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Abstract
The compact 16-dimensional Moufang plane, also known as the Cayley plane, has
traditionally been defined through the lens of octonionic geometry. In this study, we
present a novel approach, demonstrating that the Cayley plane can be defined in an
equally clean, straightforward and more economic way using two different division
and composition algebras: the paraoctonions and the Okubo algebra. The result is
quite surprising since paraoctonions and Okubo algebra possess a weaker algebraic
structure than the octonions, since they are non-alternative and do not satisfy the
Moufang identities. Intriguingly, the real Okubo algebra has SU (3) as automorphism
group, which is a classical Lie group, while octonions and paraoctonions have an
exceptional Lie group of type G2. This is remarkable, given that the projective plane
defined over the real Okubo algebra is nevertheless isomorphic and isometric to the
octonionic projective plane which is at the very heart of the geometric realisations of
all types of exceptional Lie groups. Despite its historical tieswith octonionic geometry,
our research underscores the real Okubo algebra as the weakest algebraic structure
allowing the definition of the compact 16-dimensional Moufang plane.
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Introduction

AMoufang plane is a projective plane where every line is a translation line or, alterna-
tively, where the “little Desargues theorem” holds (see in Sect. 6). Among the various
characteristics of Moufang planes, a notable one is their dimensionality. Specifically,
it is well-known that all compact, connected Moufang planes are of dimension 2, 4,
8 and 16 and isomorphic to precisely the projective planes over the Hurwitz division
algebras R,C,H and O. Of all these planes, the 16-dimensional Moufang plane stands
out due to the historical obstacles in its definition arising from the lack of associa-

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

tivity of the octonions O. This definitional challenge sparked significant interest in
mathematical research during the early 20th century, culminating in one of the most
fascinating interplays between projective geometry, algebra, and differential geome-
try. Indeed, one of the most remarkable achievements of the resulting mathematical
research activity, mainly due to Cartan [8], Jordan, Wigner and von Neumann [43]
and Freudenthal [30–33], is an interesting three-fold description of these planes: as
a completion of the affine plane A 2 (K), for every K ∈ {R,C,H,O}; as the rank-1
idempotent elements of the rank-three Jordan algebra J3 (K); as a coset manifold with
a specific isometry and isotropy group. Furthermore, the investigation of octonionic
geometry, particularly the study of the octonionic projective plane OP2, unraveled a
deep connection between octonions and exceptional Lie groups [30–34, 60, 75, 76].
This connection, which was first envisaged by Cartan[9] and then explored by Cheval-
ley and Schafer [10], is so deep that every known realization of compact exceptional
Lie groups somehow involves the octonions O in one form or another [78]. Notably,
each of these realizations of exceptional Lie groups has a geometrical aspect in which
the 16-dimensional Moufang plane plays a pivotal role. Indeed, following Freuden-
thal [30–34], one can obtain all exceptional Lie groups of type F4,E6,E7 and E8 as
transformation groups of the 16-dimensional Moufang plane preserving the features
of elliptic geometry, projective geometry, symplectic geometry and metasymplectic
geometry respectively [45].

Historically, the definition of the compact 16-dimensional Moufang plane arose
out of octonionic geometry. However, in this work we show that this plane can be
defined in an equally clean, straightforward and more minimal way by means of two
different division composition algebras endowed with less algebraic structure than
the octonions, and that the Moufang identities are not satisfied, historically associated
with the Moufang property of the plane.

Clearly, in order to define a 16-dimensional plane that satisfies the affine and pro-
jective axioms of incidence geometry, an 8-dimensional division algebra is necessary.
Hurwitz theorem [40] states the existence of only one 8-dimensional division compo-
sition algebra with a unit element, i.e. the algebra of octonionsO. Yet, when non-unital
algebras are considered, three 8-dimensional division composition algebras emerge
[20]: the aforementioned octonions O, the para-octonions pO (not to be confused with
the split-octonions that are not a division algebra) and the real Okubo algebra O.

All three 8-dimensional algebras, being division and composition, allow indepen-
dent and self-contained definitions of an affine and projective plane over them. Quite
unexpectedly, despite the three different algebraic origins, the three definitions give
rise to the same incidence plane: the compact 16-dimensional Moufang plane. This
result is quite surprising because the three algebras, though deeply related, display very
different properties. For instance, while octonions have a unit element and paraocto-
nions have a paraunit, the Okubo algebra merely contains idempotent elements. These
differences apparently show up into the projective planes defined over these algebras:
e.g., as a consequence of not having an identity element, the points on the Okubo plane
(0, 0) , (x, x) and (y, y) are not all three incident to the same Okubo line, nor does
there exists an Okubo collineation that switches coordinates, i.e. (x, y) −→ (y, x),
as one has in octonionic case. Despite these apparent differences, in Sect. 5 we show

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

Table 1 Synoptic table of the
algebraic properties of octonions
O, paraoctonions pO and the
real Okubo algebraO

Property O pO O

Unital Yes No No

Paraunital Yes Yes No

Alternative Yes No No

Flexible Yes Yes Yes

Composition Yes Yes Yes

Automorphism G2 G2 SU (3)

that the projective planes, obtained directly from their corresponding foundational
algebras, are all isomorphic and even all isometric one another.

The result is remarkable in itself. However, since the 16-dimensional Moufang
plane is so deeply related with exceptional Jordan algebras, exceptional Lie Groups
and symmetric spaces, it also paves the way for a novel, more minimal algebraic real-
ization of these ubiquitous mathematical objects. A synoptic summary of the algebraic
properties of octonions O, paraoctonions pO and of the real Okubo algebraO is sum-
marized in Table 1. It is worth noting that the minimal algebraic structure between
such three algebras is the Okubo algebra O, which is neither unital, nor para-unital;
it is non-alternative and has the smallest automorphism group, i.e. SU (3) which has
dimension 8 compared to G2 that is a 14-dimensional group. Both paraoctonions pO
and the real Okubo algebraO are non-alternative, but flexible algebras. Their relation
to the Moufang plane is thus intriguing, because, notoriously, Moufang planes are
associated to Moufang identities, that in turn imply the alternativity of the underlying
algebra [39, 48]. In fact, all this does not give rise to any contradiction, since both the
Okubo and paraoctonionic projective planes can be coordinatised by an alternative
algebra, i.e. the octonions, through a non-linear planar ternary field as we show in
Sect. 6.

An even more striking observation is that, while the octonions possess an auto-
morphism group that is an exceptional group, the automorphism Lie group of the
real Okubo algebra is not exceptional, nor has any immediate relation to G2 itself.
Nevertheless, the projective plane over the Okubo algebra gives rise to a geometric
realisation of all types of exceptional Lie groups G2,F4,E6,E7 and E8 as the trans-
formation group respectively preserving: the non-degenerate quadrangles of the plane
(type G2); the distances of the plane (type F4); the usual incidence relations between
line and points (type E6); extended incidence relations according to symplectic and
metasymplectic geometry (type E7 and E8, for this last part see Freudenthal work [34,
Sec. 4.13]). It is well known that all compact exceptional Lie groups have SU (3) as a
subgroup, this work points out how the presence of a subgroup SU (3) is related with
an Okubo structure underlying the 16-dimensional Moufang plane.

It is here worth recalling (see e.g. [72, 73]) that Lie groups of type E6 are largely
studied and are still viable candidates for GUT theories and that the real Okubo algebra
was discovered by Susumo Okubo in his investigations on SU (3) as the gauge group
for QCD [55]. Thus, we expect the Okubo formulation of the Cayley plane to find
a physical application as a concrete alternative to its octonionic realisation and to
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the octonionic formulation of the rank-3 exceptional Jordan algebra, also known as
Albert algebra. Additionally, it is known thatM-theory may display an hidded Cayley-
Moufang fibration [65]. Here it is worth noting that variations in the foundational
algebra of this plane could potentially lead to novel physical theories.

Thepresentwork is thus structured as follows. InSect. 1we review the three algebras
we are going to use: octonions O, paraoctonions pO and the real Okubo algebra O.
In Sect. 3 we define the three affine and projective planes. Since the construction is
formally very similar we develop only the details of the construction of Okubo affine
and projective plane, pointing out the differences occurring in the other algebras. The
main result is in Sect. 5 where we present the isomorphism between the three planes.
Finally, in Sect. 6 we discuss our findings and introduce a software tool that facilitates
direct and numerical verification of calculations involving octonionic, para-octonionic,
and Okubo computations. This tool has been made publicly available and can be
accessed on ourGitHub repository at https://github.com/DCorradetti/OkuboAlgebras.

1 Composition algebras

Composition algebras are algebras endowed with a norm that enjoys the multiplica-
tive property, i.e. n (x · y) = n (x) n (y). Composition algebras with multiplicative
identity are called Hurwitz algebras and are fully classified [20]. On the other hand,
composition algebras without multiplicative identity but with associative norm were
discovered by Petersson [57] and indipendently by Okubo [49]; they are now called
symmetric composition algebras [44] and are completely classified in para-Hurwitz
and Okubo algebras [20]. Para-Hurwitz algebras are non-unital composition algebras
strictly related to their unital companion, i.e. the correspondingHurwitz algebra, while
on the other handOkubo algebras are somewhat more unique in feature appearing only
as 8-dimensional algebras and with some very peculiar characteristics that distinguish
them from both Hurwitz and para-Hurwitz algebras. It is worth noting that while it is
possible to define an Okubo algebra over any field, here we will be focusing on the
Okubo algebra over R, which is a division composition algebra.

In this section we review some useful notions about composition algebras. Then
we focus on Hurwitz algebras and, subsequently, we enter into the realm of symmetric
composition algebras, specifically highlighting para-Hurwitz and Petersson algebras
that in fact exhaust all algebras of this family. Even if this section is made of known
results, we thought it might be worthwhile to collect them in a few pages of review
content given their paramount importance in the understanding of the algebraic context
of the subsequent sections.

1.1 Composition algebras

An algebra, denoted by A, is a vector space over a field F equipped with a bilinear
multiplication. For our discussion, we will restrict our attention to algebras of finite
dimension and the field F will be taken to be either the field of real R or complex
numbersC. The specific properties of themultiplication operation in an algebra lead to
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various classifications. Specifically, an algebra A is said to be commutative if x ·y = y·x
for every x, y ∈ A; is associative if satisfies x · (y · z) = (x · y) · z; is alternative if
x · (y · y) = (x · y) · y; and finally, flexible if x · (y · x) = (x · y) · x . It is worth noting
that the last three proprieties can be seen as successive weakinings of associativity,
i.e.

associative ⇒ alternative ⇒ flexible. (1.1)

This observation stems from a nontrivial theorem proved by Artin (see [66]) who
showed that all alternative algebras are flexible.

Since A must be a group with respect to addition, every algebra has a zero element
0 ∈ A. Furthermore, if the algebra does not have zero divisors, it is referred to as a
division algebra, i.e. an algebra for which x · y = 0 implies x = 0 or y = 0. While
the zero element is a universal feature in any algebra, the algebra is termed unital if
there exists an element 1 ∈ X such that 1 · x = x · 1 = x for all x ∈ A.

Consider an algebra A. Then a quadratic form n on A over the field F, i.e. a bilinear
form of the type n(x, x), is called norm and its polarization is given by

〈x, y〉 = n (x + y) − n (x) − n (y) , (1.2)

so that the norm can be explicitly given as

n (x) = 1

2
〈x, x〉 , (1.3)

for every x ∈ A. An algebra Awith a non-degenerate norm n that satisfies the following
multiplicative property, i.e.

n (x · y) = n (x) n (y) , (1.4)

for every x, y ∈ A, is called a composition algebra and is denoted with the triple
(A, ·, n) or simply as A if there are no reason for ambiguity.

Given a composition algebra A, applying equation (1.2) to the multiplicative prop-
erty of the norm expressed in (1.4), we find that

〈x · y, x · z〉 = n (x) 〈y, z〉 , (1.5)

for every x, y, z ∈ A, which is an useful identity to be aware of.

1.2 Unital composition algebras

Composition algebras that possess a unit element are called Hurwitz algebras. The
interplay between the multiplicative property of the norm in (1.4) and the existence
of a unit element, is full of interesting implications. Indeed, every Hurwitz algebra is
endowed with an order-two antiautomorphism called conjugation, defined by

x = 〈x, 1〉 1 − x . (1.6)
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Table 2 On the left, we have summarized the algebraic properties, i.e. totally ordered (O), commutative
(C), associative (A), alternative (Alt), flexible (F), of all Hurwitz algebras, namely R,C,H and O along
with their split counterparts Cs ,Hs ,Os

Hurwitz O. C. A. Alt. F. p-Hurwitz O. C. A. Alt. F.

R Yes Yes Yes Yes Yes pR ∼= R Yes Yes Yes Yes Yes

C, Cs No Yes Yes Yes Yes pC, pCs No Yes No No Yes

H,Hs No No Yes Yes Yes pH,pHs No No No No Yes

O,Os No No No Yes Yes pO,pOs No No No No Yes

On the right, we have summarized the algebraic properties of all para-Hurwitz algebras, namely pR, pC, pH
and pO accompanied by their split counterparts pCs , pHs , pOs

The linearization of the norm, when paired with the composition, results in the notable
relation 〈x · y, z〉 = 〈y, x · z〉 , that imply that x · y = y · x and

x · x = n (x) 1. (1.7)

Moreover, from the existence of a unit element in a composition algebra we have that
elements with unit norm form a goup and, even more strikingly, that the whole algebra
must be alternative (for a proof see [20, Prop. 2.2]).

Equation (1.7) can be rephrased in the well-known Hamilton-Cayley equation,
x2 − 〈x, 1〉 x − n (x) 1 = 0, which holds true for every unital composition algebra.
Finally, a relation that is crucial for the Veronesean representation of the projective
plane over a unital composition algebras, is the following

x · (x · y) = (x · x) · y = n (x) y, (1.8)

which has a nice analogue in the case of symmetric composition algebras that we
discuss in Sect. 1.3.

A major theorem by Hurwitz proves that the only unital composition algebras over
the reals are R,C,H and O accompanied by their split counterparts Cs,Hs,Os (see
[20, 40], Cor. 2.12). Consequently, there are seven Hurwitz algebras, each having real
dimensions of 1, 2, 4, or 8. Out of these, four are also division algebras, i.e. R,C,H
and O, while three are split algebras and thus have zero divisors, i.e. Cs,Hs,Os . The
properties of such algebras are quite different one another. More specifically, R is also
totally ordered, commutative and associative; C is just commutative and associative;
H is only associative and, finally, O is only alternative.

As shown by Table 2 all properties of R,C,H and O are valid also for the split
companions with the only difference that the latter are not division algebras and do
have zero divisors. Generalizations of Hurwitz Theorem can be done over arbitrary
fields (see [81, p. 32]) but for our purposes this will not be needed.
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1.3 Symmetric composition algebras

We now turn our attention to a special class of composition algebras, i.e. symmetric
composition algebras, that are not unital but exhibit many properties analogous of
Hurwitz algebras. Composition algebras with associative norms (see below) were
independently studied by Petersson [57], Okubo [55], and Faulkner [29]. In [53],
Okubo-Osborn showed that over an algebraically closed field the only two types of
symmetric composition algebras are para-Hurwitz algebras and Okubo algebras, but
a final classification was done by Elduque and Myung [24, 25].

A symmetric composition algebra (A, ∗, n) is a composition algebra wherein the
norm is associative, i.e. satisfies the identity

〈x ∗ y, z〉 = 〈x, y ∗ z〉 , (1.9)

where x, y, z ∈ A and 〈x, y〉 = n (x + y) − n (x) − n (y), as stated in (1.2).
FromEq. (1.9),we extract a significant attribute of symmetric composition algebras.

More precisely, considering:

〈(x ∗ y) ∗ x, z〉 = 〈x ∗ y, x ∗ z〉 = n (x) 〈y, z〉 , (1.10)

and given that n (x + y) = n (x) + n (y) + 〈x, y〉, we can deduce

n ((x ∗ y) ∗ x − n (x) y) = 2n2 (x) n (y) − n (x) 〈x ∗ y, x ∗ y〉 = 0. (1.11)

Thus, since the norm n is non singular we have the following important proposition

Proposition 1 Let (A, ∗, n) be symmetric composition algebra then

(x ∗ y) ∗ x = n (x) ∗ y, (1.12)

for every x, y ∈ A.

In the realm ofHurwitz algebras, and similarly for symmetric composition algebras,
all automorphisms are isometries. Indeed, it sufficies to consider that a map ϕ : A −→
A such that ϕ (x ∗ y) = ϕ (x)∗ϕ (y) ,implies that ϕ ((x ∗ y) ∗ x) = n (x)∗ϕ (y) , on
one side, while on the other hand, (ϕ (x) ∗ ϕ (y)) ∗ ϕ (x) = n (ϕ (x)) ∗ ϕ (y) , so that
it must be

n (ϕ (x)) = n (x) , (1.13)

for every x ∈ A.
In fact, symmetric composition algebras are deeply intertwined with Hurwitz alge-

bras. Indeed, given a symmetric composition algebra (A, ∗, n) and a norm 1 element
a ∈ A, we can utilize Kaplansky’s trick to define a new product

x · y = (a ∗ x) ∗ (y ∗ a) , (1.14)

for every x, y ∈ A, resulting in a new composition algebra (A, ·, n). Now, consider
the element e = a ∗ a. Since (1.12) and n (a) = 1 we then have that

e · x = (a ∗ (a ∗ a)) ∗ (x ∗ a) = x, (1.15)
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x · e = (a ∗ x) ∗ ((a ∗ a) ∗ a) = x, (1.16)

for every x ∈ A. Consequently, (A, ·, n) is a unital composition algebra, or equiva-
lently, a Hurwitz algebra. As a direct implication of the Hurwitz theorem, symmetric
composition algebras can only have dimensions of 1, 2, 4, or 8.

1.3.1 Para-Hurwitz algebras

An important class of symmetric composition algebras is that of para-Hurwitz algebras.
Given any Hurwitz algebra (A, ·, n) a conjugation is naturally defined as

x = 〈x, 1〉 1 − x, (1.17)

for every x ∈ A. Then, consider the new product

x • y = x · y, (1.18)

for every x, y ∈ A. Since n (x) = n (x) we have that

n (x • y) = n (x · y) = n (x) n (y) , (1.19)

and thus the algebra (A, •, n) is again a composition algebra. On the other hand
(A, •, n) is not an unital algebra since

x • 1 = 1 • x = x . (1.20)

Moreover, the algebra is a symmetric composition algebra since it can be shown to
satisfy

〈x • y, z〉 = 〈x, y • z〉 , (1.21)

and it is then called a para-Hurwitz algebra [20]. For every Hurwitz algebra, i.e.
unital composition algebra, of dimension > 1 we have a para-Hurwitz algebra that
is a symmetric composition algebra that we denote as pC,pCs ,pH,pHs , pO and
pOs respectively. It is worth noting that all para-Hurwitz algebras are non-alternative
algebras, since

x • (x • y) = x · (
x · y) = x · (y · x) , (1.22)

(x • x) • y = (x · x) · y, (1.23)

thus, in general, x • (x • y) 	= (x • x) • y. Nevertheless, by Proposition 1 they are
flexible and more specifically

x ∗ y ∗ x = n (x) ∗ y, (1.24)

for every x, y ∈ A. Moreover, if the the Hurwitz algebra (A, ·, n) is a division algebra,
then also the para-Hurwitz (A, ∗, n)defined from(1.18) is a division algebra.Algebraic
properties of the Hurwitz algebras are summarized in Table 2.
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1.3.2 Petersson algebras

Ageneralisation of para-Hurwitz algebras was presented by Petersson in [57]. Starting
with a Hurwitz algebra (A, ·, n), he introduced a new algebra (A, ∗, n) such that

x ∗ y = τ (x) · τ 2 (x) , (1.25)

where τ is an order-three automorphisms, i.e. τ 3 = id. The new algebra, typically
denoted as Aτ , becomes a composition algebra that is non-unital. Moreover, Peters-
son demonstrated that over an algebraically closed field like C, there exists a specific
automorphism that results in a non-para-Hurwitz algebra. This new algebra is a sym-
metric composition algebra containing idempotent elements.

Petersson algebras are crucial in characterizing symmetric composition algebras
since we have the following

Theorem 2 (Elduque-Perez [27, Th. 2.5]) An algebra A is a symmetric composition
algebra with an nonzero idempotent if and only if there exists a Hurwitz algebra H
and an automorphism τ of H such that A is isomorphic to the algebra Hτ .

2 Octonions, paraoctonions and the real Okubo algebra

In this section, we delve into the three division algebras of primary interest: the octo-
nions O, the paraoctonions pO and the real Okubo algebra O. The main objective
of this section is summarized in Table 3 that synoptically illustrates the relationships
between the product of the three algebras. It’s crucial to note that although it is pos-
sible to switch from one algebra to another by altering the product definition, none
of these algebras is isomorphic one of the others: e.g. the octonions O are alternative
and unital, para-octonions pO are nor alternative nor unital but do have a para-unit,
while the Okubo algebraO is non-alternative and only has idempotents elements. It’s
also worth highlighting that the Okubo algebra O is the least structured among these
algebras.

2.1 The algebra of octonions

The algebra of octonions O is the only division Hurwitz algebra with a dimension of
eight.We define the composition algebra of octonion (O, ·, n) as the eight dimensional
real vector space with basis {i0 = 1, i1, ..., i7}with a bilinear product encoded through
the Fano plane and explained in Fig. 1.

Given an element x ∈ O with decomposition

x = x0 +
7∑

k=1

xk ik, (2.1)

the norm n is the obvious Euclidean one defined by

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

Fig. 1 Multiplication rules for
octonions O as real vector space
R8 in the basis
{i0 = 1, i1, ..., i7}. Lines in the
Fano plane identify associative
triples of the product and the
arrow indicates the sign (positive
in the sense of the arrow and
negative in the opposite sense).
In addition to the previous rules
it is intended that i2k = −1

n (x) = x20 + x21 + x22 + x23 + x24 + x25 + x26 + x27 , (2.2)

for which the conjugation results

x = x0 −
7∑

k=1

xkik, (2.3)

and therefore
n (x) = x · x, (2.4)

as it happens for every Hurwitz algebra. Then a look at (2.2) shows that n (x) = 0 if
and only if x = 0 and thus the inverse of a non-zero element of the octonions is easily
found as

x−1 = x

n (x)
. (2.5)

Also, from (2.4) we have that the octonionic inner product is given by

〈x, y〉 = x y + yx, (2.6)

so that 〈x, x〉 = 2n (x).
Straightforward calculations shows that the algebra of octonions is neither commu-

tative nor associative, but it is alternative. But, since any two elements of an alternative
algebra generate an associative subalgebra, it is then easy to see that (O, ·, n) is indeed
an Hurwitz algebra since it is unital and

n (x · y) = (x · y) · (x · y)
= (y · x) · (x · y)
= y · (x · x) · y = n (x) n (y) . (2.7)

Since the algebra is a composition algebra and any non-zero element has non-zero
norm, i.e. n (x) 	= 0 then (O, ·, n) is also a division algebra since if x · y = 0 then

n (x · y) = n (x) n (y) = 0, (2.8)
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which implies that x = 0 or y = 0. Moreover, an important relation that will be
used later on in the definition of the projective plane is the following consequence of
alternativity, i.e.

x · (x · y) = n (x) y, (2.9)

for every x, y ∈ O.

2.1.1 Moufang identities

While octonions are not a group under multiplication due to their lack of associativity,
non-zero octonions form aMoufang loop, i.e. a loop that satisfy the followingMoufang
identities, i.e.

((x · y) · x) · z = x · (y · (x · z)) , (2.10)

((z · x) · y) · x = z · (x · (y · x)) , (2.11)

(x · y) · (z · x) = x · ((y · z) · x) , (2.12)

for every x, y, z ∈ O. Moufang identities are particularly relevant since they are
historically linked to geometrical properties of the Moufang plane (see Sect. 6). It is
worth noting that any unital algebra satisfying Moufang identities is an alternative
algebra. Indeed, setting z = 1 Moufang identities turn into the flexible identity, i.e.

(x · y) · x = x · (y · x) , (2.13)

while setting y = 1 we have the identity for the left and right alternativity, i.e.

(x · x) · z = x · (x · z) , (2.14)

(z · x) · x = z · (x · x) . (2.15)

Thus, non alternative algebras do not satisfy Moufang identities.

2.2 Okubo algebras

Symmetric composition algebras might have remained relatively unnoticed among
algebraists had Petersson [57] not demonstrated that for every field F there exists a
unique eight-dimensional algebra that is not a para-Hurwitz algebra. This result essen-
tially broadened the reach of the Hurwitz classification theorem. On the other hand,
Okubo algebras were independently developed by mathematical physicist Susumo
Okubo in the course of his work on quarks and Gell-Mann matrices while pursuing
an algebra that featured SU (3) as automorphism group instead of G2 as in the case
of Octonions[55]. Even more interestingly, Okubo discovered that such algebra is a
division composition algebra and a deformation of its product would give back the
octonions[49–51]. It was withmore recent works [44], with the joint efforts of Osborn,
Elduque and Myung [19, 24–26, 53, 54], that the context of Okubo algebras was fully
elucidated.
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Following [49] and [24], we define the real Okubo Algebra O as the set of three
by three Hermitian traceless matrices over the complex numbers Cwith the following
bilinear product

x ∗ y = μ · xy + μ · yx − 1

3
Tr (xy) , (2.16)

where μ = 1/6
(
3 + i

√
3
)
and the juxtaposition is the ordinary associative product

between matrices. It is worth noting that (2.16) can be seen as a modification of the
Jordanian product. Indeed, setting μ = 1/2 and negletting the last term, we retrieve
the usual Jordan product over Hermitian traceless matrices, i.e.

x ◦ y = 1

2
xy + 1

2
yx . (2.17)

Nevertheless, Hermitian traceless matrices are not closed under such product, thus
requiring the additional term−1/3Tr (xy) for the closure of the algebra. Indeed, setting
in (2.16) Imμ = 0, one retrieves from the traceless part of the exceptional Jordan
algebra J3 (C), whose derivation Lie algebra is su (3).

Analyzing (2.16), it becomes evident that the resulting algebra is neither unital,
associative, nor alternative. Nonetheless, O is a flexible algebra, i.e.

x ∗ (y ∗ x) = (x ∗ y) ∗ x, (2.18)

whichwill turn out to be an evenmore useful property than alternativity in the definition
of the projective plane. Even though the Okubo algebra is not unital, it does have
idempotents, i.e. e ∗ e = e, such as

e =
⎛

⎝
2 0 0
0 −1 0
0 0 −1

⎞

⎠ , (2.19)

that together with

i1 = √
3

⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , i2 = √
3

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ ,

i3 = √
3

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ , i4 = √
3

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,

i5 = √
3

⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ , i6 = √
3

⎛

⎝
0 0 −i
0 0 0
i 0 0

⎞

⎠ ,

i7 = √
3

⎛

⎝
0 0 0
0 0 −i
0 i 0

⎞

⎠ ,

(2.20)
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form a basis forO that has real dimension 8.1 It is worth noting that the choice of the
idempotent e as in (2.19) does not yield to any loss of generality for the subsequent
development of our work since all idempotents are conjugate under the automorphism
group (cfr. [19, Thm. 20]). The choice of this special basis is motivated on the fact
that it will turn to be an orthonormal basis with respect to the norm in (2.21) and that
through a special bijective map between Okubo algebra and octonions the elements of
the basis {e, i1, ..., i7} here defined will correspond to the octonionic one previously
defined.

Let us consider the quadratic form n over Okubo algebra, given by

n (x) = 1

6
Tr

(
x2

)
, (2.21)

for every x ∈ O. It is straightforward to see that this norm has signature (8, 0), is
associative and composition over the real Okubo algebra, i.e.

n (x ∗ y) = n (x) n (y) , (2.22)

〈x ∗ y, z〉 = 〈x, y ∗ z〉 , (2.23)

where 〈·, ·〉 is the polar form given by

〈x, y〉 = n (x + y) − n (x) − n (y) . (2.24)

Therefore, Okubo algebra is a symmetric composition algebra [44, Ch. VIII] and, thus,
enjoying the notable relation

x ∗ (y ∗ x) = (x ∗ y) ∗ x = n (x) y. (2.25)

For our purposes it will be of paramount importance to notice the following [52]

Proposition 3 The Okubo Algebra is a division algebra.

Proof Without any loss of generality, let us suppose that d 	= 0 is a left divisor of zero,
i.e. d ∗ x = 0, then

n (d ∗ x) = n (d) n (x) = 0.

But, since the algebra is symmetric composition algebra, for the (2.25) we also have

(d ∗ x) ∗ d = 0 = n (d) x, (2.26)

1 Actually, the 8 matrices three by three (2.19)-(2.20) are, up to an overall factor
√
3, the Gell-Mann

matrices. In particular, the idempotent (2.19) is −√
3 times the eighth Gell-Mann matrix λ8,with the first

and third rows and columns exchanged.
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and therefore n (d) = 0, i.e. Tr
(
d2

) = 0. But, since the element d is of the form

d =
⎛

⎝
ξ1 x1 + iy1 x2 + iy2

x1 − iy1 ξ2 x3 + iy3
x2 − iy2 x3 − iy3 −ξ1 − ξ2

⎞

⎠ , (2.27)

where xi , yi , ξi ∈ R, the norm n (d) is given by

n (d) = 1

3

(
x21 + x22 + x23 + y21 + y22 + y23 + ξ21 + ξ22 + ξ1ξ2

)
, (2.28)

which yields that Tr
(
d2

) 	= 0 in case of ξ1, ξ2 ∈ R and ξ1, ξ2 	= 0. �

Unfortunately, sinceO is not a unital algebra, an element x does not have an inverse.

This implies that, concerning its product, the Okubo algebra is not a loop (as it was in
the case of the octonions that were a Moufang loop) but only a quasigroup. Neverthe-
less, considering the existence of the idempotent e, and inspired by the identity

x ∗ (e ∗ x) = (x ∗ e) ∗ x = n (x) e,

we can define (x)−1
L = n (x)−1 (e ∗ x) and (x)−1

R = n (x)−1 (x ∗ e) so that, given a
definite choice of the idempotent e, one has

(x)−1
L ∗ x = x ∗ (x)−1

R = e.

As an implication of the previous argument we have the following

Proposition 4 An equation of the kind

a ∗ x = b, or x ∗ a = b, (2.29)

has a unique solution which is respectively given by

x = 1

n (a)
b ∗ a, or x = 1

n (a)
a ∗ b, (2.30)

for every a, b ∈ O, with a 	= 0.

Proof Let us consider the equation a ∗ x = b. SinceO is a division algebra and a 	= 0
we can multiply by a obtaining

(a ∗ x) ∗ a = b ∗ a, (2.31)

but since (a ∗ x) ∗ a = n (a) x and n (a) ∈ R, we then have x = n (a)−1 b ∗ a. A
similar argument is valid for the case of x ∗ a = b. �


Although the above proposition is straightforward, it has profound geometrical
implications, as it confirms the applicability of affine and projective axioms to planes
over the Okubo algebra. This topic will be elaborated upon in subsequent sections.
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2.3 Conjugation and the trivolution

In unital composition algebras, as noted earlier, there exists a canonical involution, an
order-two antihomomorphism known as conjugation. This can be defined using the
orthogonal projection of the unit element as

x �→ x = 〈x, 1〉 1 − x . (2.32)

This canonical involution has the distinctive property of being an antihomomorphism
with respect to the product, i.e., x · y = y · x, and the basic property with the norm of
x · x = n (x) 1.

For non-unital composition algebras, the previous definition isn’t applicable. How-
ever, if an idempotent element e is present in the algebra, one might be tempted to
extend the previous definition

x �→ x̃ = 〈x, e〉 e − x, (2.33)

to investigate if similar properties remain valid.
In the case of a para-Hurwitz pK obtained from an Hurwitz algebra (K, ·, n) impos-

ing the new product x • y = x · y,for every x, y ∈ Kwe have a special element, called
para-unit, i.e. 1 ∈ pK such that 1 • x = x . Thus, we might want to have a look to the
map L1 given by left multiplication by the para-unit, i.e.

x �→ L1 (x) = 1 • x . (2.34)

Clearly, the same arguments apply to R1 (x) since x • 1 = 1 • x . Indeed, we notice
that L2

1 (x) = x thus L1 is an involution and, since

L1 (x • y) = 1 • (x • y) = y · x, (2.35)

and

L1 (x) • L1 (y) = x • y = x · y, (2.36)

the map is also an anti-homomorphism, i.e. L1 (x • y) = L1 (y) • L1 (x). Finally,
since

x • L1 (x) = x • 1 • x = n (x) 1. (2.37)

Thus, the order-two anti-homomorphism x �→ x̃ = L1 (x) realises for the para-
Hurwitz algebra pK all the main features of the canonical involution or conjugation
of the Hurwitz algebra K.

Unfortunately, the situation within the Okubo algebra is less straightforward.
Indeed, if we consider the idempotent e and define the map

x �→ 〈x, e〉 e − x, (2.38)
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it exhibits order two but is neither a homomorphism nor an antihomomorphism. On
the other hand, if we consider the maps

x −→ Le (x) = e ∗ x, (2.39)

x −→ Re (x) = x ∗ e, (2.40)

then we do have in both cases a nice relation with the norm, since

x ∗ Le (x) = n (x) e, (2.41)

Re (x) ∗ x = n (x) e, (2.42)

Yet, even if Re ◦ Le = id holds true as in the para-Hurwitz case, neither Le and Re is
an automorphism nor an antiautomorphism. On the other hand, if we generalise (2.32)
with the following map

x �→ 〈x, e〉 e − x ∗ e, (2.43)

we have indeed a special automorphism, that we call τ , which, nevertheless, is not of
order two but of order three. Therefore, while it is not possible to have a involution
over Okubo algebra that enjoys the same properties as the conjugation of Hurwitz
algebras, it is possible to define something in a similar fashion such as an order-three
automorphism τ , hereafter referred to as a trivolution, defined as

x −→ τ (x) = 〈x, e〉 e − x ∗ e, (2.44)

or, equivalently, as

x −→ τ (x) = Le (x)2 = e ∗ (e ∗ x) , (2.45)

x −→ τ 2 (x) = Re (x)2 = (x ∗ e) ∗ e. (2.46)

It is easy to see that the automorphism τ is of order 3 since, applying flexibility, we
have R2

e ◦ L2
e = id. It is also worth noting the stunning analogy with the conjugation

expressed for unital composition algebra in (2.32) and at the same time the analogy
with the one expressed for para-Hurwitz algebras in (2.39).

Even more interesting, the order-three automorphism τ is also an order-three auto-
morphism over the octonions O. Indeed, if we consider the base given in (2.20) and
set e = i0, we can define τ as the linear map given by

τ (ik) = ik, k = 0, 1, 3, 7

τ (i2) = − 1
2

(
i2 − √

3i5
)

,

τ (i5) = − 1
2

(
i5 + √

3i2
)

,

τ (i4) = − 1
2

(
i4 − √

3i6
)

,

τ (i6) = − 1
2

(
i6 + √

3i4
)

,

(2.47)
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This definition extends to an order-three homomorphism over octonions O once we
consider {i0 = 1, i2, ..., i7} as a basis for this algebra. It is interesting to note that in
the octonions there are two complex planes, generated by {i2, i5} and {i4, i6} on which
the automorphism τ acts as the cubic root of unity 1

2

(
1 + √

3i
)
. For completeness

we give also the action of the inverse τ−1 over this basis, i.e.

τ 2 (ik) = ik, k = 0, 1, 3, 7

τ 2 (i2) = − 1
2

(
i2 + √

3i5
)

,

τ 2 (i5) = − 1
2

(
i5 − √

3i2
)

,

τ 2 (i4) = − 1
2

(
i4 + √

3i6
)

,

τ 2 (i6) = − 1
2

(
i6 − √

3i4
)

.

(2.48)

2.4 Okubo algebra, octonions and para-octonions

An important feature of the Okubo algebra O is its interplay with the algebra of
octonions O. Indeed, octonions and the Okubo algebra are linked one another in such
away thatwe can easily pass fromone to the other simply changing the definition of the
bilinear product over the vector space of the algebra. Let us consider the Kaplansky’s
trick we introduced earlier and let us define a new product over the Okubo algebra O
as

x · y = (e ∗ x) ∗ (y ∗ e) , (2.49)

where x, y ∈ O and e is an idempotent of O. Given that e ∗ e = e and n (e) = 1, the
element e acts as a left and right identity, i.e.

x · e = e ∗ x ∗ e = n (e) x = x, (2.50)

e · x = e ∗ x ∗ e = n (e) x = x . (2.51)

Moreover, since the Okubo algebra is a composition algebra, the same norm n
enjoys the following relation

n (x · y) = n ((e ∗ x) ∗ (y ∗ e)) = n (x) n (y) , (2.52)

which means that (O, ·, n) is a unital composition algebra of real dimension 8. Since
it is also a division algebra, then it must be isomorphic to that of octonions O as noted
by Okubo himself [49, 51].

On the other hand, if we consider the order three automorphism of the octonions in
(2.47), the Okubo algebra is then realised as a Petersson algebra from the octonions
setting

x ∗ y = τ (x) · τ 2 (y) . (2.53)
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Table 3 In this table we see how to obtain the Okubo product ∗, the para-octonionic product • and the
octonionic product · from Okubo algebra (O, ∗), para-octonions (pO, •) and octonions (O, ·) respectively
Algebra (O, ∗) (pO, •) (O, ·)

x ∗ y x ∗ y τ (x) • τ2 (y) τ (x) · τ2 (y)

x • y τ2 (x) ∗ τ (y) x • y x · y
x · y (e ∗ x) ∗ (y ∗ e) (1 • x) • (y • 1) x · y

Note that (2.44) is formulated assuming the knowledge of the Okubo product. Reading
the same maps as Okubo maps we then have the notable relation, i.e.

x = R3
e (x) = ((x ∗ e) ∗ e) ∗ e, (2.54)

τ (x) = R4
e (x) = (((x ∗ e) ∗ e) ∗ e) ∗ e, (2.55)

so that, in fact, the two maps are linked one another, i.e.

τ (x) = x ∗ e (2.56)

x = τ (e ∗ x) . (2.57)

While these maps are intertwined, it’s important to highlight their distinct impacts on
the algebra’s structure. While τ is an automorphism for both Okubo algebra O and
octonions O, x do not respect the algebrical structure of the Okubo algebraO, since it
is not an automorphism nor an anti-automorphism with respect to the Okubo product,
while it is an anti-homomorphism over octonions O.

The scenario with para-octonions, pO is more straightforward. By definition, para-
octonions are obtainable from octonions O through

x • y = x · y, (2.58)

while, on the other hand, octonions O are obtainable from para-octonions pO through
the aid of the para-unit 1 ∈ pO, such that

x · y = (1 • x) • (y • 1) (2.59)

= x • y = x · y. (2.60)

The new algebra (pO, ·, n) is again an eight-dimensional composition algebra which
is also unital and division and thus, by the Hurwitz theorem, isomorphic to that of
octonions O. Moreover, since τ (x) = τ (x), we also have that the Okubo algebra is
obtainable from the para-Hurwitz algebra with the introduction of a Petersson-like
product, i.e.

x ∗ y = τ (x) • τ 2 (y) . (2.61)

We thus have that all algebras are obtainable one from the other as summarized in
Table 3.
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Nonetheless, it’s vital to note that while transitioning from one algebra to another
is feasible, these algebras are not isomorphic. For example, while the octonions O are
alternative and unital, para-octonions pO are nor alternative nor unital but do have
a para-unit. In contrast, the Okubo algebra O is non-alternative and only contains
idempotent elements.

3 Affine and projective planes

An incidence plane P2 is given by the triple {P,L ,R} whereP is the set of points
of the plane,L is the set of lines andR are the incidence relations of poins and lines.
The plane P2 is called an affine plane if it satisfies the axioms of affine geometry,
which means that the relationsR are such that: two points are joined by a single line;
any two non-parallel lines intersect in one point; finally, for each line and each point
there is a unique line which passes through the point and it is parallel to the line.
Instead, for P2 to be projective R must satisfy the property for which:

(1) Any two distinct points are incident to a unique line.
(2) Any two distinct lines are incident with a unique point.
(3) (not degenerate) There exist four points such that no three are incident one another.

From definitions provided earlier, both affine and projective planes can be defined in
very abstract terms. However, in this section, our focus is on the study of incidence
planes defined in a natural way over algebras: we aim to generalize the construction of
classical affine and projective planes [61]. Our interest lies in the definition wherein
points of the affine plane are characterized by two coordinates, where lines are linear
functions of the coordinates with respect to the a sum and a product that are those of the
algebra itself. To achieve a projective completion, it becomes necessary to introduce
an additional line at infinity and a few suitable relations. This foundational approach to
constructing affine and projective planes proves effective -with minor yet meaningful
modifications- for all three 8-dimensional division composition algebras: octonions
O, para-octonions pO and Okubo algebra O. Thus, we outline the framework for
defining the affine and projective planes for all three cases. However, in order to avoid
repetitions we will develop in all the details only the Okubo case O, highlighting in
Sect. 3.4 the differences and variations needed in the other two cases.

3.1 The Okubo affine plane and its completion

A direct consequence of Proposition 4 is the feasibility of defining affine geometry
over the Okubo algebra or, in other words, an Okubo affine planeA2 (O) that satisfies
all axioms of affine geometry.

Indeed, we identify a point on the Okubo affine plane A2 (O) by two coordinates
(x, y) with x, y ∈ O, while a line of slope s ∈ O and offset t ∈ O is the set
[s, t] = {(x, s ∗ x + t) : x ∈ O}. Thus, the x axis is represented by the line [0, 0]. On
the other hand, vertical lines are identified by [c] which stands for the set {c} × O.
Here c ∈ O represents the intersection with the x axis, thus [0] denotes the y axis.

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

Fig. 2 Representation of the
completion of the affine plane:
(0, 0) represents the origin, (0)
the point at the infinity on the
x-axis, (s) is the point at infinity
of the line [s, t] of slope s while
(∞) is the point at the infinity
on the y-axis and of vertical
lines [c]

Finally, as for the incidence rules we say that a point (x, y) ∈ A2 (O) is incident to a
line [s, t] ⊂ A2 (O) if belongs to such line, i.e. (x, y) ∈ [s, t].

We now proceed to prove that the set of points, lines and incidence relations previ-
ously defined forms an affine plane.

Theorem 5 The Okubo affine planeA2 (O) with the previous incidence rules satisfies
the axioms of affine geometry.

Proof First of all, we can straightforwardly see that given any two points (x1, y1) and
(x2, y2) there is a unique line joining them. If x1 = x2 = x , the line is simply [x]. On
the other hand, if x1 	= x2, the line is given by [s, y1 − s ∗ x1], where s is determined
by the linear equation

s ∗ (x1 − x2) = (y1 − y2) ,

which has a unique solution given by

s = (x1 − x2) ∗ (y1 − y2)

n (x1 − x2)
. (3.1)

Similarly, for two lines [s1, t1] and [s2, t2] with distinct slopes s1 	= s2, a unique point
of intersection exists, i.e. {(x, s1 ∗ x + t1)} where x is

x = (t2 − t1) ∗ (s1 − s2)

n (s1 − s2)
. (3.2)

If two lines have the same slope, they are disjoint. Two such lines are called parallel.
Finally, for each line [s, t] and each point (x, y) there is a unique line, given by i.e.
[s, y − s ∗ x], which passes through (x, y) and that is parallel to [s, t]. �


123



ANNALI DELL’UNIVERSITA’ DI FERRARA

The projective completion of the affine plane A2 (O) is obtained adding a line at
infinity [∞], i.e.

[∞] = {(s) : s ∈ O ∪ {∞}} ,

where (s) identifies the end point at infinity of a line with slope s ∈ O∪ {∞}. Finally,
we define (∞) the point at infinity of [∞]. We now proceed to verify that the plane
A2 (O) satisfies axioms of projective geometry: every two lines intersect in a unique
point; for every two points passes a unique line; there are at least four points that form
a non degenerate quadrangle. Indeed, have the following

Theorem 6 The extended Okubo affine plane A2 (O) is a projective plane.

Proof First we need to show that for every two points of the extended plane there
still passes a unique line. This is straightforward since if the points are of the affine
plane the line was already determined; if are both of them at infinity, i.e. (s) and

(
s′),

then such line is [∞]; finally, if one is on the affine plane (x, y) and the other is at
infinity (s), the line that joins them is [s, y − s ∗ x] . On the other hand, if two lines
are not parallel the interstection was already determined; if they are parallel lines,
such as [s, t1] and [s, t2], they now intersect in the point (s); finally, two vertical lines
intersect in (∞). The only thing that is left is to verify that it exists a non-degenerate
quadrangle where no three points are collinear which in this case can be found easily,
e.g. the quadrangle ♦ = {(0, 0) , (e, e) , (0) , (∞)} ⊂ A2 (O) is such that no three
elements are incident to the same line. Indeed, the lines that join those points are
[0, 0] , [0] , [∞] , [0, e] , [e, 0] and [e] and none of those contains three elements of♦.

Remark 7 As in the standard projective plane over a field, we would like to point out
to the reader the existence of a fundamental triangle also in the extended Okubo affine
plane. More precisely, the entirety of the affine plane is encompassed by a triangle
given by three special points: the origin (0, 0); the 0-point at infinity, i.e. the point (0)
obtained prolonging the x axis to infinity; finally, the ∞-point at infinity, i.e. the point
(∞) obtained prolonging the y axis to infinity. We designate � the set made by those
three points, i.e. � = {(0, 0) , (0) , (∞)} .

3.2 The Okubo projective plane

We will now define directly the projective plane OP2 and subsequently illustrate its
correspondencewith the completion of the affine planeA2 (O). Historically, numerous
tricks were used for defining projective planes over non-associative algebras such as
octonions. Here we will use a variation of the one proposed by H. Salzmann [61]
which is based on what he calls “Veronese coordinates”. Let V be the 27-dimensional
real vector space V ∼= O3 × R3, with elements of the form

(xν; λν)ν = (x1, x2, x3; λ1, λ2, λ3) ,
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where xν ∈ O, λν ∈ R and ν = 1, 2, 3. We then define the Veronese vectors to be
those w ∈ V that satisfy the following Veronese conditions,

λ1x1 = x2 ∗ x3, λ2x2 = x3 ∗ x1, λ3x3 = x1 ∗ x2, (3.3)

n (x1) = λ2λ3, n (x2) = λ3λ1, n (x3) = λ1λ2. (3.4)

It is straightforward to see that if w = (xν; λν)ν is a Veronese vector then also
μw = (μxν;μλν)ν is Veronese for every μ ∈ R. The set of Veronese vectors is
therefore a subset that we will call H and for every w that is Veronese we indicate as
Rw ⊂ H the class of real multiples of w. The Okubo projective plane OP2 is then
the geometry having the 1-dimensional subspaces Rw as points, i.e.

PO = {Rw : w ∈ H � {0}} . (3.5)

The set of lines LO is formed by subspaces �w in the projective plane OP2 that
are orthogonal to a Veronese vector w ∈ H , i.e.

�w = w⊥ = {z ∈ H : β (z, w) = 0} , (3.6)

where the bilinear form β is the extension to V of the polarisation of the Okubo norm.
More specifically, defining 〈x, y〉 = n (x + y) − n (x) − n (y), for any two Okubo
elements x, y ∈ O, the bilinear form β is given by

β (v,w) =
3∑

ν=1

(〈xν, yν〉 + λνην) , (3.7)

where v = (xν; λν)ν and w = (yν; ην)ν are Veronese vectors in H ⊂ V .
Finally, the incidence relations are again given by inclusion ⊆, i.e. we say that a

point Rw ∈ OP2 is incident to the line �v iff Rw ∈ v⊥, i.e. β (w, v) = 0.

Remark 8 Since all real multiples of a Veronese vectors v = (xν; λν)ν identify the
same point on the projective plane, we will usually take as representative of the class
the one such that λ1 + λ2 + λ3 = 1, such that an alternative definition of the set of
points in (3.5) could be

OP2 = {
(xν; λν)ν ∈ H � {0} , λ1 + λ2 + λ3 = 1

}
. (3.8)

Remark 9 It is also worth noting how the norm n, defined over the symmetric com-
position algebra O, is intertwined with the geometry of the plane. This relationship
becomes evident when considering the quadratic form of the bilinear symmetric form
β, i.e.

q (v) := 1

2
β (v, v) = n (x1) + n (x2) + n (x3) + 1

2

(
λ21 + λ22 + λ23

)
, (3.9)

where v = (xν; λν)ν .
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In the next section we will show that the triple OP2 = {PO,LO,⊆} is indeed
a projective plane and, even more, is equivalent to the completion of the affine plane
A2 (O).

3.3 Correspondence between affine and projective plane

In establishing a one-to-one correspondence between the completion of the affine plane
A2 (O) and the projective plane OP2, we must ensure that such a correspondence
maintains the incidence relations. Specifically, a point incident to a line in A2 (O)

should map to a point in OP2 that is incident to the image of the original line. As
demonstrated in [16], the map which sends points and lines from A2 (O) to OP2

defined by
(x, y) �→ R (x, y, x ∗ y; n (y) , n (x) , 1) ,

(x) �→ R (0, 0, x; n (x) , 1, 0) ,

(∞) �→ R (0, 0, 0; 1, 0, 0) ,

[s, t] �→ (t ∗ s,−t,−s; 1, n (s) , n (t))⊥ ,

[c] �→ (−c, 0, 0; 0, 1, n (c))⊥ ,

[∞] �→ (0, 0, 0; 0, 0, 1)⊥ ,

(3.10)

is indeed well-defined and keeps the incidence relations.

Lemma 10 The aforementioned correspondence (3.10) is well-defined and is a one-
to-one correspondence between points and lines of the affine planeA2 (O) and points
and lines of the projective plane OP2

Proof In fact, this is just a trivial check that relies on the Veronese conditions and
O being a symmetric composition algebra for which just (1.4) and (1.12) has to
be used. For example, let (x, y) be a point of the affine plane, then the vector
(x, y, x ∗ y; n (y) , n (x) , 1) is a Veronese vector since a direct check of (3.3) and
(3.4) yields to

n (y) x = y ∗ (x ∗ y) , n (x) y = (x ∗ y) ∗ x, x ∗ y = x ∗ y,
n (x) = n (x) , n (y) = n (y) , n (x ∗ y) = n (x) n (y) ,

(3.11)

that are either identically true or obtainable from the fact that Okubo algebra is a
composition algebra, i.e. n (x ∗ y) = n (x) n (y), or from the symmetric composition
identity, i.e. n (x) y = (x ∗ y) ∗ x . On the other hand, for any Veronese vector v =
(xν; λν)ν with λ3 	= 0 we have that subspace Rv is the same of

Rv = R (x, y, x ∗ y; n (y) , n (x) , 1) , (3.12)

where x = λ−1
3 x1 and y = λ−1

3 x2 which is again a Veronese vector. The check with a
generic line proceeds on the same way, but it might be interesting to explicitly check
that

[∞] −→ (0, 0, 0; 0, 0, 1)⊥ , (3.13)

is indeed a line. First of all, we need to find the Veronese vectors orthogonal to
(0, 0, 0; 0, 0, 1). These are vectors with λ3 = 0 and, therefore, with n (x1) = n (x2) =
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0, and thus with x1 = x2 = 0. Then, elements orthogonal to (0, 0, 0; 0, 0, 1) might
take only two forms depending on x3 being 0 or x3 	= 0, i.e.

(0, 0, 0; 0, 0, 1)⊥ = {R (0, 0, x; n (x) , 1, 0)} ∪ {R (0, 0, 0; 1, 0, 0)} , (3.14)

where x ∈ O. In fact, these are in a trivial way elements of an Okubo lineO ∪ {∞}as
one-point compactification of the Okubo algebra. �


While it was a trivial check that (3.10) is well defined and is a one-to-one corre-
spondence betweenA2 (O) andOP2, the proof that incidence rules are preserved by
(3.10) is a little bit more involved and for this reason we will show it in a complete
form with the following

Lemma 11 The correspondence in (3.10) preserves the incidence relations between
A2 (O) and OP2.

Proof We need to show that the image of a point (x, y) incident to the line [s, t] is
mappedby (3.10) into apoint of the projective plane, i.e.R (x, y, x ∗ y; n (y) , n (x) , 1),
that is incident to the image of [s, t], i.e. is incident to (t ∗ s,−t,−s; 1, n (s) , n (t))⊥.
By definition of incidence on the projective plane and of (3.6), the image of (x, y) is
incident to the image of [s, t] if and only if the following condition is satisfied

〈t ∗ s, x〉 − 〈t, y〉 − 〈s, x ∗ y〉 + n (y) + n (s) n (x) + n (t) = 0. (3.15)

Noting that

〈s ∗ x, t − y〉 = n (s ∗ x + t − y) − n (s ∗ x) − n (t − y) , (3.16)

and since (1.9), we then have

〈s ∗ x, t − y〉 = 〈s ∗ x, t〉 − 〈s ∗ x, y〉
= 〈t, s ∗ x〉 − 〈s, x ∗ y〉
= 〈t ∗ s, x〉 − 〈s, x ∗ y〉 ,

(3.17)

and, therefore,

〈t ∗ s, x〉 − 〈s, x ∗ y〉 = n (s ∗ x + t − y) − n (s ∗ x) − n (t − y) . (3.18)

Inserting the latter into (3.15) and noting that n (s) n (x) = n (s ∗ x), then (3.15) is
equivalent to

n (s ∗ x + t − y) = 0. (3.19)

Since the Okubo algebra is a division composition algebra, and the only element of
zero norm is zero, then (3.15) is satisfied iff s ∗ x + t − y = 0, that is (x, y) ∈ [s, t].
The cases for the incidence of (s) and (∞) with [∞] can be proved in the same way.

�
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Once it is shown that the map (3.10) gives a one to one correspondence that keeps
incidence relation we thus have the following

Theorem 12 The Okubo plane given by the tripleOP2 = {PO,LO,⊆} is a projec-
tive plane and is isomorphic to the completion of the affine plane A2 (O).

3.4 Octonionic and para-octonionic planes

The previous definitions pertaining to the Okubo plane can be generalized to the para-
octonionic case and, with minor variations, to the octonionic case as referenced in [13,
61]. Indeed, in the context of the paraoctonionic case, there is no need to alter the defi-
nitions formally, providedwe replace theOkubonic product ∗with the para-octonionic
product •. In a manner analogous to the Okubo case, a point of the para-octonionic
affine plane A2 (pO) is given by a pair of elements (x, y) with x ,y ∈ {pO}, while a
line of slope s ∈ pO and offset t ∈ pO is the set [s, t] = {(x, s • x + t) : x ∈ pO} and,
of course, we say that a point (x, y) ∈ A2 (pO) is incident to a line [s, t] ⊂ A2 (pO)

if belongs to such line, i.e. (x, y) ∈ [s, t]. The octonionic case O with the product ·
follows the same definitions.

For the affine plane, distinctions primarily manifest in the octonionic equations
that describe the slope s of the line passing through two points of the plane and
coordinate x of the intersection of two generic lines as found in (3.1) and (3.2). In the
para-octonionic scenario, the expressions remain as

s = (x1 − x2) • (y1 − y2)

n (x1 − x2)
, x = (t2 − t1) • (s1 − s2)

n (s1 − s2)
. (3.20)

However, the octonionic variant introduces a slight modification due to the unique
properties of octonions as a unital composition algebra. Given that x−1 = x/n (x),
the equations transform to

s = (y1 − y2) · (x1 − x2)

n (x1 − x2)
, x = (s1 − s2) · (t2 − t1)

n (s1 − s2)
.

Similar modifications are observed in the projective planes’ definitions, as seen in
(3.3) and (3.4). For the para-octonionic case, given a vector (x1, x2, x3; λ1, λ2, λ3) ∈
pO3×R3, one isolate the subset ofVeronese vectors satisfying the following conditions

λ1x1 = x2 • x3, λ2x2 = x3 • x1, λ3x3 = x1 • x2, (3.21)

n (x1) = λ2λ3, n (x2) = λ3λ1, n (x3) = λ1λ2, (3.22)

which closely resemble the Okubo conditions. In contrast, the octonionic variant relies
on the Veronese conditions applicable to all Hurwitz algebras, i.e.,

λ1x1 = x2 · x3, λ2x2 = x3 · x1, λ3x3 = x1 · x2, (3.23)

n (x1) = λ2λ3, n (x2) = λ3λ1, n (x3) = λ1λ2. (3.24)
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To conclude, these differences in the Veronese conditions correspond to varied
formulations of the one-to-one relationship between the affine and projective planes.
Within this relationship, the para-octonions retain the formal mapping in (3.3), and
more specifically one still has

(x, y) �→ R (x, y, x • y; n (y) , n (x) , 1) , (3.25)

[s, t] �→ (t • s,−t,−s; 1, n (s) , n (t))⊥ , (3.26)

while for the octonionic plane one has to modify them as follow

(x, y) �→ R (x, y, y · x; n (y) , n (x) , 1) , (3.27)

[s, t] �→ (s · t,−t,−s; 1, n (s) , n (t))⊥ . (3.28)

Interestingly, as inferred from the above equations, the Veronese conditions for para-
octonions are simpler than those for octonions, aswedonot need to use the conjugation.
This leads to an intriguing observation: defining the Cayley plane appears more intu-
itive using para-octonions than octonions.

4 Collineations on the plane

In this section we study the collineations of the Okubo affine and projective plane. We
start presenting explicit forms of elations, more specifically translations and shears,
and of the triality collineation (see below). The direct study of the motion group is
important since itmight be an alternativeway in proving the isomorphismof theOkubo
plane with the Cayley plane. Indeed, it is well known that any 16-dimensional com-
pact plane with a collineation group of dimension greater than 40 is isomorphic to the
Cayley plane OP2 (see [61, Chap. 8]). In fact, this is not needed since we will write
an explicit isomorphism between the Okubo plane OP2, the paraoctonionic plane
pOP2 and the octonionic plane OP2 in the next section. As result, the collineation
groups of the three planes coincide and is the exceptional Lie group E6(−26). Nev-
ertheless, it is noteworthy that a variation in the foundational algebra defining the
plane, despite preserving the overall collineation group, alters the algebraic descrip-
tion of the collineations. Consequently, in the Okubo realization of the 16-dimensional
Moufang plane, the reflection (x, y) −→ (y, x) , is not a collineation, whereas it is in
its octonionic realisation.

4.1 Collineations

A collineation is a bijection ϕ of the set of points of the plane onto itself, such that
lines map to lines. Since the identity map is a collineation, the inverse ϕ−1 and the
composition ϕ ◦ ϕ′ are collineations if ϕ, ϕ′ are both collineations, then the set of
collineations is in fact a group under composition that we will denote as Aut

(OP2
)
.

A notable characteristic of collineations is that they keep incidence relations of both
affine and projective planes. Indeed, given two points p1 and p2, there is only one
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line passing through them and, clearly, the image of such a line is the only one that
passes through pϕ

1 and pϕ
2 (where we used the classical notation pϕ and �ϕ to indicate

the image of the point p and the line � through the collineation ϕ). We thus have the
following

Proposition 13 Collineations of the affine plane send parallel lines into parallel lines.

As a consequence of the previous proposition we also have the following

Corollary 14 Any affine collineation can be extended uniquely as a projective
collineation.

Proof Since an affine collineation sends parallel lines [s, t] into parallel lines [s, t]ϕ ,
so that in fact we have that all lines with slope s go in lines with slope sϕ . Clearly,
we can extend the affine collineation to the projective plane if and only if we set that
parallels lines go to the same point at infinity, i.e. setting (s)ϕ = (sϕ). �


A set of collineations � is called transitive on a set M if for every x, y ∈ M it
exists a collineation ϕ such that xϕ = y. On the other hand, a set of collineations �
is called doubly transitive if for any quadruple of points x, y, z, w ∈ M , it exists a
collineation ϕ such that xϕ = y and zϕ = w.

4.2 Axial collineations

Given a collineation ϕ we say that ϕ is axial if it fixes every point of a line �. In this
case, the line � is called an axis of ϕ. On the other hand we say that ϕ is central if it
fixes every line passing through a point p, which is then called a center of ϕ.

It is known from a general setting of projective geometry that any collineation of a
projective plane is axial if and only if is central (see [39, Thm. 4.9]). Moreover, it is
easy to see that an axial collineation that has two centers or two axis is the identity.
Indeed, let us suppose that ϕ has two center p and q, then any other point r outside
the line joining p and q would be fixed since r is given as intersection of two fixed
lines, one passing through p and the other through q. On the other hand, we could just
replicate the argument for the point r with p and determine that the collineation must
fix also the line joining p and q.

Given a point p and a line �, we denote an axial collineation with center p and line
� as ϕ[p,�] and the group of such collineations as 
[p,�]. It is then easy to verify what
is known as the conjugation formula, i.e.

Lemma 15 (Conjugation formula [39, Lemma. 4.11]) For every collineation ϕ the
group 
[pϕ,�ϕ ] of collineations with center pϕ and axis �ϕ is just the conjugate of

[p,�] by ϕ

ϕ−1 ◦ 
[p,�] ◦ ϕ = 
[pϕ,�ϕ ]. (4.1)

Moreover, an axial collineation ϕ[p,�] that fixes a point q outside p∪� is the identity.
Indeed if q is fixed by ϕ[p,�] then joining the points of � with q we would see that also
q is a center.

Since axial collineations fix only a point called center and a line called axis, they
can be easily divided in two classes:

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

(1) those for which the center p is incident to the axis � and that are called elations;
(2) those collineations for which the center p is not incident to the axis � and that are

called homologies.

Finally, a last lemma worth reviewing, since it is a standard argument that we will use.

Lemma 16 (see [61, sec. 23.9]) Suppose that � is a set of collineations of center p
and axis �, and let m be a line through p with m 	= �. If � is transitive on the set of
points of m that are not incident with the center or the axis, i.e., m � {p,m ∧ �} then
� is the group of all collineations with center p and axis �, i.e. 
[p,�].

4.3 Elations

We now focus on a special class of axial collineations called elations, i.e. that are those
collineations in which the center is incident to the axis.

Corollary 17 Collineations of A2 (O) that have the line at infinity [∞] as axis and
center incident with the axis are precisely the translations

τa,b : (x, y) −→ (x + a, y + b) ,

τa,b |[∞]= id.
(4.2)

Proof First of all, we show that this are collineations that have axis [∞] and center
incident to the axis. Indeed, given a line [s, t] or [c], then its image through τa,b is
another line given by

[s, t]τa,b = [s, t − s ∗ a + b] , (4.3)

[c]τa,b = [c + a] . (4.4)

Since this are collineations of the affine plane, they do extend in a unique way as
collineations on the projective plane and since the slope (s) is unchanged, then the
line at infinity is the axis of the collineation. Moreover, let us now consider (4.3).
Clearly if a 	= 0 there is a unique slope s, namely s = n (s)−1 (a ∗ b), such that
[s, t]τa,b = [s, t] for every t ∈ O. But the set {[s, t] : t ∈ O} is exactly the set of
parallel lines that pass through the point (s), i.e. (s) is a center of the collineation and
is incident to the axis [∞]. The same reasoning can be applied when a = 0, since
in that case all vertical lines [c] with c ∈ O would be invariant and the center of the
collineation would be (∞).

We now need to demonstrate that all elations with axis [∞] and center (p) are of
the form of τa,b. First of all since [∞] is the axis, which means that the collineation
fixes pointwise the line [∞], then the image of a line of slope (p) will be a line of
the same slope (p). Now let be q1, q2 any two points in the affine plane incident to
a line of slope p. Then there exists a translation of the form τa,b that sends q1 in q2.
The group of translations τa,b is thus transitive on the line M joining q1 and q2 which
has slope (p). This means that the group of translations is that of all collineation with
center (p) and axis [∞] by Lemma 16. �
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We now focus on elations that have vertical axis [0] and center in (∞) which they
too enjoy an easy and elegant characterization.

Theorem 18 Collineations ofA2 (O) that have the vertical axis [0] as axis and center
in (∞) are precisely the shears

σa : (x, y) −→ (x, y + ax) ,

(s) −→ (s + a) ,

(∞) −→ (∞) .

(4.5)

Proof First of all we show that this are collineations that have axis [0] and center in
(∞). Indeed, given a line [s, t] or [c], then its image through σa is another line given
by

[s, t]σa = [s + a, t] , (4.6)

[c]σa = [c] , (4.7)

so that σa are indeed collineations. Since all lines of the form [c] are invariant, therefore
the point (∞) that joins them is the center of all σa . On the other hand, looking at
(4.5) it is evident that all points of the for (0, t) are fixed by all σa and thus [0] is the
axis. Since (∞) ∈ [0], then σa are elations for every a ∈ O.

Now we proceed with the same argument of the previous theorem to show that
all the elations with axis [0] and center (∞) are of the previous form. Let M be the
vertical line [c] with c 	= 0 and let us consider two points q1, q2 ∈ M � (∞). Let us
suppose q1 = (c, y) and q2 = (

c, y′) then the shear σa with a = n (c)−1 c∗ (
y′ − y

)
,

sends q1 in q2. Thus the group of shears is transitive over M � (∞) and thus coincides
with the group of all elations with axis [0] and center (∞), i.e. i.e. 
[(∞),[0]]. �


Translations and shears occur also in the octonionic realisation of the 16-
dimensional Moufang plane. We now point out a transformation that is a collineation
when formulated in the octonionic realisation, but is not a collineation on the Okubo
projective plane.

Proposition 19 The reflection of the coordinates over the Okubo plane given by
(x, y) −→ (y, x) , is not collineation.

Proof Let us consider the image of a line [s, t] through the map that sends
(x, y) −→ (y, x) . Let us suppose that

[s, t] = {(x, s ∗ x + t) : x ∈ O} → [
s′, t ′

] = {(s ∗ x + t, x) : x ∈ O} , (4.8)

and let us determine s′ and t ′. Since bydefinition
[
s′, t ′

] = {(
x ′, s′ ∗ x ′ + t ′

) : x ′ ∈ O}

we then have that
{
x ′ = s ∗ x + t,

x = s′ ∗ x ′ + t ′,
(4.9)

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

which means
x ′ = s ∗ (

s′ ∗ x ′ + t ′
) + t, (4.10)

and thus for the (1.12) after multiplying on the LHS for s, we obtain

(
x ′ − t

) ∗ s = n (s)
(
s′ ∗ x ′ + t ′

)
, (4.11)

and, finally,
n (s) t ′ + t ∗ s = x ′ ∗ s − n (s) s′ ∗ x ′, (4.12)

which yields to a slope s′ that varies with x ′ and thus it is not a line since the slope is
not fixed for all x ′. �

Remark 20 In the case of octonions O reflections over the affine and projective plane
are collineations. In fact, the previousmap canbe definedover the octonionic projective
plane as the collineation

ρ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x, y) −→ (y, x) ,

(s) −→ (
s−1

)
,

(∞) −→ (0) ,

(0) −→ (∞) ,

(4.13)

with x, y, s ∈ Owhich is an axial collineation of axis [1, 0] and center (−1) that sends

ρ :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[s, t] −→ [
s−1,−s−1t

]
, s 	= 0

[0, t] −→ [t] ,

[t] −→ [0, t] ,

[0] −→ [∞] ,

[∞] −→ [0] .

(4.14)

From a heuristic point of view the previous theorem is clear since, for this reflection
to be a collineation, it would require the existence of an inverse at the infinity line,
i.e. (s) −→ (

s−1
)
. Also, note that once we try to define such collineation reading it

from the octonions from Tab. 3, i.e. defining implicitly s−1 = x such that read in the
octonionic algebra we would have x · s = 1, we then have two choices for the implicit
definition of x , i.e.

(x ∗ e) ∗ (e ∗ s) = e, or (s ∗ e) ∗ (e ∗ x) = e, (4.15)

that yield to different, even though τ -conjugated, definitions of x which thus would
violate the uniqueness of the extension to the projective plane of an affine collineation.
Another heuristic reason for the lack of such collineation is that the axis of such
reflection, if it would exists as in the octonionic case A2 (O) would be the line [1, 0]
containing all elements of the form (x, x) with x ∈ O. In our case, it is easy to verify
that points (x, x) are not all collinear, e.g. the line joining the point (0, 0) with (x, x)
is given by

[
n (x)−1 x ∗ x, 0

]
for every x ∈ O.
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Remark 21 The previous proposition does not mean that the set of collineations is not
transitive over OP2 since for every pair of points p1 = (x, y) and p2 = (

x ′, y′) we
can find a collineation such that (x, y)ϕ = (

x ′, y′) for example the translation τa,b

with a = x ′ − x and b = y′ − y. Even more the Okubo projective plane, as a Corollary
of Theorem 24, is transitive on quadrangles.

4.4 Triality collineations

Through the use of the Okubo-Veronese coordinates a special set of collineations can
be easily spotted, i.e. the triality collineation [61] given by a cyclic permutation of the
coordinates

t̃ : (x1, x2, x3; λ1, λ2, λ3) −→ (x2, x3, x1; λ2, λ3, λ1) . (4.16)

Proposition 22 The triality collineation can be read on the affine plane in the following
way:

t̃ :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(x, y) −→ 1
n(y) (y, x ∗ y) , y 	= 0

(x) −→ 1
n(x) (0, x) , x 	= 0

(x, 0) −→ (x) ,

(0) −→ (∞) ,

(∞) −→ (0, 0) .

(4.17)

In particular it induces a collineation t : A2 (O) → A2 (O)on the affine plane.

Proof If y 	= 0, the image of t (x, y) by the bijection (3.10) in the projective plane is
given by

1

n (y)
(y, x ∗ y) −→ 1

n (y)

(
y, x ∗ y,

y ∗ x ∗ y

n (y)
; n (x ∗ y)

n (y)
, 1, n (y)

)
, (4.18)

and since y ∗ x ∗ y = n (y) x and n (x ∗ y) = n (x) ∗ n (y), then the image of t (x, y)
is in R (y, x ∗ y, x; n (x) , 1, n (y)) which is the image of the triality collineation t̃ of
the projective point R (x, y, x ∗ y; n (y) , n (x) , 1). With the same procedure we find
the other correspondences. �

Remark 23 As shown in Fig. 3 the triality collineation t sends the line at infinity [∞]
into the line [0], while the y axis [0] is sent into the x axis [0, 0]; finally the x axis [0, 0]
is sent into the line at infinity [∞]. This phenomenon is the dual, of what happens, in
the reverse order, for the three points (0, 0),(0) and (∞).

5 Three realizations of the 16-dimensional Moufang plane

In Sect. 3, we have constructed three projective planes coming from three division
algebras, by modifications of Veronese-type formulas. In the preceding Sect. 4.1, we
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Fig. 3 Action on the affine plane A2 (O) of the triality collineation defined in (4.17)

explicitly constructed the primary families of collineations for the Okubonic plane and
highlighted certain distinctive features of the plane.More specifically,we observed that
the points (0, 0), (x, x), and (y, y) are not collinear -as it happens in projective planes
obtained over Hurwitz algebras-, and the transformation from (x, y) −→ (y, x) does
not constitute a collineation. Despite these distinctions, in Theorem 24, we construct
two collineations, i.e. (5.4) and (5.16) that prove the three planes to be projectively
isomorphic. Furthermore, we will show that such collineations are isometries. As a
consequence, there exists a complete equivalence among the Okubonic, octonionic,
and paraoctonic planes that we will extensively discuss in Sect. 6.

5.1 Isomorphism between Okubo and the Cayley plane

In the context of projective spaces, an isomorphism refers to a bijection between the
points of the spaces that preserves the incidence relations. We have the following

Theorem 24 The Okubo projective OP2 plane is isomorphic to the octonionic pro-
jective plane OP2.

Proof Consider the following bijective map (see Sect. 2.3) defined over the real Okubo
algebra given by

x −→ x = 〈x, e〉 e − x, (5.1)

x −→ τ (x) = 〈x, e〉 e − x ∗ e, (5.2)

where ∗ is the Okubo product. Notice that τ , as bijective maps over the octonions, is
an order three automorphism that realizes the Okubo algebra as a Petersson algebra
since

x ∗ y = τ (x) · τ 2 (y) , (5.3)
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for every x, y ∈ O. Let the Okubo projective plane be OP2 = {PO,LO,RO} and
consider the bijective map 
 : OP2 −→ OP2 given by


 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) −→ (
τ 2 (x) , y

)
,

(s) −→ (τ (s)) ,

(∞) −→ (∞) ,

[s, t] −→ [τ (s) , t] ,

[c] −→ [
τ 2 (c)

]
,

[∞] −→ [∞] .

(5.4)

If we call the image incidence plane 

(OP2

) = {
R


O,L 

O ,R


O
}
, then we notice

that the octonionic projective plane is given byOP2 = {
P


O,L 

O ,RO

}
. To show the

projective isomorphism and complete the theorem we need to show that RO ∼= R

O,

in other words that every point in the Okubo plane (x, y) is incident to an Okubo line
� if and only if the image point (x, y)
 is incident to the image of the octonion line
�
, i.e. 
((x, y)) ∈ 
(�). By definition of the Okubo projective plane

(x, y) ∈ [s, t] = {y = s ∗ x + t} , (5.5)

(s) ∈ [s, t] , (5.6)

(∞) ∈ [∞] , (5.7)

for every x, y, s ∈ O. But, since the image of the line [s, t] is

[τ (s) , t] =
{
(x, y) ∈ O : y = τ (s) · τ 2 (x) + t

}
, (5.8)

and since
s ∗ x = τ (s) · τ 2 (x) , (5.9)

we then have that

(x, y)
 =
(
τ 2 (x) , y

)
∈ [τ (s) , t] = [s, t]
 , (5.10)

(s)
 = (τ (s)) ∈ [τ (s) , t] = [s, t]
 , (5.11)

(∞) ∈ [∞] , (5.12)

which thus concludes the proof of the theorem. �


In the previous theorem we explicitly found an isomorphism between the comple-
tion of the affine plane over theOkubo algebra and that over the octonions. For practical
reason it is also useful to have the isomorphism 
̃ : OP2 −→ OP2 developed for
the Veronese formalism, i.e. between Veronese Okubo and octonionic vectors. The
isomorphism between the Okubo Veronese vectors and octonionic Veronese vectors
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is given by

⎧
⎪⎪⎨

⎪⎪⎩

(x, y, x ∗ y; n (y) , n (x) , 1) −→
(
τ 2 (x) , y, y · τ 2 (x); n (y) , n (x) , 1

)
,

(0, 0, x; n (x) , 1, 0) −→ (
0, 0, τ 2 (x) ; n (x) , 1, 0

)
,

(0, 0, 0; 1, 0, 0) −→ (0, 0, 0; 1, 0, 0) ,

(5.13)
where the first vectors are Veronese under conditions (3.3) and (3.4), while the image
vectors are Veronese under conditions (3.23) and (3.24) that involves conjugation and
octonionic product.

5.2 Isomorphismwith the para-octonionic plane

Recall that a point of the paraoctonionic affine plane A2 (pO) plane is given by a
pair of elements (x, y) with x ,y ∈ {pO}, while a line of slope s ∈ pO and offset
t ∈ pO is the set [s, t] = {(x, s • x + t) : x ∈ pO} and, of course, we say that a
point (x, y) ∈ A2 (pO) is incident to a line [s, t] ⊂ A2 (pO) if belongs to such line,
i.e. (x, y) ∈ [s, t]. The previous definitions define a para-octonionic affine plane, a
projective plane can be directly defined through the Veronese conditions (3.21) and
(3.22), i.e.,

λ1x1 = x2 • x3, λ2x2 = x3 • x1, λ3x3 = x1 • x2 (5.14)

n (x1) = λ2λ3, n (x2) = λ3λ1, n (x3) = λ1λ2. (5.15)

An explicit isomorphism between the Okubo projective plane OP2 and the para-
octonionic projective plane pOP2 is obtained considering the bijective map p
 :
OP2 −→ pOP2 given by

p
 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) −→ (
τ 2 (x) , y

)
,

(s) −→ (τ (s)) ,

(∞) −→ (∞) ,

[s, t] −→ [τ (s) , t] ,

[c] −→ [
τ 2 (c)

]
,

[∞] −→ [∞] .

(5.16)

The proof that the map given in (5.16) is a collineation adheres closely to the steps
outlined in Theorem 24. This is expected, given the similarity between the maps.
The sole distinction between para-octonions pO and octonions O is the presence of
a paraunit in the former, as opposed to a unit in the latter, and the fact that while the
former is merely flexible, the latter is alternative.
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5.3 Isometries

Theorem 24 and its para-octonionic counterpart ensures projective isomorphism
between the three planes OP2, OP2 and pOP2. If projective spaces are isomor-
phic, they share the same incidence relations between points and lines. However, this
does not imply that the distances or angles between points are preserved and this
is of high importance in our case since, according to Lie theory, it is well-known
that the collineation group of the octonionic plane is the minimally non-compact real
form of the exceptional Lie group E6, namely E6(−26), while the group of elliptic
motions, i.e. isometries, over the octonionic projective plane is its maximal compact
subgroup, namely F4(−52) (see [13]). By the map in (5.4) we have an Okubo realiza-
tion of both the Lie groups F4(−52) and E6(−26). Thus, we can write the homogeneous
space presentation of the compact Cayley-Moufang plane OP2 as F4(−52)/Spin (9),
a 16-dimensional symmetric coset. In fact, we have the following

Theorem 25 The map 
 defined in (5.4) is an isometry.

Proof By construction the Okubo plane comes equipped with the following distance:

dO (p1, p2) = n (x1 − x2)
2 + n (y1 − y2)

2 , (5.17)

with p1 = (x1, y1) ∈ A 2 (O) and p2 = (x2, y2) ∈ A 2 (O). By its very construction
the octonionic plane comes with the following distance:

dO = n (x1 − x2)
2 + n (y1 − y2)

2 , (5.18)

with p1 = (x1, y1) ∈ A 2 (O) and p2 = (x2, y2) ∈ A 2 (O).Then, the images by 
 of
the two points p1 and p2 are given by

p

1 =

(
τ 2 (x1) , y1

)
, p


2 =
(
τ 2 (x2) , y2

)
. (5.19)

Therefore the octonionic distance between p

1 and p


2 is given by

dO
(
p

1 , p


2

) = n
(
τ 2 (x1) − τ 2 (x2)

)2 + n (y1 − y2)
2 , (5.20)

but since all automorphism of Hurwitz and para-Hurwitz algebras as isometries and
τ 2 is an automorphism we have

dO
(
p

1 , p


2

) = n
(
τ 2 (x1 − x2)

)2 + n (y1 − y2)
2 (5.21)

= n (x1 − x2)
2 + n (y1 − y2)

2 (5.22)

= n (x1 − x2)
2 + n (y1 − y2)

2 (5.23)

= dO (p1, p2) , (5.24)

thus completing the proof. �
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Similar and straightforward proof can be given for the map p
 for the para-
octonionic case.

5.4 Collineation groups

As a corollary of Theorem 24 we have that the Lie group of collineations of the Okubo
projective plane is the following

Corollary 26 The group of collineations of the Okubo projective plane is E6(−26).

Proof Let 
 : OP2 −→ OP2 be the isomorphism in (5.4) and 
−1 : OP2 −→ OP2

its inverse given by


−1 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, y) −→ (τ (x) , y)

(s) −→ (
τ 2 (s)

)

(∞) −→ (∞)

[s, t] −→ [
τ 2 (s) , t

]

[c] −→ [τ (c)]

[∞] −→ [∞]

, (5.25)

where x, y, s, t, c ∈ O. Then, since both 
 and 
−1 send lines to lines, for every
collineation of the octonionic projective plane γ ∈ Aut

(
OP2

)
, then the composition

of collineations
γ̃ = 
−1γ
, (5.26)

is a collineation of the Okubo projective plane. Conversely any collineation γ̃ ∈
Aut

(OP2
)
induces a collineation

γ = 
γ̃
−1, (5.27)

in Aut
(
OP2

)
. Moreover, it is clear that

γ̃ ◦ δ̃ =
(

−1γ


) (

−1δ


)
= 
−1 (γ δ) 
, (5.28)

so that the two collineation groups are identical Aut
(
OP2

) ∼= Aut
(OP2

)
, i.e.

Aut
(OP2

) ∼= E6(−26). �


For the sake of completeness, we now recover the collineation γ̃ = 
−1γ
 cor-
responding to the octonionic collineation γ given by the reflection (x, y) −→ (y, x).
By (5.26), we have that the octonionic reflection given by switching coordinates is on
the Okubo plane given by the collineation

γ̃ : (x, y) −→
(
τ (y) , τ 2 (x)

)
. (5.29)
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Moreover, given that the group of elliptic motion of the octonionic plane is F4(−52),
we have the following corollary of Theorem 25

Corollary 27 The group of elliptic motion of the Okubo projective plane is F4(−52).

Corollary 26 and 27 state the existence of an Okubonic geometric realization of
exceptional Lie groups E6(−26) and F4(−52) which, to our knowledgewas never pointed
out.

5.5 G2 as stabilizer of a quadrangle

Another exceptional Lie group with direct geometrical significance in the octonionic
plane is G2(−14). This exceptional Lie group is recognized as the group of automor-
phisms of the octonions, denoted asAut (O) = G2(−14). However, this is also the group

 (♦,O) of collineations that fix each of the three points of a quadrangle [13, 61] of the
projective octonionic plane. Given Theorems 24 and 25 our objective is to identify an
Okubo realization of G2(−14). To this end, we examine the subgroups of collineations

 (�,O) and 
 (♦,O). Specifically, the former represents the group of collineations
that preserve every point of the triangle � = {(0, 0) , (0) , (∞)}, while the latter is the
group that maintains every point of the quadrangle ♦ = {(0, 0) , (e, e) , (0) , (∞)}.
Proposition 28 The group 
 (�,O) of collineations that fix every point of � are
transformations of this form

(x, y) �→ (A (x) , B (y)) (5.30)

(s) �→ (C (s)) (5.31)

(∞) �→ (∞) (5.32)

where A, B and C are invertible linear maps over O and in respect to multiplication
they satisfy

B (s ∗ x) = C (s) ∗ A (x) . (5.33)

Proof A collineation that fixes (0, 0), (0) and (∞), also leaves invariant the x-axis and
y-axis. Moreover, since the incidence relations must be preserved, it maps all lines
parallel to the x-axis and the y-axis to lines parallel to the x-axis and the y-axis. Then,
the first coordinate is the image of a function that does not depend on y and the second
coordinate is image of a fuction that does not depend by x , i.e. (x, y) �→ (A (x) , B (y))
and (s) �→ (C (s)). Now consider the image of a point on the line [s, t]. The point is
of the form (x, s ∗ x + t) and its image goes to

(x, s ∗ x + t) �→ (A (x) , B (s ∗ x + t)) . (5.34)

In order this to be a collineation, the points of [s, t] must all belong to a line that, setting
x = 0, passes through the points p1 = (0, B (t)) and p2 = (C (s)), e.g. [C (s) , B (t)].
Every line (A (x) , B (s ∗ x + t)) passing through p1 and p2 must satisfy the condition

B (s ∗ x + t) = C (s) ∗ A (x) + B (t) . (5.35)
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Given (5.35), if B is an automorphismwith respect to the sum overO, then B (s ∗ x) =
C (s) ∗ A (x). Conversely if B (s ∗ x) = C (s) ∗ A (x) is true than B (s ∗ x + t) =
B (s ∗ x) + B (t) and B is an automorphism with respect to the sum. �


A further corollary of Theorem 24 is that the Okubo projective plane, being the 16-
dimensional Moufang plane, has a collineation group that is transitive on quadrangles.
Without loss of generality we can thus consider the quadrangle ♦ given by the points
(0, 0), (e, e), (0) and (∞), that is ♦ = � ∪ {(e, e)}, and consider the collineations
that fix the set ♦.

For this purpose, it is important to note that a relation analogous to (5.33) holds in
the case of both para-octonions and octonions. Specifically, in the octonionic case, we
have

B (s · x) = C (s) · A (x) , (5.36)

for all x, s ∈ O. This is particularly relevant since, in the case of octonions, the
relation simplifies if we require the collineations to also stabilize the point (e, e), i.e.
to stabilize the non-degenerate quadrangle ♦ = � ∪ {(e, e)} . In this scenario, the
previous formula transforms into

A (s · x) = A (s) · A (x) , (5.37)

which implies that the stabilizer of the non-degenerate quadrangle is isomorphic to
the automorphism group of the octonions, denoted as G2(−14). Switching back to the
Okubo algebra from the previous result, we then arrive at the following statement:

Theorem 29 The exceptional Lie group G2(−14) has the following realisation

G2(−14) ∼= {
(A, B,C) ∈ Spin (8)3 : B (s ∗ x) = C (s) ∗ A (x) ,

A (e) = B (e) = C (e) = e} ,
(5.38)

or, equivalently

G2(−14) ∼= {(A, B,C) ∈ Tri (O) : B (e ∗ x) = e ∗ A (x) ,

B (x ∗ e) = C (x) ∗ e} ,
(5.39)

where x, s ∈ O and e ∗ e = e ∈ O.

We give here two independent proofs of the same statement. The first is a Corollary
of the isomorphism in Theorem 24, relying on the fact that the stabilizer of a non-
degenerate quadrangle on the octonionic projective plane is G2(−14). The second is a
proof based on Lie theory, that does not rely on the knowledge of the geometry of the
octonionic plane.

Proof From the previous proposition the stabilizer of the triangle � is given by the
group of triples A, B,C ∈ Spin (8) such that

B (s ∗ x) = C (s) ∗ A (x) , (5.40)
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with x, s ∈ O. To stabilize ♦ = � ∪ {(e, e)}, we have to impose

(e, e) �→ (A (e) , B (e)) = (e, e) , (5.41)

and since e ∗ e = e, then C (e) = e and A (e) = B (e) = C (e) = e, obtaining
the RHS of (5.38). Knowing that the stabilizer of a non-degenerate quadrangle of the
compact 16-dimensional Moufang plane is G2(−14), we then obtain the identification
with the LHS of (5.38). �


We now proceed with the second proof of Theorem 29.

Proof Recall that the triality group Tri(O) of the real Okubo algebra O is defined as

Tri (O) :=
{
(A, B,C) ∈ Spin (8)3 : B (s ∗ x) = C (s) ∗ A (x) , ∀s, x ∈ O

}
,

(5.42)
and that, as proved in [44], Tri (O) � Spin (8) � Spin (O) . Let us consider the action
of triality (5.42) in three cases: the first where s = x = e, for which

B (e) = C (e) ∗ A (e) , (5.43)

the second with s ∈ O and fixed x = e, i.e.,

B (s ∗ e) = C (s) ∗ A (e) , (5.44)

finally, the case x ∈ O and s = e for which

B (e ∗ x) = C (e) ∗ A (x) . (5.45)

Now,wewant to determine the subgroupofTri(O)definedby the following constraints

B (e ∗ x) = e ∗ A (x) , (5.46)

B (x ∗ e) = C (x) ∗ e. (5.47)

Since O is a division algebra, (5.45) and the constraint (5.46), as well as (5.44) and
the constraint (5.47), imply

C (e) = e = A (e) , (5.48)

which in turn imply, by (5.43), that B (e) = e ∗ e = e. Thus one can reformulate the
constraints (5.46) and (5.47), for any subgroup of Tri(O) � Spin (8), with (5.48).

A well-known theorem by Dynkin (see Th. 1.5 of [18]) states that a maximal
(and non-symmetric) embedding of SU3 =Aut(O) into Spin (8) exists such that all
8-dimensional irreducible representations of Spin (8) stay irreducible inSU3, all reduc-
ing to the same adjoint representation. By using the Dynkin labels to identify the
representations, it holds that

Spin (8) ⊃
max,ns

SU3,
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(1, 0, 0, 0) = (1, 1) ,

(0, 0, 0, 1) = (1, 1) ,

(0, 0, 1, 0) = (1, 1) ,

(5.49)

where we adopted the conventions of [77], and the subscripts “max”, “s” and “ns”
respectively stand for maximal, symmetric and non-symmetric. Thus, for the triality
of Spin(8), the adjoint irrepr. (1, 1) of SU3, for which the basis (2.20) of the Okubo
algebra O provides a realization

O �< e, i1, .., i7 >� (1, 1) of SU3, (5.50)

can be mapped to any of the three 8-dimensional irreducible representations of
Spin (8). Let B the set of elements {e, i1, .., i7}, then, with no loss of generality, up to
triality of Spin (8), one can identify

C (B) := {C (e) ,C (i1) , ..,C (i7)} � (1, 0, 0, 0) of Spin (8) ,

A (B) := {A (e) , A (i1) , .., A (i7)} � (0, 0, 0, 1) of Spin (8) ,

B (B) := {B (e) , B (i1) , .., B (i7)} � (0, 0, 1, 0) of Spin (8) .

(5.51)

We now implement the first constraint of (5.48), namely of C (e) = e. The largest
subgroup of Spin (8) allowing C (e) = e is its maximal (and symmetric) subgroup
Spin(7), for which it holds that

Spin(8) ⊃
max,s

Spin (7) � A, B,C :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 0, 0, 0) = (0, 0, 0)
C(e)=e

⊕ (1, 0, 0)
{C(i1),..,C(i7)}

,

(0, 0, 0, 1) = (0, 0, 1)
{A(e),A(i1),..,A(i7)}

,

(0, 0, 1, 0) = (0, 0, 1)
{B(e),B(i1),..,B(i7)}

,

(5.52)

where (1, 0, 0) is the 7-dimensional fundamental (vector) irrepr. of Spin (7) and
(0, 0, 1) denotes its 8-dimensional (spinor) irrepr.. Next, one must impose the sec-
ond constraint of (5.48). This can be implemented by a further symmetry breaking
implying A (e) = e, which, together to C (e) = e, implies also that B (e) = e. The
largest subgroup of Spin (7) allowing for an action of this kind is G2(−14), which is a
maximal and non-symmetric subgroup of Spin (7) itself:

Spin (7) ⊃
max,ns

G2(−14) � A, B,C : (5.53)
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0, 0) = (0, 0)
C(e)=e

,

(1, 0, 0) = (0, 1)
{C(i1),..,C(i7)}

,

(0, 0, 1) = (0, 0)
A(e)=e

⊕ (0, 1)
{A(i1),..,A(i7)}

,

(0, 0, 1) = (0, 0)
B(e)=e

⊕ (0, 1)
{B(i1),..,B(i7)}

.

(5.54)
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Thus, the (largest) subgroup of Tri(O) �Spin (8) defined by the constraints (5.48)
(or, equivalently, by the constraints (5.46) and (5.47)) is G2(−14), which is next-to-
maximal (and symmetric) in Spin (8), being determined by the chain of two maximal
embeddings:

Spin (8) ⊃max,s Spin (7) ⊃max,ns G2(−14). (5.55)

�


6 Discussions and verifications

Let A be an algebra, and let x, y, z be elements of this algebra. It is well known that
the validity of Moufang identities (2.12) in the algebra, i.e.

((x · y) · x) · z = x · (y · (x · z)) , (6.1)

((z · x) · y) · x = z · (x · (y · x)) , (6.2)

(x · y) · (z · x) = x · ((y · z) · x) , (6.3)

are linked with the Moufang properties of projective plane over the algebra [48, 61,
Sec. 12.15]. Furthermore, as an immediate corollary, if the algebra is unital, then,
setting y = 1 the Moufang identities imply alternativity, resulting in

(x · x) · z = x · (x · z) , (6.4)

(z · x) · x = z · (x · x) , (6.5)

for every x, z ∈ A. In fact, the relation between alternative rings and Moufang planes
is a one-to-one correspondence [56, p. 160], [39, p. 143] and is so deep that Moufang
planes are also called “alternative planes” [74].

Considering this background, the isomorphism between the Okubo projective plane
and the Cayley plane appears counterintuitive. The Okubo algebra is non-alternative
and non-unital, making it markedly different from the often-considered octonionic
algebra used for realizing the 16-dimensional Moufang plane. Notably, the Moufang
identities in (6.3) do not hold in theOkubo algebra.Hence, the emergence of aMoufang
plane from a projective plane over theOkubo algebra demands a thorough explanation.

In fact, the Moufang property of a plane is tied to the alternativity of its associated
planar ternary ring (PTR). Typically, this ternary ring is linear (see below) and thus
isomorphic to the algebra fromwhich the plane is defined. However, as wewill show in
this section, theOkubo case is not so simple. Since theOkubo algebra lacks an identity,
it is not a ring and therefore cannot be employed to coordinatize the Okubo projective
plane. Clearly the best candidate for such a coordinatization are the octonions O.

6.1 Coordinatizing the Okubo plane with Octonions

In incidence geometry, relationships between incidence planes and algebraic structures
are developed after a process of relabeling called coordinatisation that involves a set
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C containing the symbols 0, 1 ∈ C and not containing the symbol ∞. In most of
cases, dealing with unital algebras the set C is just the original algebra used for the
definition of the plane, but since the Okubo algebra is not unital the set of symbol
C cannot be O. In our case, a natural candidate for the set C is clearly the ring of
octonionsO. To coordinatise theOkubo planewith octonionic coordinates we consider
the non-degenerate quadrangle♦ = {(0, 0) , (e, e) , (0) , (∞)}of theOkuboprojective
plane OP2 and use the ring of octonions O for its coordinatisation so that, in the new
coordinates, the quadrangle is {(0, 0) , (1, 1) , (0) , (∞)}. From the general theory we
know [29, Cor. 3.4] that up to isomorphism there is a unique standard coordinatisation
that maps ♦ into {(0, 0) , (1, 1) , (0) , (∞)}. In fact, such coordinatisation is easily
obtained sending the Okubo elements with their respective octonionic representative
following the previous deformation of the product (see Tab. 3), so that e ∈ O is sent to
1 ∈ O and the other elements of the base {i1, ..., i7} in (2.20) are sent into a multiple
of the imaginary unit of the octonions O.

Once the relabeling process called coordinatization is done, we can now define a
unique ternary ringwith ternary operation θ that encodes algebraically the geometrical
properties of the incidence plane (see [39, Ch. 5]). Indeed, we define the planar ternary
ring (PTR) by the incidence rules of the plane so that

θ (s, x, t) = y, iff (x, y) ∈ [s, t] , (6.6)

for all x, y, s, t ∈ C . For this ternary ring we then define an associated product and
an associated sum, i.e.

sx := θ (s, x, 0) , (6.7)

x + t := θ (1, x, t) . (6.8)

Then algebraic properties of the associated product and of the associated sum are then
studied in order to deduce geometrical properties of the coordinatized projective plane.

Note that in case of the octonionic projective plane OP2 we have that the product
and the sum of θ coincided with those defined over the algebra of octonions (O,+, ·)
so that

θ (s, x, t) = sx + t = s · x + t . (6.9)

When this happen, the planar ternary ring is called linear [61, Sec. 22.4].Unfortunately,
this is not the case for the Okubo projective plane so that the ternary ring derived
coordinatising the Okubo projective plane with the ring of the octonions O is not
linear since

θ (s, x, t) = sx + t 	= s ∗ x + t, (6.10)

as one easily might expect since the octonionic product is not the Okubo product.
In summary, while the planar ternary ring is alternative (thereby not contradict-

ing the one-to-one relationship between Moufang planes and alternative rings), the
originating algebra is non-alternative. This distinction arises because the ternary ring
derived from coordinatization is nonlinear.
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Fig. 4 Little Desargues configuration: two triangles a, b, c and a′, b′, c′ are perspective, i.e. lines aa′, bb′
and cc′ interesect on the same point p that is the origin of the perspectivity, then the points of intersection of
corresponding sides all lie on one line � that is the axis of the perspectivity. In the Little Desargues config-
uration the perspectivity that relates the two triangles is also an elation, thus the center of the perspectivity
p is incident to the axis �

Remark 30 It is worth noting that while we are relabeling the Okubo coordinates with
octonions in order to obtain a planar ternary ring, this process does not constitutes
at all a projective isomorphism between the Okubo plane OP2 and the octonionic
projective plane OP2. Indeed, consider any map φ : O −→ O is such that

0O −→ 0O,

eO −→ 1O,

xO −→ φ (x) .

(6.11)

Then consider on the octonionic plane OP2 the three points (0O, 0O) , (1O, 1O) ,

(φ (x) , φ (x)). These three points are collinear, belonging to the same line [1, 0] =
{x ∈ O : (x, 1 · x)}, i.e. the line passing through the origin with slope s = 1. Nev-
ertheless, in the Okubo plane OP2 the three points (0O, 0O) , (eO, eO) , (x, x)
are not collinear. Indeed the only line joining (0O, 0O) , (eO, eO) is [eO, 0] ,i.e.
(0O, 0O) , (eO, eO) ∈ [eO, 0] = {x ∈ O : (x, e ∗ x)}, while the point (x, x) /∈
[eO, 0] since x 	= e ∗ x for any x 	= e. We thus have that any relabeling process
of the Okubo algebra with the octonionic algebra does not yield to a collineation and,
in fact, changes the incidence rules of the plane.

6.2 Direct verification of the“Little Desargues Theorem”

It is well-known that the “Little Desargues Theorem” is valid in every Moufang plane.
This theorem is a weaker version of the Desargues Theorem, which holds true for
every Moufang plane over an associative algebra.

The Deasargues theorem states that if two triangles a, b, c and a′, b′, c′, are per-
spective, i.e. lines aa′, bb′ and cc′ interesect on the same point p that is the origin
of the perspectivity, then the points of intersection of corresponding sides all lie on
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one line �, termed the axis of the perspectivity. However, this theorem is not valid in
non-associative Moufang planes. A special case arises when the point p also lies on
the axis �, making the perspectivity an elation (see Sect. 4.3); this case is valid in all
Moufang planes and is known as the “Little Desargues Theorem” (see Fig. 4).

Rather than presenting a formal proof of the theorem’s validity (which is already
established for any Moufang plane), we opted for a numerical verification using a
Wolfram Mathematica notebook now available at the repository https://github.com/
DCorradetti/OkuboAlgebras. The notebook is fully documentedwith a notation coher-
ent to that used in this article, so that it can be easily used to verify all calculations of
this article involving octonions, para-octonions and the real Okubo algebra. To validate
the Little Desargues Theorem, we first represented the real Okubo algebra three-by-
three complex Hermitian matrices endowed with the Okubo product in (2.16). Next,
we developed the following Mathematica functions:

• sLine[x1,y1,x2,y2]: Computes the slope of the line connecting points (x1, y1)
and (x2, y2);

• tLine[x1,y1,x2,y2]: Determines the offset of the line connecting points (x1, y1)
and (x2, y2);

• xPoint[s1,t1,s2,t2]:Calculates the x-coordinate of the intersection point of lines
[s1, t1] and [s2, t2];

• yPoint[s1,t1,s2,t2]:Calculates the y-coordinate of the intersection point of lines
[s1, t1] and [s2, t2];

• incidence[x ,y,s,t]:Determines the y-coordinate of the intersection point of
lines [s1, t1] and [s2, t2];

All function arguments are elements of the real Okubo algebra. Then, to set up the
configuration for the Little Desargues Theorem, we:

(1) Defined the center of the perspectivity p and the axis � so that p ∈ �.

(2) Picked a point a not belonging to � and a point a′ incident to the line ⇀
ap.

(3) Picked a point b not belonging to � nor
⇀
ap and defined the line

⇀

ab.

(4) Found the intersection l3of
⇀

ab with �.

(5) Found the point b′ given by the intersection of the lines
⇀

l3a′ and
⇀

bp.

(6) Picked a point c not belonging to � nor
⇀
ap nor

⇀

bp and thus defined the line
⇀
ac.

(7) Found the intersection l2of
⇀
ac with �.

(8) Found the point c′ given by the intersection of lines
⇀

l2a′ and ⇀
cp.

Finally, to check the validity of the “little Desargues theorem” we verified that the

point l1, given by the intersection of
⇀

cb with
⇀

c′b′, was incident to �. As shown in the
Wolfram notebook, we verified the validity of the “little Desargues theorem”, and,
choosing p /∈ �, that the full Desargues theorem is not valid.
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Table 4 Summary of the
algebraic properties of the three
division and composition
algebras that allows a
straightforward and natural
definition of the Cayley plane
with the mathematical setup
described in this thesis

O pO O

Unital Yes No No

Paraunital No Yes No

Alternative Yes No No

Flexible Yes Yes Yes

Composition Yes Yes Yes

Automorphism G2 G2 SU (3)

7 Conclusions

This work provides a novel construction of the 16-dimensional Cayley plane using
two flexible algebras: the para-octonions and the real Okubo algebra. Despite lacking
many algebraic properties of octonions, including alternativity and identity element,
both algebras nonetheless give the same projective plane up to isometries. Through two
explicit collineations, we established an equivalence between the Okubo, octonionic,
and para-octonionic planes, i.e.,OP2, OP2 and pOP2. Moreover, numerical compu-
tations directly confirmed foundational projective properties like the Little Desargues
Theorem.

Among the three constructions of the 16-dimensionalMoufang plane, the one based
on the Okubo algebra O is the simplest possible for the definition of such a plane,
requiring only an 8-dimensional algebra that is neither alternative nor unital and that
has an automorphism group of real dimension 8, compared to that of the octonions, and
para-octonios that has dimension 14 (see Table 4). Surprisingly, even if historically
octonionsOwere thefirst algebra used for the definition of the compact 16-dimensional
Moufang plane, they are the less economic algebra that can be used for the definition
such plane. For the sake of completeness we should say that, in order to have an affine
plane correctly defined with a natural setup as that defined above, the 8-dimensional
algebra used for its definition must be a division algebra. Moreover, to have a comple-
tion of the affine plane in correspondence with a Veronese-type of condition as those
above, one needs to have a composition algebra. Thus, for the generalised Hurwitz
theorem [20], the only three algebras for which this setup can exist are those recalled
in this paper.

As a corollary of the construction presented in this work, concrete geometric real-
izations of the real forms of the exceptional Lie groups E6(−26), F4(−52) and G2(−14)
emerge without recurring to the uses of octonions. This challenges the conventional
thinking that links exceptional Lie and Jordan structures to octonions and empha-
sizes the role of symmetric composition algebras. Future work should further explore,
algebraic and physical interpretations of this new realization.

From the algebraic point of view, the existence of an Okubo Jordan algebra [28]
is known, that we expect to be linked with 16-dimensional Moufang plane as the
exceptional Jordan algebra is [43]. An Okubo construction of Tits-Freudenthal Magic
Square was already considered for symmetric composition algebras [22, 23], so we
do expect to find a geometrical interpretation of those construction as Freudenthal and
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Rosenfeld did for the Hurwitz version[34, 58]. From the physical side, given the con-
nections betweenM-theory and the octonionic Cayley plane, we expect that alternative
constructions like the Okubo algebra that has SU (3) as automorphism group instead
of G2 may unravel novel phases of the theory. In particular, the investigation of the
physical consequences of the lack of unity of Okubo algebra may turn out to be rather
intriguing. We also have provided a valuable reference implementation of the algebras
with examples in a Wolfram Mathematica notebook in order to help researchers in
practical calculations.

All in all, by going beyond the deeply rooted connections between octonions and
exceptional mathematics, this study paves the way to reimagining non-associative
geometry. Symmetric composition algebras, once considered pathological,may encap-
sulate geometric worlds equally rich as their unital cousins. Much work remains to
fully chart the landscape.
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