Futaki invariant of X vanishes on the whole Kähler cone.

5.3 Family 3.25

The Fano threefold X in family 3.25 is the blow-up of P
3 in two disjoint lines. It is K -

polystable from [2, 25].Wecan assume the twoblown-up lines are {x1 = x2 = 0} ⊂ P
3

and {x3 = x4 = 0} ⊂ P
3. One has

Aut0(X) � PGL(2,2)(C) � GL2(C) × GL2(C)/C
∗,

where the first (resp. second) GL2(C) factor acts linearly on the coordinates (x1, x2)
(resp. on (x3, x4)) while the C

∗-action corresponds to homotheties on C
4 (see [17,

Section 4]). The Lie algebra aut(X) of Aut0(X) fits in an exact sequence

0 → C → gl2(C) ⊕ gl2(C) → aut(X) → 0.

We also have the sequence induced by the trace map gl2(C) → C:

0 → sl2(C) → gl2(C) → C → 0,

from which we deduce the sequence of vector spaces

0 → C → (sl2(C) ⊕ C) ⊕ (sl2(C) ⊕ C) → aut(X) → 0.
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From the discussion in Sect. 3, the Futaki invariant of X will vanish on the sl2(C)-
factors that project to aut(X). Hence, it is enough to test the vanishing of the Futaki
invariant on the generators of the remaining two C

∗-actions modulo homotheties,
which are induced by:

(λ, μ) · ([x0 : x1 : x2 : x3]) = [λx0 : x1 : μx2 : x3],

where (λ, μ) ∈ (C∗)2.We can consider the finite group G generated by the reflections

τ([x0 : x1 : x2 : x3]) = [x1 : x0 : x2 : x3]

and

σ([x0 : x1 : x2 : x3]) = [x0 : x1 : x3 : x2].

This group preserves the two blown-up lines, while the adjoint action of τ (resp.
σ ) sends the generator of the λ-action (resp. the μ-action) to its inverse. Hence, we
conclude as before by using Corollary 5.

6 Blow-ups of products of projective spaces

In this section, we will consider families N°N , with

N ∈ {3.5, 4.3, 4.13}.

These are obtained as blowups of products of projective spaces.

6.1 Family 3.5

From [1, Section 5.14], the only element in Family 3.5 with infinite automorphism
group is given, up to isomorphism, by X = BlC (P1 × P

2) the blow up of P
1 × P

2

along the curve C = ψ(Č) given by the image of

Č = {ux5 + vy5 = 0} ⊂ P
1 × P

1

via the map

ψ : P
1 × P

1 → P
1 × P

2

([u : v], [x : y]) �→ ([u : v], [x2 : xy : y2]).

Then, Aut0(X) � C
∗, where the C

∗-action is generated by the lift to X of the action

λ · ([u : v], [x0 : x1 : x2]) = ([λ5u : v], [x0 : λx1 : λ2x2]).
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We also have a Z/2Z-action induced by

τ([u : v], [x0 : x1 : x2]) = ([v : u], [x2 : x1 : x0]).

Those actions come respectively from the actions

λ · ([u : v], [x : y]) = ([λ5u : v], [x : λy])

and

τ([u : v], [x : y]) = ([v : u], [y : x])

on P
1 ×P

1, with respect to which ψ is equivariant. Then, we see that C is τ -invariant,
as well as the classes π∗

i [ωi
F S], where π1 : P

1 × P
2 → P

1 and π2 : P
1 × P

2 → P
2

denote the projections and ωi
F S stands for the Fubini–Study metric on P

i . Finally,
identifying λ ∈ C

∗ with its action, we have τ ◦ λ ◦ τ−1 = λ−1. Hence, hypothesis
(i) − (i i i) from Corollary 5 are satisfied, and the Futaki invariant of X vanishes for
any Kähler class.

6.2 Family 4.3

Following [1, Section 5.21], up to isomorphism, the unique Fano threefold in Family
4.3 is the blow-up of P

1 × P
1 × P

1 along

C = {x0y1 − x1y0 = x0z21 + x1z20 = 0}

where [x0 : x1], [y0 : y1] and [z0 : z1] denote the homogeneous coordinates on the
first, second and last factor respectively. We have Aut0(X) � C

∗ where the action is
given by the lift of the C

∗-action on P
1 × P

1 × P
1 given by

λ · ([x0 : x1], [y0 : y1], [z0 : z1]) = ([x0 : λ2x1], [y0 : λ2y1], [z0 : λz1]).

The involution

τ([x0 : x1], [y0 : y1], [z0 : z1]) = ([x1 : x0], [y1 : y0], [z1 : z0])

preserves C and the (1, 1)-classes on C given by ι∗j [ωF S], for ι j the composition of

the inclusion C ⊂ P
1 × P

1 × P
1 and the projection on the j-th factor. The adjoint

action of τ maps the generator of the C
∗-action to its inverse, so Proposition 4 applies

and the Futaki invariant of X vanishes identically.

6.3 Family 4.13

From [1, Section 5.22], the only element in Family 4.13 with infinite automorphism
group is given, up to isomorphism, by X = BlC (P1 × P

1 × P
1) the blow up of
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P
1 × P

1 × P
1 along the curve

C = {x0y1 − x1y0 = x30 z0 + x31 z1 = 0}.

The reduced automorphism group of X is isomorphic to C
∗, and its action is given by

the lift of the C
∗-action on P

1 × P
1 × P

1 described by

λ · ([x0 : x1], [y0 : y1], [z0 : z1]) = ([λx0 : x1], [λy0 : y1], [λ−3z0 : z1]).

Then, we can consider the Z/2Z-action given by

τ([x0 : x1], [y0 : y1], [z0 : z1]) = ([x1 : x0], [y1 : y0], [z1 : z0]).

Clearly, this action satisfies hypothesis (i) − (i i i) from Corollary 5 (notice that τ ◦
λ ◦ τ−1 = λ−1, identifying λ with the induced action), from which we deduce the
vanishing of the Futaki invariant of X for any Kähler class.

7 Blow-ups of a smooth quadric

In this section, we consider families N°N , with

N ∈ {2.21, 2.29, 3.10, 3.15, 3.19, 3.20, 4.4, 5.1}.

7.1 Family 2.21

This family is somewhat similar to the Mukai–Umemura family 1.10. In addition to
members of the family with discrete automorphism group, there is a one-dimensional
family with automorphism group containing a semi-direct product of C

∗ and Z/2Z,
one member which admits an effective PGL2-action and one member which has a
reduced automorphism group Ga . The first two of these are K -polystable for the anti-
canonical polarisation, whereas the last does not have a reductive automorphism group
and is therefore not K -polystable.

The members that admit an effective Gm-action can be described as follows (see
[1, Section 5.9]). Let C be the quartic rational curve in P

4 given as the image of the
map P

1 → P
4 given by

[p : q] �→ [p4 : p3q : p2q2 : pq3 : q4].

For t /∈ {0,±1}, let Qt be the smooth hypersurface

Qt = V (z1z3 − t2z0z4 + (t2 − 1)z22).

Note that C ⊂ Qt for any t . Let Xt = BlC (Qt ). Then Xt is one of the members
that admit an effective C

∗-action (including the member with an effective PGL2-
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action, which corresponds to t = ± 1
2 ). Note that Xt has Picard rank 2, generated by

a hyperplane H and the exceptional divisor E of the blowup.
The C

∗-action given by

λ · ([z0 : z1 : z2 : z3 : z4]) = [z0 : λz1 : λ2z2 : λ3z3 : λ4z4]

preserves C and Qt , as does the involution

τ([z0 : z1 : z2 : z3 : z4]) = [z4 : z3 : z2 : z1 : z0].

The lifts of these generate the effective actions ofC
∗
�Z/2Z on Xt . As τ preserves C ,

the class [ωF S]|Xt , and sends a generator of theC
∗-action to its inverse by conjugation,

Proposition 4 shows that the Futaki invariant of Xt vanishes on its whole Kähler cone
(note that the case t = ± 1

2 , with aut(Xt ) � sl2(C), was dealt with in Sect. 3).

7.2 Family 2.29

There is a unique smooth Fano threefold X in family 2.29. It is isomorphic to the
blow-up of

Q = {x20 + x1x2 + x3x4 = 0} ⊂ P
4.

along the smooth conic

C = {x20 + x1x2 = x3 = x4 = 0} ⊂ Q.

It is K -polystable (see [12, 19, 20]) and the group Aut0(X) is isomorphic to C
∗ ×

PGL2(C) (see [17, Lemma 5.8]). We then have aut(X) � C ⊕ sl2(C). From the
discussion inSect. 3, theFutaki invariant of (X , [ω])vanishes on the sl2(C)-component
of aut(X) for anyKähler class [ω]. Thus, to check the vanishing of the Futaki invariant,
it remains to check the vanishing on the C-component of aut(X). From [17, Lemma
5.7], the C

∗-component of Aut0(X) can be identified with the pointwise stabiliser of
C in Aut0(Q). This is then the C

∗-action induced by

λ · ([x0 : x1 : x2 : x3 : x4]) = [x0 : x1 : x2 : λx3 : λ−1x4].

We then introduce the involution

τ([x0 : x1 : x2 : x3 : x4]) = [x0 : x2 : x1 : x4 : x3].

This automorphism of P
4 preserves Q and C and lifts to an automorphism of X .

Its adjoint action maps a generator of the C
∗-action of interest to its inverse, and by

Corollary 5, we deduce the vanishing of the Futaki invariant of X for any Kähler class.

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

7.3 Family 3.10

Let X be a K -polystable element in the family 3.10 such that Aut(X) is infinite. Then,
from [1, Section 5.17], up to isomorphism, we may assume that X = BlC1∪C2(Qa) is
the blow-up of the quadric

Qa = {w2 + xy + zt + a(xt + yz) = 0} ⊂ P
4

along the two disjoint smooth irreducible conics C1 ⊂ Qa and C2 ⊂ Qa given by

C1 = {w2 + zt = x = y = 0}

and

C2 = {w2 + xy = z = t = 0}

where [x, y, z, t, w] stand for the homogeneous coordinates on P
4 and where a ∈

C \ {−1,+1} is a complex parameter. Moreover, for a = 0, Aut0(X) � (C∗)2 and
for a �= 0, Aut0(X) � C

∗.

7.3.1 Case a = 0

In this situation, the (C∗)2-action on X is the lift of the action on Q0 induced by the
following formula, for (α, β) ∈ (C∗)2:

(α, β) · ([x : y : z : t : w]) = [αx : α−1y : βz : β−1t : w].

Consider the group G = Z/2Z × Z/2Z generated by (σ, τ ) defined by

σ([x : y : z : t : w]) = [y : x : z : t : w]

and

τ([x : y : z : t : w]) = [x : y : t : z : w].

Then G ⊂ Aut(Q0), and G preserves C1 and C2. It also leaves invariant the class
ι∗[ωF S] on Q0, where ι : Q0 → P

4 denotes the inclusion and ωF S the Fubini–
Study metric. Hence, hypothesis (i) and (i i) of Corollary 5 are satisfied. Finally,
Adσ (v1) = −v1 and Adτ (v2) = −v2, where v1 generates the C

∗-action α �→ [αx :
α−1y : z : t : w] while v2 generates the C

∗-action β �→ [x : y : βz : β−1t :
w]. Then, Corollary 5 implies the vanishing of the Futaki invariant on X for any
class.

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

7.3.2 Case a �= 0

The same argument as in the previous case applies, where this time the C
∗-action of

Aut0(X) is induced by the diagonal of the above, given by

α · ([x : y : z : t : w]) = ([αx : α−1y : αz : α−1t : w]).

and the group G � Z/2Z is generated by

ς([x : y : z : t : w]) = ([y : x : t : z : w]).

7.4 Family 3.15

From [1, Section 5.20], the only smooth K -polystable Fano threefold in family 3.15
is given by the blow-up X = BlL∪C (Q) → Q of the quadric

Q = {x20 + 2x1x2 + 2x1x4 + 2x2x3 = 0} ⊂ P
4

along the line

L = {x0 = x1 = x2 = 0}

and the smooth conic (disjoint from L)

C = {x20 + 2x1x2 = x3 = x4 = 0}.

The automorphism group of X satisfies Aut0(X) � C
∗ with C

∗-action given, for
λ ∈ C

∗, by (the lift of)

λ · ([x0 : x1 : x2 : x3 : x4]) = [λx0 : λ2x1 : x2 : λ2x3 : x4].

The involution

τ([x0 : x1 : x2 : x3 : x4]) = [x0 : x2 : x1 : x4 : x3]

preserves Q, L and C . It also leaves the class ι∗[ωF S] invariant, where ι : Q → P
4 is

the inclusion. Then, Corollary 5 applies to X → Q and G = 〈τ 〉 � Z/2Z, so that the
Futaki invariant of X identically vanishes on KX .

7.5 Families 3.19 and 3.20

Consider the smooth quadric Fano threefold

Q = {x20 + x1x2 + x3x4 = 0} ⊂ P
4.
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The family 3.19 (resp. 3.20) is obtained by blowing-up Q in two points (respectively
two disjoint lines). More precisely, we can obtain the unique Fano threefold in family
3.19 by considering X1 to be the blow-up of Q along the points

P1 = [0 : 0 : 0 : 1 : 0]

and

P2 = [0 : 0 : 0 : 0 : 1].

The unique Fano threefold X2 in family 3.20 is the blow-up of Q along the two disjoint
lines

L1 = {x0 = x1 = x3 = 0}

and

L2 = {x0 = x2 = x4 = 0}.

In both cases, the Fano threefold Xi is K -polystable (see [12, 19, 20]) and the
group Aut0(Xi ) is isomorphic to C

∗ × PGL2(C) (see [17, Section 5]). We then have
aut(Xi ) = C⊕sl2(C). From the discussion in Sect. 3, the Futaki invariant of (Xi , [ωi ])
vanishes on the sl2(C)-component of aut(Xi ) for any Kähler class [ωi ]. Therefore,
to check the vanishing of the Futaki invariant on (Xi , [ωi ]), it remains to check the
vanishing on the C-component of aut(Xi ).

To this aim we introduce the involution

τ([x0 : x1 : x2 : x3 : x4]) = [x0 : x2 : x1 : x4 : x3].

This automorphism of P
4 preserves Q, and swaps the two connected components of

the blown-up locus in both cases. Therefore, τ lifts to an automorphism of Xi , still
denoted τ , for i ∈ {1, 2}. Note that on Xi , any Kähler class of the form

[ωε] := c1(Xi ) + ε(c1(O(Ei
1)) + c1(O(Ei

2)))

is τ -invariant, where ε ∈ R is chosen so that

c1(Xi ) + ε(c1(O(Ei
1)) + c1(O(Ei

2))) > 0

and the Ei
j ’s denote the exceptional divisors of the blow-up Xi → Q.

Remark 6 While [ωε] is τ -invariant, it is not true that every Kähler class on Xi is
τ -invariant. This is the reason we are not able to conclude the vanishing of the Futaki
invariant for every Kähler class in these families. This is a general phenomenon for
all the varieties considered in Theorem 2 – the reason we are not able to conclude
the vanishing of the Futaki invariant on the whole Kähler cone is that there are some
Kähler classes where we have not been able to find an involution preserving that class.

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

Next, we investigate how this action interacts with the generator of the C
∗-

component in Aut0(Xi ), to verify that we can apply Proposition 4 to deduce the
vanishing of the Futaki invariant. We do this for the two families separately.

7.5.1 Family 3.19

We follow the discussion in [17, Lemma 5.13]. An automorphism of X1 comes from
an automorphism of P

4 that leaves Q and {P1} ∪ {P2} invariant. By linearity, such an
automorphism preserves the line spanned by the two points, and thus its orthogonal
complement � = {x3 = x4 = 0}. It then leaves the conic C = Q ∩� invariant. From
[17, Lemma 5.7], the C

∗-component of Aut0(X1) can be identified with the pointwise
stabiliser of C in Aut0(Q). This is then the C

∗-action given by

λ · ([x0 : x1 : x2 : x3 : x4]) = [x0 : x1 : x2 : λx3 : λ−1x4].

The adjoint action of τ maps a generator of this action to its inverse, and by Proposition
4, we deduce the vanishing of the Futaki invariant of (X1, [ωε]).

7.5.2 Family 3.20

Following the discussion in [17, Lemma 5.14], the C
∗-component of Aut0(X2) is

obtained as follows. An element in Aut0(Q, L1 ∪ L2) must preserve the linear span
of L1 and L2, that is Q ∩ {x0 = 0}. It then leaves invariant

Q′ = {x0 = x1x2 + x3x4 = 0}.

The group Aut0(Q, L1 ∪ L2) acts on the family of lines (�t )t∈P1 in Q′ given by

[x1 : x3] �→ [0 : x1 : t x3 : x3 : −t x1] ⊂ Q′.

TheC
∗-component of Aut0(X) then corresponds to the stabiliser of the lines L1 = �∞

and L2 = �0 under this action. In coordinates, the action is given by

λ · ([x0 : x1 : x2 : x3 : x4]) = [λx0 : x1 : λ2x2 : x3 : λ2x4].

As with family 3.19, using the τ -action and the Ad-invariance of the Futaki invariant,
we can conclude that the Futaki invariant of (X2, [ωε]) vanishes.

7.6 Family 4.4

Up to isomorphism, there is a unique smooth Fano threefold X in family 4.4. Its
automorphism group satisfies Aut0(X) � (C∗)2, and it is K -polystable from [12,
19, 20]. Recall that the smooth Fano threefold X1 in family 3.19 can be obtained as
a blow-up along two points of a smooth quadric Q ⊂ P

4. We can then realise the
manifold X as the blow-up of X1 along the proper transform of the conic that passes
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through the blown-up points in Q. Coming back to our parametrisation in Sect. 7.5.1,
we can take Q ⊂ P

4 to be

Q = {x20 + x1x2 + x3x4 = 0} ⊂ P
4

and the blown-up points to be

P1 = [0 : 0 : 0 : 1 : 0]

and

P2 = [0 : 0 : 0 : 0 : 1].

Then, the conic in Q joining P1 and P2 is

C1 = {x1 = x2 = x20 + x3x4 = 0} ⊂ Q.

The (C∗)2-action on Q that lifts to X through the two blow-up maps X → X1 → Q
is given in coordinates by

(λ, μ) · ([x0 : x1 : x2 : x3 : x4]) = [x0 : λx1 : λ−1x2 : μx3 : μ−1x4].

Again, the involution

τ([x0 : x1 : x2 : x3 : x4]) = [x0 : x2 : x1 : x4 : x3]

preserves C1 and swaps the blown-up points. Arguing as before, we see that the Futaki
invariant of X will vanish in classes of the form

c1(X) + ε c1(E) + δ (c1(E1) + c1(E2))

for (ε, δ) ∈ R
2 small enough and where E is the exceptional divisor of X → X1, while

E1 and E2 are the strict transforms of the exceptional divisors of X1 → Q. Note that
after scaling, this gives a 3-dimensional family in the Kähler cone of X .

7.7 Family 5.1

From [1, Section 5.23], the unique smooth Fano threefold X in family 5.1 is K -
polystable. It can be described as follows. Consider first the smooth quadric in P

4

Q = {x1x2 + x2x3 + x3x1 + x4x5 = 0} ⊂ P
4

where we denote by [x1 : x2 : x3 : x4 : x5] the homogeneous coordinates on P
4. We

then fix a smooth conic C = Q ∩ {x4 = x5 = 0} ⊂ Q and points P1 = [1 : 0 : 0 :
0 : 0], P2 = [0 : 1 : 0 : 0 : 0] and P3 = [0 : 0 : 1 : 0 : 0] in Q. Let Y → Q
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the blow-up of Q in the three points (Pi )1≤i≤3 and Č the strict transform of C in Y .
Then, X is obtained as the blow-up of Y along Č . Its automorphism group satisfies
Aut0(X) � C

∗, where the C
∗-action is the lift of the action defined on Q by

λ · ([x1 : x2 : x3 : x4 : x5]) = [λx1 : λx2 : λx3 : λ2x4 : x5].

The manifold X also admits an involution which is the lift of the involution τ defined
on Q by

τ([x1 : x2 : x3 : x4 : x5]) = [x1 : x2 : x3 : x5 : x4].

We observe that τ preserves the Kähler class associated to the hyperplane section
H ∩ Q and fixes C , as well as the points P1, P2 and P3. Hence, all the (1, 1)-classes
on X are invariant under the (lifted) involution. As the adjoint action of τ maps the
generator of the C

∗-action to its inverse, we conclude as in 5 the vanishing of the
Futaki invariant of X for all its Kähler classes.

8 Hypersurfaces in P
2 × P

2 and their blow-ups

In this section, we consider families N°N , with

N ∈ {2.24, 3.8, 4.7}.

8.1 Family 2.24

From [12, 19, 20] (see also [1, Section 4.7]), the only K -polystable element in Family
2.24 with infinite automorphism group is given, up to isomorphism, by

X = {xu2 + yv2 + zw2} ⊂ P
2 × P

2.

It has Aut0(X) � (C∗)2, where the action of (α, β) ∈ (C∗)2 is given by

(α, β) · ([x : y : z], [u : v : w]) = ([α2x : β2y : z], [α−1u : β−1v : w]).

The group G = Z/2Z×Z/2Z acts onP
2×P

2, with the action of (σ, τ ) ∈ G generated
by

σ([x : y : z], [u : v : w]) = ([z : y : x], [w : v : u])

and

τ([x : y : z], [u : v : w]) = ([x : z : y], [u : w : v]).

Note that G ⊂ Aut(X) and that the inclusion ι : X → P
2×P

2 is G-equivariant. Hence
we deduce that ι∗[ωi

F S] is G-invariant, where ωi
F S denote the Fubini–Study metric on
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the i-th factor. Then, any Kähler class on X is G-invariant. Denote by v1 (resp. v2)
the generator of the C

∗-action α · ([x : y : z], [u : v : w]) = ([α2x : y : z], [α−1u :
v : w]) (resp. β · ([x : y : z], [u : v : w]) = ([x : β2y : z], [u : β−1v : w])) on X . A
direct computation shows

{
Adσ (v1) = −(v1 + v2)

Adτ (v2) = −(v1 + v2).

Using Ad-invariance of the Futaki invariant, as discussed in Proposition 4, we deduce
that for any Kähler class � on X :

{
Fut(X ,�)(v1) = −Fut(X ,�)(v1) − Fut(X ,�)(v2)

Fut(X ,�)(v2) = −Fut(X ,�)(v1) − Fut(X ,�)(v2),

hence FutX is identically zero.

8.2 Family 3.8

From [1, Section 5.16], the only element in Family 3.8 with infinite automorphism
group is given, up to isomorphism, by X = BlC (Y ) the blow up of Y along the curve
C , where

Y = {(vw + u2)x + v2y + w2z = 0} ⊂ P
2 × P

2

is a smooth divisor of degree (1, 2) and where C = π−1
1 ([1 : 0 : 0]), with π1 the

projection onto the first factor of P
2 ×P

2. The variety Y is the only element in Family
2.24 with infinite automorphism group, and

Aut(X) � Aut(Y ) � C
∗

� Z/2Z.

More explicitly, the C
∗-action is for λ ∈ C

∗ given by

λ · ([x : y : z], [u : v : w]) = ([x : λ−2y : λ2z], [λu : λ2v : w]),

while the Z/2Z-action is generated by τ :

τ([x : y : z], [u : v : w]) = ([x : z : y], [u : w : v]).

Identifying λ with the corresponding element in Aut(Y ), we have τ ◦ λ ◦ τ−1 = λ−1,
so that item (i i i) in Corollary 5 is satisfied. The inclusion ι : Y → P

2 × P
2 is τ -

equivariant, and then the classes ι∗[ωi
F S] are τ -invariant, for ωi

F S the Fubini–Study
metric on each factor of P

2 × P
2. This shows that hypothesis (i i) from Corollary

5 holds as well. Finally, the curve C is τ -invariant, and by Corollary 5, the Futaki
character of X is identically zero on its Kähler cone.

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

8.3 Family 4.7

Let X be a smooth Fano threefold in family 4.7. Then it is a blow-up of a smooth divisor
W of bidegree (1, 1) on P

2 × P
2 along two disjoints curves of bidegrees (1, 0) and

(0, 1), and it is K -polystable [12, 19, 20]. To perform computations, we will assume
that

W = {xu + yv + zw = 0} ⊂ P
2 × P

2,

where [x, y, z] and [u, v, w] stand for homogeneous coordinates on thefirst and second
factors respectively. We will denote by πi : W → P

2 the natural projection on the i-th
factor. We then let Ci = π−1

i ([0 : 0 : 1]) ⊂ W . Then, X = BlC1∪C2(W ) and from
[17, Lemmas 7.1 and 7.7], we have

Aut0(X) � GL2(C).

The isomorphism is defined as follows. First, automorphisms of X are induced by
automorphisms of W that leave C1 ∪ C2 invariant. Arguing as in [17, Lemma 7.7],
they correspond to lift of isomorphisms of P

2 that leave the set

π1(C1 ∪ C2) = {[0 : 0 : 1]} ∪ {[x : y : 0], (x, y) ∈ C
2 \ {0}}

invariant. Those elements are easily identified to elements in GL2(C). From Sect. 3,
the Futaki invariant vanishes on the sl2(C)-component in aut(X). We can identify
a supplementary subspace of sl2(C) in aut(X) by considering the lift to X of the
generators of the C

∗-action on P
2 given by

λ · ([x : y : z]) = ([λx : y : z]).

The lift of this action to W is given by

λ · ([x : y : z], [u : v : w]) = ([λx : y : z], [λ−1u : v : w]). (1)

We introduce the involution

τ([x : y : z], [u : v : w]) = ([u : v : w], [x : y : z]).

This preserves W , and swaps the curves C1 and C2. It also swaps the (1, 1)-classes
π∗
1 [ωF S] andπ∗

2 [ωF S]. Finally, its adjoint actionsmaps a generator of theC
∗-action (1)

to its inverse. Then, following Sect. 2, we deduce the vanishing of the Futaki invariant
on X for any Kähler class of the form

c1(X) + επ∗(π∗
1 [ωF S] + π∗

2 [ωF S]) + η(c1(O(E1)) + c1(O(E2))),

where π : X → W denotes the blow-down map, E1 and E2 the exceptional divisors,
and (ε, η) ∈ R

2 are chosen so that the class is positive.
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9 Remaining cases

We finish with families N°N , with

N ∈ {2.20, 3.9, 3.13, 4.2}.

9.1 Family 2.20

Consider the Plücker embedding of Gr(2, 5) in P
9. Any smooth intersection of this

embedded sixfold with a linear subspace of codimension 3 is a Fano manifold. We call
this Fano threefold V5 and it is the unique member of family 1.15 of Fano threefolds.

Now, let C be a twisted cubic in V5 and let X = BlC (V5). Then X is a member
of the family 2.20 of Fano threefolds. Up to isomorphism, there is a unique choice of
curve such that X has infinite automorphism group [17, Lemma 6.10]. In this case,
Aut(X) is a semidirect product C

∗
� Z/2Z.

In [1, Section 5.8], it is shown that the unique element in family 2.20 with infinite
automorphism group is K -polystable. Moreover, the following explicit description of
X is given. First, V5 can be realised as the subvariety of P

6 cut out by the equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x4x5 − x0x2 + x21 = 0
x4x6 − x1x3 + x22 = 0
x24 − x0x3 + x1x2 = 0
x1x4 − x0x6 − x2x5 = 0
x2x4 − x3x5 − x1x6 = 0.

We will then identify V5 with this variety. Then, we can chose C to be the twisted
cubic parametrised by

([r : s]) �→ ([r3 : r2s : rs2 : s3 : 0 : 0 : 0]) ∈ V5.

We consider X = BlC (V5) with this parametrisation. The C
∗

� Z/2Z-action on P
6

generated by

λ · ([x0 : x1 : x2 : x3 : x4 : x5 : x6])=[λ3x0 : λ5x1 : λ7x2 : λ9x3 : λ6x4 : λ4x5 : λ8x6]

for λ ∈ C
∗ and the involution

τ([x0 : x1 : x2 : x3 : x4 : x5 : x6]) = [x3 : x2 : x1 : x0 : x4 : x6 : x5]

preserves V5 and C , hence lifts to X . This provides the isomorphism

Aut(X) � C
∗

� Z/2Z.

Note that conjugation by τ sends a generator of the C
∗-action to its inverse. As

H1,1(V5, R) is generated by the class of a hyperplane section in P
6, and as the class

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

of the Fubini–Study metric on P
6 is τ -invariant, we can apply Corollary 5 to X , and

we deduce the vanishing of the Futaki invariant on the Kähler cone of X .

9.2 Families 3.9 and 4.2

We now consider families 3.9 and 4.2. Any member of one of these families have
Aut0(X) � C

∗ and is K -polystable by [1, Section 4.6], which we will follow closely.
Let S be either P

2 or P
1 ×P

1 and let C ⊂ S be a smooth irreducible curve given by
a quartic if S = P

2 and a (2, 2)-curve in the other case. Denote by pri the projection
of P

1 × S onto the i-th factor. We then set B = pr∗2(C) � P
1 × C, E = pr∗1([1 : 0])

and E ′ = pr∗1([0 : 1]). We consider

G = C
∗

� Z/2Z

acting on P
1 by

λ · [u : v] = [u : λv]

and

τ([u : v]) = [v : u].

The G-action lifts to P
1 × S, with the involution τ swapping E and E ′. We then

introduce η : W → P
1 × S a double cover branched over E + E ′ + B, and E , E

′
and

B the preimages on W of the surfaces E , E ′ and B respectively. Then, set X̂ → W the
blow-up of W along the curves E ∩ B and E

′ ∩ B with exceptional surfaces Ŝ and Ŝ′.
We denote the proper transforms of E , E

′
and B by Ê , Ê ′, B̂ respectively. Finally, X

is obtained as the image of a contraction X̂ → X of B̂ to a curve isomorphic to C. We
set E , E ′, S and S′ the proper transforms on X of Ê , Ê ′, Ŝ and Ŝ′ respectively.

One can check that all the birational maps involved in producing X are G-
equivariant, and we obtain Aut0(X) � C

∗. Moreover, the involution on X induced
by τ (that we will still denote τ ) swaps E and E ′, and also swaps S and S′. Hence,
the Kähler classes c1(E) + c1(E ′) and c1(S) + c1(S′) are both τ -invariant. Clearly,
on P

1 × S, the adjoint action of the involution τ maps a generator of the C
∗-action to

its inverse. This remains true on W by equivariance, and thus on X that is birationally
equivalent to W by continuity of holomorphic vector fields away from the exceptional
loci. Then, Proposition 4 applies to show that the Futaki invariant of X vanishes in
any Kähler class of the form

c1(X) + ε(c1(E) + c1(E ′)) + δ(c1(S) + c1(S′)),

where (ε, δ) ∈ R
2 is chosen so that the class is positive.

To understand the subset of the Kähler cone these classes generate, we use the
following alternative description of X , still following [1, Section 4.6].

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

9.2.1 Family 3.9

This is the case when S = P
2. X can then also be obtained as the blow-up φ : X → V

of V along a curve C ⊂ V where

π : V = P(O ⊕ O(2)) → P
2 = S

is a P
1-bundle, and C = π∗C ∩ EV , where EV is the zero section of π . We also

have that the strict transform of EV (resp. of the infinity section E ′
V , and of π∗C) on

X is E (resp. E ′ and S′), while the exceptional divisor of φ is S. Hence we get the
relation c1(E) + c1(E ′) = 0 in this case (but c1(S) + c1(S′) �= 0), and we obtain a
2-dimensional family of classes that admit cscK metrics given by

(δ, r) → r(c1(X) + δ(c1(S) + c1(S′))).

9.2.2 Family 4.2

This is the case when S = P
1 × P

1. Again, we can recover X from the maps

π : X → V

and

φ : V → S,

with π the contraction of S to a curve isomorphic to C and φ a P
1-bundle over P

1×P
1.

According to [8, Section 10], we have

Pic(X) = Z[H1] ⊕ Z[H2] ⊕ Z[E] ⊕ Z[E ′]

where Hi = (π ◦ φ)∗(�i ) and �1, �2 denote two different rulings of P
1 × P

1. There
are relations −K X ∼ 2(H1 + H2) + E + E ′, S ∼ H1 + H2 − E + E ′ and S′ ∼
H1 + H2 + E − E ′, so that the Kähler classes described above can be written

2(1 + δ)(c1(H1) + c1(H2)) + (1 + ε)(c1(E) + c1(E ′)).

Together with scaling we therefore obtain a 3-dimensional family of classes with
vanishing Futaki invariant.

9.3 Family 3.13

Let X be a smooth K -polystable Fano threefold in family 3.13. From [1, Section
5.19], either Aut0(X) � PGL2(C), and so from Sect. 3 the Futaki invariant vanishes
identically, or Aut0(X) � C

∗. In the latter case, denoting [x0 : x1 : x2], [y0 : y1 : y2]
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and [z0 : z1 : z3] the homogeneous coordinates on the first, second and third factors
of P

2 × P
2 × P

2, X is given by the equations

⎧
⎨

⎩

x0y0 + x1y1 + x2y2 = 0
y0z0 + y1z1 + y2z2 = 0

(1 + s)x0z1 + (1 − s)x1z0 − 2x2z2 = 0

in P
2 × P

2 × P
2, for s /∈ {−1, 0, 1}, and

Aut(X) � C
∗

� S3.

The C
∗-action for λ ∈ C

∗ is given on a point P with homogeneous coordinates
([x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z3]) by

λ · (P) = ([λx0 : λ−1x1 : x2], [λ−1y0 : λy1 : y2], [λz0 : λ−1z1 : z3]).

Further, there are two involutions τx,z and τy,z in Aut(X), whose actions are given by

τx,z(P) = ([z1 : z0 : z2], [y1 : y0 : y2], [x1 : x0 : x2])

and

τy,z(P) =
(

[x1 : x0 : −x2], [(1 − s)z0 : (1 + s)z1 : 2z2],
[

y0
1 − s

: y1
1 + s

: y2
2

])

.

Note that τx,z ◦λ◦τ−1
x,z = λ−1 and τy,z ◦λ◦τ−1

y,z = λ−1 (where we identified λwith
the corresponding element in Aut(X)). From [1, Diagram 5.19.1], the projection maps
ηx , ηy, ηz : P

2 × P
2 × P

2 → P
2 induce holomorphic maps, still denoted ηx , ηy and

ηz , from X to P
2. If we denote αi := η∗

i [ωF S] ∈ H1,1(X , R) the pullback of the class
of the Fubini–Study form, for i ∈ {x, y, z}, by equivariance of the projections, we see
that αy is τx,z-invariant while αx is τy,z-invariant. Hence, for any ε > 0 small enough,
the class c1(X)+εαx is τy,z-invariant and the class c1(X)+εαy is τx,z-invariant. From
Proposition 4, the Futaki invariants of (X , c1(X)+εαx ) and (X , c1(X)+εαy) vanish.
Hence, X will carry cscK deformations of its Kähler–Einstein metrics in the classes
c1(X) + εαy and c1(X) + εαx for ε small enough by LeBrun–Simanca’s openness
theorem.

Remark 7 We have used two different involutions τx,z and τy,z in the above to the
deduce the vanishing of the Futaki invariant in the classes c1(X)+εαy and c1(X)+εαx .
We are therefore not able from these arguments to deduce that the Futaki invariant
vanishes on the sums of these classes. Hence we still only get a 2-dimensional family
of classes with vanishing Futaki invariant in this case.
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