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Abstract
The paper investigates current models of flows in porous media from the viewpoint
of the mixture theory. The constitutive equations are investigated for compressible,
viscous, heat-conducting fluids subject to relaxation phenomena. The thermodynamic
analysis is performed via the Clausius-Duhem inequality based directly on the peculiar
fields of the mixture. The detailed analysis so developed involves the peculiar heat
fluxes and stresses per se while the balance equations for energy and entropy of the
whole body would involve also diffusion effects. Following the objectivity principle,
the constitutive equations for stresses and heat fluxes are taken to be governed by
objective rate equations.

Keywords Porous media · Theory of mixtures · Thermodynamic consistency ·
Objectivity
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1 Introduction

The modelling of fluid flow in porous media shows interesting problems relative to
both balance equations and constitutive properties. A variety of models occurs mainly
because of the nature of the fluid and the distributed contact between the fluid and the
skeletal solid.

The first model governing the fluid flow in a porous medium is due to Darcy [1]. In
local form and stationary conditions, Darcy’s equation associates the seepage velocity
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v to the pressure gradient ∇ p in the form

v = − k

μ
∇ p, (1)

where k is the permeability of the skeletal solid and μ the shear viscosity of the fluid.
Yet the interest in the dynamics of porous media indicates some suitable properties

that are in order for a realistic model. In this regard viscosity, compressibility, and
relaxation properties are needed for the fluid along with a proper model for heat
conduction. Furthermore the motion of the fluid within the porous medium requires
an appropriate description of fluid–solid interaction. References [2–6] and references
therein give an exhaustive scenario of the models adopted in the literature. On the side
of simplifications, often the fluid is assumed to be incompressible. Instead, on the side
of generalizations, relaxation properties are modelled for the stress and the heat flux.

This paper is based on the view that a convenient approach should be grounded
on the theory of mixtures. In this sense next section reviews the main point of the
mixture theory and next quite general models are established for mixtures of fluids
and fluid–solid mixtures.

Now, the physical relevance of a model depends on the verified thermodynamic
consistency. Hence attention is addressed to the formulation of the second law of
thermodynamics for mixtures. Though the mixture theory is by now well established
[7–11], the application to solid–fluid mixtures is still of interest mainly in connection
with the constitutive properties. Furthermore, the modelling of relaxation properties
through rate equations involves objective time derivatives [12], which is a further
interesting topic in the thermodynamic analysis.

Some features denote the originality of the present approach. The fluid is allowed
to be compressible, besides being viscous. The consistency with the entropy principle
is stated and developed in detail with reference to quantities pertaining to the single
constituents rather than to the mixture as a whole. Results are derived for mixtures
with several temperatures and for mixtures with a single temperature.

Notation. The body under consideration is a mixture of n constituents occupying a
time-dependent region of the three-dimensional space. The subscript α = 1, 2, . . . , n
labels thefields pertaining to theα-th constituent and

∑
α is a shorthand for

∑n
α=1. Sym

is the set of symmetric tensors and tr denotes the trace. The compact notation is used;
for any pair of vectors u, v the symbol u ·v denotes the inner product, u ·v = uivi , and
likewise for tensors, A ·B = Ai j Bi j = tr (ABT ). The symbol ∇ denotes the gradient,
∇· the divergence, and ⊗ the dyadic product.

2 A setting from the theory of mixtures

The natural setting for the fluid flow in a porous medium is that of mixtures. Since
we are interested in porous media we restrict attention to non-reacting mixtures. The
mixture consists of n constituents though the application to porous media involves 2
constituents.
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Denote by the subscript α = 1, 2, .., n the quantities pertaining to the α-th con-
stituent. For any function fα the dashed symbol f̀α denotes the material derivative
relative to the pertinent constituent, viz.

f̀α = ∂t fα + (vα · ∇) fα.

The conservation of mass of single constituents results into the n continuity equa-
tions

ρ̀α + ρα∇ · vα = 0. (2)

The equations of motion are written in the form

ρα v̀α = ∇ · Tα + ραbα + mα, (3)

where Tα is the (Cauchy) stress tensor, bα the body force, mα the interaction force,
or growth, between constituents. The growths are subject to

∑
αmα = 0.

No body couples are considered and then the balance of angular momentum results
in

Tα = TT
α .

Let εα be the specific internal energy. We write the local version of the balance of
energy in the form

ρα(εα + 1
2v

2
α)`= ∇ · (vαTα) − ∇ · qα + ραrα + eα, (4)

where rα is the energy supply and eα the energy growth, so that

∑
αeα = 0.

We notice that ( 12v
2
α)`= vα · v̀α and use (3) to obtain

ραὲα = Tα · Dα − ∇ · qα + ραrα + ε̂α, (5)

where

ε̂α = eα − mα · vα.

Lastly we look at the second law of thermodynamics which, also for mixtures,
places restrictions on the admissible constitutive equations. For any α-th constituent
let θα be the absolute temperature and ηα the specific entropy. The balance of entropy
is derived by the general view ([13], §6.5) that
entropy change = entropy transfer + entropy production
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is made formal by letting jα be the entropy flux, ραrα/θα the entropy supply and ραγα

the entropy production so that

ραὴα + ∇ · jα − ραrα
θα

= ραγα. (6)

The set of functions

{ρα, vα,Tα,bα, εα,qα, rα, θα, ηα, jα, γα}

constitutes a thermodynamic process. The axiom, known as entropy principle or sec-
ond law of thermodynamics, about the increase of entropy in a closed system is stated
by saying that the entropy production is non-negative for any thermodynamic pro-
cess consistent with the balance equations. Formally, for mixtures the second law of
thermodynamics requires that ∑

αραγα ≥ 0 (7)

for any thermodynamic process.
This statement is based on Refs. [7–10]. However, following [12], §9.3, we let the

entropy productions {γα} be given by constitutive equations, as is done for the entropy
fluxes {jα} after [8].

If the constitutive equations make the inequality non-valid then those constitutive
equations are not admissible. That is why we can see the second law as the selection
of physically admissible constitutive models.

For technical convenience we put

jα = qα

θα

+ kα,

kα being referred to as extra-entropy flux. Hence we can write Eq. (6) as

1

θα

{ραθαὴα + ∇ · qα − ραrα − 1

θα

qα · ∇θα + θα∇ · kα} = ραγα.

Substitution of ∇ · qα − ραrα from (5) results in

1

θα

{θαραὴα + Tα · Dα − ραὲα + ε̂α − 1

θα

qα · ∇θα + θα∇ · kα} = ραγα.

Using the Helmholtz free energy ψα = εα − θαηα we have

1

θα

{−ρα(ψ̀α + ηαθ̀α) + Tα · Dα + ε̂α − 1

θα

qα · ∇θα + θα∇ · kα} = ραγα.

Hence the second law is expressed by the Clausius-Duhem (CD) inequality

∑
α

1

θα

{−ρα(ψ̀α+ηαθ̀α)+Tα ·Dα+ε̂α− 1

θα

qα ·∇θα+θα∇·kα} = ∑
αραγα ≥ 0. (8)
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Before investigating the thermodynamic requirements on the pertinent constitutive
equations, we look at properties of a mixture as a single continuum.

3 Properties of a mixture as a whole

It might be of interest to derive equations for mixtures viewed as a single continuum.
Yet we show that different models arise depending on the conditions required to the
constituents. Define

ρ = ∑
αρα, ρv = ∑

αραvα. (9)

Hence letting

uα = vα − v, hα = ραuα

it follows that

∑
αhα = 0,

∑
α(ραvα ⊗ vα) = ρv ⊗ v + ∑

αραuα ⊗ uα. (10)

The barycentric velocity v is viewed as the velocity of the continuum. Furthermore,
for any (scalar or vector) function f(t, x) we let

ḟ = ∂t f + (v · ∇)f .

For technical purposes the use of the partial time derivative ∂t fα is now more con-
venient than that of the peculiar time derivative f̀α . Hence we start with the continuity
Eq. (2) and observe that

ρ̀α + ρα∇ · vα = ∂tρα + vα · ∇ρα + ρα∇ · vα = ∂tρα + ∇ · (ραvα)

whence (2) can be written in the form

∂tρα + ∇ · (ραvα) = 0. (11)

Summation over α results in the continuity equation for the whole body,

∂tρ + ∇ · (ρv) = 0. (12)

For any peculiar quantity fα , using (11) we have

ρα f̀α = ρα[∂t fα + (vα · ∇)fα)] = ∂t (ραfα) + fα∇ · (ραvα) + ρα(vα · ∇)fα
= ∂t (ραfα) + ∇ · (ραfα ⊗ vα),

where ∇ · (ραfα ⊗vα) = ∂x j (ραfαvα
j ). To split peculiar terms in barycentric parts and

relative (or diffusive) parts we replace vα with v + uα and observe that

ρα f̀α = ∂t (ραfα) + ∇ · (ραfαv) + ∇ · (ραfαuα). (13)
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Letting fα = vα it follows that

ρα v̀α = ∂t (ραvα) + ∇ · (ραvαv) + ∇ · (ραvαuα).

Summation on α and use of (12) yield

∑
αρα v̀α = ∂t (ρv) + ∇ · (ρv ⊗ v) + ∇ · (

∑
αραuα ⊗ uα) = ρv̇ + ∇ · (

∑
αραuα ⊗ uα).

Hence summing (3) on α we obtain the expected equation

ρv̇ = ∇ · T + ρb (14)

where
T = ∑

α(Tα − ραuα ⊗ uα), ρb = ∑
αραbα. (15)

With a view to the balance of energy (4) we consider ρα(εα + 1
2v

2
α)`and use (13)

with fα replaced by εα + 1
2v

2
α; we put vα = v + uα and compute

ρα(εα + 1
2v

2
α)`= ∂t [ρα(εα + 1

2v
2 + v · uα + 1

2u
2
α)] + ∇ · [ρα(εα + 1

2v
2 + v · uα + 1

2u
2
α)v]

+∇ · [ρα(εα + 1
2v

2 + v · uα + 1
2u

2
α)uα].

The summation on α yields

ρα(εα + 1
2v

2
α)` = ∂t

∑
αρα(εα + 1

2u
2
α) + ∂t (

1
2ρv2) + ∇ · ∑

α(εα + 1
2u

2
α)v + ∇ · [( 12ρv2)v]

+∇ · ∑
αρα(εα + 1

2u
2
α)uα + ∇ · ∑

αρα(v · uα)uα.

This suggests that we let
ρε = ∑

αρα(εα + 1
2u

2
α) (16)

and notice that

∂t (ρε) + ∇ · (ρεv) = ρ∂tε + ε∂tρ + ρ(v · ∇)ε + ε∇ · (ρv) = ρε̇,

∂t (
1
2ρv

2) + ∇ · [( 12ρv2)v] = ρ( 12v
2)̇ = ρv · v̇,

∇ · ∑
αρα(v · uα)uα = ∇ · [v∑αρα ⊗ uα].

Hence the summation of (4) on α leads to

ρε̇ + ρv · v̇ = ∇ · (vT) − ∇ · q + ρr ,

where

q = ∑
α[qα − vαTα + ρα(εα + 1

2u
2
α)uα], ρr = ∑

αρα(rα + bα · vα). (17)

Then in view of (14) we obtain

ρε̇ = T · D − ∇ · q + ρr . (18)
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Lastly, consider the balance of entropy (6) and use (13) to obtain

ραὴα = ∂t (ραηα) + ∇ · (ραηαv) + ∇ · (ραηαuα) (19)

Letting

ρη = ∑
αραηα, j = ∑

α(jα + ραηαuα), ρs = ∑
α

ραrα
θα

, ργ = ∑
αραγα

(20)
and summing (19) with respect to α we find

∂t (ρη) + ∇ · (ρηv) + ∇ · ∑
αραηαuα = ρη̇ + ∇ · ∑

αραηαuα.

Thus the sum of (6) yields
ρη̇ + ∇ · j − ρs = ργ. (21)

Notice that ργ is just the entropy production, per unit volume, occurring in the second
law for mixtures (7).

Equations (12), (14), (18), and (21) have the standard form of balance equations for
continua; they are so provided the relations between peculiar quantities ρα, vα, . . . , γα

and single-body quantities ρ, v, . . . , γ are given by (9), (15), 16), (17), (20). Some
equations define properties of the mixture as simple averages like e.g.

v = ∑
αωαvα, η = ∑

αωαηα, γ = ∑
αωαγα,

where

ωα = ρα

ρ

is the mass fraction (or concentration) of the α-th constituent. Other quantities instead
involve diffusive effects like e.g.

ε = ∑
αωα(εα + 1

2u
2
α),

T =
∑

α

(Tα − ραuα ⊗ uα), q = [qα − vαTα + ρα(εα + 1
2u

2
α)uα].

As is exemplified in §5, seemingly different conclusions arise according as we apply
the CD inequality or the equations for the mixture as a whole.

4 Remarks onmixtures with a single temperature

Quite often mixtures are assumed to be subject to a single temperature. It is worth
inspecting the differences among mixtures with several temperatures and those with
a single temperature.
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Mixtures with a single temperature are viewed as subject to the constraint

θα = θ, α = 1, 2, . . . , n.

Look at (8) and, following [11], consider

ραηαθ̀α + 1

θα

· ∇θα.

Now θα = θ implies that

θ̀α = ∂tθ + vα · ∇θ = θ̇ + uα · ∇θ.

Consequently, since
∑

α ραηα = ρη, we might replace

−∑
α

1

θα

[ραηαθ̀α + 1

θα

qα · ∇θα]

with

−1

θ
{ρηθ̇ + ∑

α[qα + ραηαθuα] · ∇θ}.

This seems to indicate that a single temperature induces a heat flux ραηαθuα in any
α-th constituent. Yet we follow a different view.

5 Exploitation of the CD inequality

The CD inequality (8) involves the detailed, distinct components of the entropy pro-
duction while (21) gives an average description of the peculiar entropy productions. To
derive a more accurate description of the mixture it is then natural to apply inequality
(8). This is accomplished as follows for fluid mixtures and fluid–solid mixtures.

5.1 Mixtures of fluids

Consider a mixture of two viscous fluids and let

ρα, θα,Dα,qα,∇θα, α = 1, 2,

be the variables for the constitutive functions ψα, ηα,Tα, q̀α,kα of constituent α.
Instead the interaction terms ε̂α and γα are allowed to depend on all of the variables
(α = 1, 2). The function q̀α , for the rate of qα , has to be consistent with the objectivity

principle. The simplest way is to consider the corotational derivative
◦
qα and to assume

◦
qα:= q̇α − Wαqα = − 1

τα

(qα + κα∇θα), τα > 0. (22)
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For definiteness the stress Tα is assumed in the Newtonian form

Tα = −pα(ρα, θα)1 + μαDα + λα(trDα)1. (23)

Computation of ψ̀α and substitution in (8) yields

∑
α

1

θα

{−ρα(∂θαψα + ηα)θ̀α − ρα∂ραψαρ̀α − ρα∂Dαψα · D̀α

− ρα∂qαψα · q̀α − ρα∂∇θαψα · (∇θα)`+ Tα · Dα

− 1

θα

qα · ∇θα + θα∇ · kα + eα − mα · vα} = ∑
αραγα.

(24)

The linearity and arbitrariness of D̀α, (∇θα) ,̀ θ̀α imply that

∂Dαψα = 0, ∂∇θαψα = 0, ηα = −∂θαψα.

To exploit the remaining inequality we use (2), (22), and (23) to replace ρ̀α, q̀α , and
Tα in (24) and obtain

∑
α

1

θα

{(ρ2
α∂ραψα − pα)trDα + 2μαDα · Dα + λα(trDα)2

− ρα(∂qαψα ⊗ qα) · Wα + ρα

τα

∂qαψα · qα + (
ρακα

τα

∂qαψα − 1

θα

qα) · ∇θα

+ θα∇ · kα + eα − mα · vα} = ∑
αραγα.

The arbitrariness of the skew tensor Wα implies

∂qαψα ⊗ qα ∈ Sym.

We find that kα can depend only on θα so that

∇ · kα = ∂θαkα · ∇θα.

Yet, by the isotropy of the constituent, kα cannot depend only on θα and hence it
follows that kα = 0. Now if qα,∇θα vanish and the remaining constituents make
eα = 0, mα = 0, we get

∑
α

1

θα

{(ρ2
α∂ραψα − pα)trDα + 2μαDα · Dα + λα(trDα)2} ≥ 0

for any stretching tensor Dα . It follows that

pα = ρ2
α∂ραψα, μα ≥ 0, 2μα + 3λα ≥ 0.
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Again we let eα = 0,mα = 0 and observe that by the arbitrariness of qα,∇θα implies

ρακα

τα

∂qαψα − 1

θα

qα = 0, ∂qαψα · qα ≥ 0.

Hence it follows that

ψα = �α(ρα, θα) + τα

2ραθακα

q2α,

which satisfies both conditions

∂qαψα ⊗ qα ∈ Sym, ∂qαψα · qα ≥ 0.

The conclusions attained so far hold for any mixture. For definiteness we now
restrict attention to binary mixtures and then consider the quantity

∑
α

1

θα

{eα − mα · vα}

as n = 2. It is reasonable to assume that eα andmα depend on differences of temper-
ature and velocity. Hence we can write

∑
α

1

θα

{eα − mα · vα} = ∑
αραγ̂α ≥ 0,

where γ̂α is the entropy production when Dα = 0,qα = 0,∇θα = 0. Let

e1 = N (θ2 − θ1) + M(v2 − v1) · v = −e2,

m1 = M(v2 − v1) = −m2,

possibly with N , M dependent on ρ1, ρ2. We have

∑
α

1

θα

{eα − mα · vα} = N
(θ2 − θ1)

2

θ1θ2
+ M(v2 − v1) · (

u2
θ2

− u1
θ1

).

Now observe that

u2 = ρ2u2
ρ2

= −ρ1u1
ρ2

.

Hence it follows that

M(v2 − v1) · (
u2
θ2

− u1
θ1

) = M(
ρ1

ρ2
+ 1)(

ρ1

ρ2θ2
+ 1

θ1
)u21. (25)

Consequently the assumption on eα and mα makes the entropy production
∑

αραγ̂α

positive definite with respect to the differences θ1 − θ2,u1 − u2. We might notice
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the seeming unboundedness of
∑

αραγ̂α = ∑
α(1/θα){eα − mα · vα} as ρ1 (or ρ2)

approaches zero. This is avoided by letting, e.g., M = c ρ2
1ρ

2
2 , and likewise N =

d ρ2
1ρ

2
2 .

5.2 Mixtures with a single temperature

The local contact between the constituents makes it reasonable to assume that the
constituents be at the same temperature θ . A remarkable example in this sense is often
given by plasma models where electrons and ions might be viewed as fluids with
different temperatures.

Let θα = θ , α = 1, 2, . . . , n. If θα = θ then we find that

∑
α

1

θα

[ραηαθ̀α + 1

θ α
qα · ∇θα] = 1

θ
{ρηθ̇ + ∑

α[qα + ραηαθ(vα − v)] · ∇θ}.

This might indicate that the effective α-th heat flux would be

qα + ραηαθ(vα − v),

which is not consistent with the result

q = [qα − vαTα + ρα(εα + 1
2u

2
α)uα]

for the mixture as a single body.
Instead, the CD inequality (24) reads

∑
α

1

θα

{−ρα(∂θαψα + ηα)[θ̇ + (vα − v) · ∇θ ] + . . .

+ρα

τα

∂qαψα · qα + (
ρακα

τα

∂qαψα − 1

θα

qα) · ∇θ = ∑
αραγα.

By (24) it follows that

ηα = −∂θαψα.

This relation holds for each constituent and any value of θα . Hence it holds even if
θα = θ ,

ηα = −∂θψα.

The analogous conclusion is valid for each qα and then

ρακα

τα

∂qαψα = 1

θ
qα.
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6 Solid–fluidmixtures

Also with a view to the modelling of porous media, we consider a binary mixture
with a solid and a fluid. We first examine the possibility of modelling a fluid of the
Kelvin–Voigt type [2]. The classical Kelvin–Voigt solid is characterized by letting
the stress be a superposition of a strain term and a strain-rate term ([12], §6.1.7). A
Kelvin–Voigt fluid is characterized by letting

T = μD + νḊ.

Yet Ḋ is not objective and hence it cannot enter a constitutive equation.We then assume
T depends on D and an objective derivative of D. For definiteness we consider the
corotational derivative

◦
D= Ḋ − WD − DWT ,

where W is the spin tensor. Likewise we use the corotational derivative
◦
q= q̇ − Wq

to represent the rate equation of the heat flux q.
Denote by the subscripts f , s the quantities pertaining to the fluid and solid con-

stituents. Hence we let

� f = (ρ f , θ,D f ,
◦
D f ,q f ,∇θ), �s = (Es, θ,qs,∇θ)

be the set of variables for the fluid and the solid. Since θ f = θs = θ then we observe
that

∑
αε̂α = −∑

αmα · uα;

we put m f = −β(|u|)u, u = u f − us , and hence

∑
αε̂α = β(|u|) |u|2.

Furthermore we let

T f = −p(ρ f , θ)1 + T̂ f , T̂ f = μVD f + σK

◦
D f , (26)

◦
q f = − 1

τ f
(q f + κ f ∇θ f ),

◦
qs= − 1

τs
(qs + Ks∇θs), τ f , τs > 0, (27)

where Ks ∈ Sym is non-singular. With these assumptions the extra-entropy fluxes
k f ,ks turn out to be zero; to save writing we omit them. Hence the CD inequality
takes the form

−ρ f (ψ̀ f + η f θ̀ f ) − ρs(ψ̀s + ηs θ̀s) − p f trD f + T̂ f · D f + Ts · Ds

− 1

θ f
q f · ∇θ f − 1

θs
qs · ∇θs + g(|u|)|u|2 = θ(ρ f γ f + ρsγs).
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Compute ψ̀ f (� f ), ψ̀s(�s and observe that the relations

η f = −∂θψ f , ηs = −∂θψs, p f = ρ2
f ∂ρ f ψ f ,

∂∇θψ f = 0, ∂∇θψs = 0,

hold as particular cases when θ f = θs = θ . We now recall the identity Ės = FT
s DsFs

and notice that, by (27),

q̇ f =◦
q f +Wq f = − 1

τ f
(q f + κ f ∇θ f ) + W f q f

and the like for qs . Furthermore, by (26), we have

T̂ f = μD f + ν(Ḋ f − W fD f − D fWT
f ).

Thus we can write the remaining terms of the CD inequality as

(−ρ f ∂D f ψ f + νD f ) · Ḋ f − ρs∂Dsψs · Ḋs + Ts · Ds − ρs∂Esψs · (FT
s DsFs)

+ρ f ∂q f ψ f · [W f q f + 1

τ f
(q f + κ f ∇θ f )] − 1

θ f
q f · ∇θ f

+ρs∂qsψs · [Wsqs + 1

τs
(qs + Ks∇θs)] − 1

θs
qs · ∇θs

+μVD f · D f + σK (−W fD f − D fWT
f ) · D f + β(|u|)|u|2 = θ(ρ f γ f + ρsγs).

The linearity and arbitrariness of Ḋ f , Ḋs,∇θ f ,∇θs,W f ,Ws imply the following
consequences,

ρ f ∂D f ψ f = σKD f , Ts = ρsFs∂EsψsFT
s (28)

ρ f κ f

τ f
∂q f ψ f = 1

θs
qs,

ρs

τs
∂qsψsKs = 1

θs
qs, (29)

∂q f ψ f ⊗ q f ∈ Sym, ∂qsψs ⊗ qs ∈ Sym. (30)

By (28) and (29) we have the results

ψ f = τ f

2ρ f θ f κ f
|q f |2 + σK

2ρ f
|D f |2 + �(θ f , ρ f )

ψs = τs

2ρsθs
qs · K−1

s qs + �(θs,Es),

which are valid also if θ f = θs .
Furthermore, since D fD f ∈ Sym then

D f · (W fD f ) = 0, (D fW f ) · D f = 0.
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Thus the CD inequality reduces to

1

θκ f
|q f |2 + 1

θ
qs · K−1

s qs + μVD f · D f + β(|u|)|u|2 = θ(ρ f γ f + ρsγs) ≥ 0.

The arbitrariness of q f ,qs,D f ,u implies that

κ f > 0, Ks > 0, μV ≥ 0, β ≥ 0. (31)

7 Consequences onmodels for viscous fluids in porousmedia

The flow of a viscous fluid in a porous medium has been widely investigated mainly
in connection with rate-type models of heat conduction(see, e.g., [2–6]). Here we
inspect the thermodynamic consistency of a model often involved to describe thermal
convection.

For definiteness here the model is considered in a form recently investigated (see
[2] and refs therein) though with attention restricted to incompressible fluids. The
equation of motion is taken in the form

v̇ − λK�∂tv = − 1

ρ
∇ p + νV�v + αθg − μDv, (32)

with v subject to the incompressibility constraint

∇ · v = 0,

while g is the gravity acceleration vector and α < 0 is the coefficient of thermal
expansion. The balance of energy is taken in the form

θ̇ = −∇ · q + ζ�θ, (33)

while the heat flux is subject to a Maxwell-Cattaneo like equation

τDq = −q − κ∇θ + ξ1�q + ξ2∇(∇ · q). (34)

Here thefields of interest are those pertaining to thefluid and, for ease of notation,we
omit the subscript f .Accordingly, e.g.,v,D, p stand forv f ,D f , p f whileu = u f −us
stands for v f in case vs = 0.

We now compare the scheme (32)–(34) of the literature with the analogous one of
§ 6. We begin with Eq. (32) and observe that, within the scheme of § 6, the equation
of motion reads

ρv̇ = −∇ p(ρ, θ) + μV∇ · D + σK∇· ◦
D −βu. (35)

The last term βu is the generalization of the Darcy term μDv, in that β is a positive-
valued function of u. The non-linear function β(|u|)u is just the representation of
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Forchheimer’s law [14]; thermodynamics merely requires that β ≥ 0. If β is constant
then the classical Darcy term μDv is recovered.

The viscous term μV∇ ·D simplifies to ρνV�v in case the fluid is incompressible,
namely ∇ · v = 0.

The analog of the Kelvin–Voigt term, σK∇· ◦
D, involves the objective derivative

◦
D.

IfWD and DW are neglected then

σK∇· ◦
D∼ σK∇ · Ḋ ∼ σK∇ · ∂tD = σK�∂tv, if ∇ · v = 0,

and we get the term λK�∂tv of (32). The positiveness of λK = σK/ρ is obtained if
the free energy ψ f is assumed to attain a minimum at equilibrium (D = 0).

The pressure p in (35) is a function of ρ, θ ) while p is undetermined in (32) as a
consequence of incompressibility. In (35)

∇ p = ∂ρ p∇ρ + ∂θ p∇θ.

Now, to model the variation of p we consider the identity

−∇ p + ρg = −∇ p + ρ0g + (ρ − ρ0)g,

where g is the gravity acceleration vector. At the rest state (ρ0, θ0, p0) we have

−∇ p0 + ρ0g = 0.

Based on a linear approximation of ρ(θ) we put

ρ − ρ0 = αρ0ϑ, ϑ := θ − θ0, α < 0.

Hence we have

−∇ p + ρ0g = −∇P + αρ0ϑg,

whereP = p− p0; this is theOberbeck–Boussinesq approximation [15, 16]. Accord-
ingly the vector−(1/ρ)∇ p+αθg has to be meant as−(1/ρ)∇P+αϑg. The viscous
term νV�v traces back to Brinkman [3, 17, 18] and is merely given by the viscous
stress in Newtonian fluids.

The balance of energy (33) arises from an internal energy that depends only on θ

possibly in a composite form ε(ρ(θ), θ). The term ζ�θ is quite unusual in that it is not
the classical term provided by ∇ · q. This term is suggested by Payne and Song [19]
and the motivation is not immediate [2, 20]. We observe that ζ�θ cannot be an energy
growth within ε̂ f because it does not seem to provide a (positive) entropy production.
We might view ζ�θ as an energy supply but the physical mechanism leading to the
supply is not familiar for a mixture solid–fluid or merely a fluid.

The rate equation for the heat flux is assumed in the form (34). The higher-order
terms ξ1�q, ξ2∇(∇ · q) have not been considered in this paper: they are investigated
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in [21] and found to be thermodynamically consistent in that they are framed as extra-
entropy fluxes. Instead the objective derivative allows the rate equation to be consistent
with the objectivity principle: the constitutive equations must be invariant under the
group of Euclidean transformations. Yet the thermodynamic restrictions depend on the
chosenderivative. In the presentmixture theory the chosenderivative is the corotational
one and hence q f ,qs are not cross-coupled with other (stress) terms; cross-coupling
happens with other derivatives [22]. Instead choosing the Truesdell derivative, as is
done in [2], gives the possibility of a Lagrangian formulation with the material time
derivative.

8 Conclusions

This paper investigates currentmodels of flows in porousmedia. From the viewpoint of
a continuum theory, the natural setting of porousmedia is that ofmixture theory, chiefly
solid–fluid mixtures. Accordingly, some aspects of the modelling are considered and
hence the thermodynamic consistency of constitutive equations are examined for com-
pressible, viscous, heat-conducting fluids subject to relaxation phenomena expressed
by suitable rate equations.

The thermodynamic analysis is performed via the CD inequality based directly
on the peculiar (α-th) fields of the mixture. This analysis is more detailed and hence
more significant than analogous procedures based on equations for the mixture as a
whole. As an example, the detailed analysis involves the peculiar heat fluxes qα per
se while the balance equations for energy and entropy of the whole body involve, e.g.,
the resulting heat flux

q = ∑
α[qα − vαTα + ρα(εα + 1

2u
2
α)uα],

which is affected by the diffusion velocities uα .
As to the Kelvin–Voigt term, it is pointed out that objectivity requires the rate of the

stretching D be objective. Instead usually the rate is merely expressed by the partial
time derivative.
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