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Abstract

The paper investigates current models of flows in porous media from the viewpoint
of the mixture theory. The constitutive equations are investigated for compressible,
viscous, heat-conducting fluids subject to relaxation phenomena. The thermodynamic
analysis is performed via the Clausius-Duhem inequality based directly on the peculiar
fields of the mixture. The detailed analysis so developed involves the peculiar heat
fluxes and stresses per se while the balance equations for energy and entropy of the
whole body would involve also diffusion effects. Following the objectivity principle,
the constitutive equations for stresses and heat fluxes are taken to be governed by
objective rate equations.

Keywords Porous media - Theory of mixtures - Thermodynamic consistency -
Objectivity
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1 Introduction

The modelling of fluid flow in porous media shows interesting problems relative to
both balance equations and constitutive properties. A variety of models occurs mainly
because of the nature of the fluid and the distributed contact between the fluid and the
skeletal solid.

The first model governing the fluid flow in a porous medium is due to Darcy [1]. In
local form and stationary conditions, Darcy’s equation associates the seepage velocity
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v to the pressure gradient V p in the form
k
ve—Svp, %)
i

where k is the permeability of the skeletal solid and w the shear viscosity of the fluid.

Yet the interest in the dynamics of porous media indicates some suitable properties
that are in order for a realistic model. In this regard viscosity, compressibility, and
relaxation properties are needed for the fluid along with a proper model for heat
conduction. Furthermore the motion of the fluid within the porous medium requires
an appropriate description of fluid—solid interaction. References [2—6] and references
therein give an exhaustive scenario of the models adopted in the literature. On the side
of simplifications, often the fluid is assumed to be incompressible. Instead, on the side
of generalizations, relaxation properties are modelled for the stress and the heat flux.

This paper is based on the view that a convenient approach should be grounded
on the theory of mixtures. In this sense next section reviews the main point of the
mixture theory and next quite general models are established for mixtures of fluids
and fluid—solid mixtures.

Now, the physical relevance of a model depends on the verified thermodynamic
consistency. Hence attention is addressed to the formulation of the second law of
thermodynamics for mixtures. Though the mixture theory is by now well established
[7-11], the application to solid—fluid mixtures is still of interest mainly in connection
with the constitutive properties. Furthermore, the modelling of relaxation properties
through rate equations involves objective time derivatives [12], which is a further
interesting topic in the thermodynamic analysis.

Some features denote the originality of the present approach. The fluid is allowed
to be compressible, besides being viscous. The consistency with the entropy principle
is stated and developed in detail with reference to quantities pertaining to the single
constituents rather than to the mixture as a whole. Results are derived for mixtures
with several temperatures and for mixtures with a single temperature.

Notation. The body under consideration is a mixture of n constituents occupying a
time-dependent region of the three-dimensional space. The subscripta = 1,2, ..., n
labels the fields pertaining to the ce-th constituentand ), isa shorthand for ) " _,.Sym
is the set of symmetric tensors and tr denotes the trace. The compact notation is used;
for any pair of vectors u, v the symbol u - v denotes the inner product, u-v = u;v;, and
likewise for tensors, A-B = A;; B;; = tr (ABT). The symbol V denotes the gradient,
V- the divergence, and ® the dyadic product.

2 A setting from the theory of mixtures

The natural setting for the fluid flow in a porous medium is that of mixtures. Since
we are interested in porous media we restrict attention to non-reacting mixtures. The
mixture consists of n constituents though the application to porous media involves 2
constituents.

@ Springer



ANNALI DELL'UNIVERSITA’ DI FERRARA (2024) 70:547-563 549

Denote by the subscript « = 1, 2, .., n the quantities pertaining to the «a-th con-
stituent. For any function f, the dashed symbol f, denotes the material derivative
relative to the pertinent constituent, viz.

N

Jo =0 fa + (Vo - V) fo.

The conservation of mass of single constituents results into the n continuity equa-
tions
Po + paV - Vg = 0. ()

The equations of motion are written in the form
PaVe =V - Tq + pgbe + my, 3)

where Ty, is the (Cauchy) stress tensor, b, the body force, m, the interaction force,
or growth, between constituents. The growths are subject to

> my =0.

No body couples are considered and then the balance of angular momentum results
in

T, =TI,

Let ¢4 be the specific internal energy. We write the local version of the balance of
energy in the form

pa(ea +393) =V - (VaTo) = V - o + pura + €a, “)
where r,, is the energy supply and e, the energy growth, so that
Y w€a =0.
We notice that (%vg)‘ =V, - Vo and use (3) to obtain
pata =To -Da =V Qo + para + &as ®)
where
g =€y —My - V.
Lastly we look at the second law of thermodynamics which, also for mixtures,
places restrictions on the admissible constitutive equations. For any «-th constituent
let 6, be the absolute temperature and 7, the specific entropy. The balance of entropy

is derived by the general view ([13], §6.5) that
entropy change = entropy transfer + entropy production
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is made formal by letting j, be the entropy flux, py7y /6, the entropy supply and py yy
the entropy production so that

Paota

o

Palla +V - jo — = PaYa- (6)

The set of functions

{Pas Vo Tay bas €0y Qas Ty Os s Jas Verd

constitutes a thermodynamic process. The axiom, known as entropy principle or sec-
ond law of thermodynamics, about the increase of entropy in a closed system is stated
by saying that the entropy production is non-negative for any thermodynamic pro-
cess consistent with the balance equations. Formally, for mixtures the second law of
thermodynamics requires that

Zapol Yo =0 @)

for any thermodynamic process.

This statement is based on Refs. [7-10]. However, following [12], §9.3, we let the
entropy productions {y, } be given by constitutive equations, as is done for the entropy
fluxes {jo} after [8].

If the constitutive equations make the inequality non-valid then those constitutive
equations are not admissible. That is why we can see the second law as the selection
of physically admissible constitutive models.

For technical convenience we put

k, being referred to as extra-entropy flux. Hence we can write Eq. (6) as

1 . 1
9—{pa9aﬂa +V-qy — pata — 9—(105 - VOy + 64V - Ky} = paVa-
(] (]

Substitution of V - qq — pg¥y from (5) results in

1 . o a1
9_{901,0017701 + Ty - Dy — puba + Ea — G_Qa VO + 04V - Ko} = paVa-
o o

Using the Helmholtz free energy v, = &, — 6ynq We have

1 N N R 1
—{—pa (Vo +Nabs) + Ty - Dy + & — 9_(101 - VOy + 04V - Ko} = paVa-

O o

Hence the second law is expressed by the Clausius-Duhem (CD) inequality

1 N N . 1
Z {_pa(wa'i‘naea)"‘Ta'Da"‘sa_e_qa‘vea+0av'ka} = Zapaya >0. (8)
(]

“ O

@ Springer



ANNALI DELL'UNIVERSITA’ DI FERRARA (2024) 70:547-563 551

Before investigating the thermodynamic requirements on the pertinent constitutive
equations, we look at properties of a mixture as a single continuum.

3 Properties of a mixture as a whole

It might be of interest to derive equations for mixtures viewed as a single continuum.
Yet we show that different models arise depending on the conditions required to the
constituents. Define

P =2 4Pas  PV=2_yPuVa- ©
Hence letting
Uy =Vyg —V, hy = pguy
it follows that
Sohe =0, 3 (paVe ®Ve) = pVOV+ Y, 0ally ® Uy. (10

The barycentric velocity v is viewed as the velocity of the continuum. Furthermore,
for any (scalar or vector) function f(z, x) we let

f=0,f+ (v V.
For technical purposes the use of the partial time derivative 9;f, is now more con-

venient than that of the peculiar time derivative f,. Hence we start with the continuity
Eq. (2) and observe that

Pa + PaV - Vo = 8pa + Vo Vou + PoV - Vo = 31pa + V - (0 Va)
whence (2) can be written in the form
0 pa + V- (PaVa) = 0. (11
Summation over « results in the continuity equation for the whole body,

dp+V-(pv)=0. (12)

For any peculiar quantity f,,, using (11) we have

pafa = pal0fe + (v - V)] = 0/ (pafe) + 1oV - (paVa) + pa (Vo - V)
= 0 (pafe) + V- (pufa ® Vo),

where V - (pofa ® Vo) = 0x; (Pata v‘}‘). To split peculiar terms in barycentric parts and
relative (or diffusive) parts we replace v, with v 4+ u, and observe that

pafa = 0 (Pafe) + V- (pafaV) + V- (pafeuy). (13)
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Letting f, = v, it follows that
PaVa = 0t (PaVa) + V- (0aVaV) + V- (PaVoly).

Summation on « and use of (12) yield

Zapa‘\’ot =0 (V) + V. - (pv®V)+ V- (Zapaua ®uy) =pv+V- (Za/oaua ®uy).
Hence summing (3) on o we obtain the expected equation
pv=V-T+ pb (14)

where
T=3),Ty—paty ®uy), pb=73",psbe. (15)

With a view to the balance of energy (4) we consider p, (eq + %Vé)\ and use (13)
with f, replaced by ¢, + %Vg; we put v, = V + u, and compute

Pa (e + %Vi)\: 0 [pa(ea + %Vz +v-uy + %“i)] + V- [pa(ta + %Vz +Vv-ouy + %ui)v]
+V - [pa(eq + %Vz +Vv-uy + %ui)ua]‘

The summation on « yields

pa(Ea + 5V8) = 8 Y uhulea + 3U3) + 3 (5pVY) + V- 3y (60 + UV + V - [(30V2)V]
+V : Zapot(ga + %ui)ua + V. Zapa(v : u()t)u()t-

This suggests that we let
pe =Y ypalea + 5U5) (16)

and notice that

0 (pe) + V- (pev) = pdre + €dp + p(v-V)e + &V - (pv) = pé,
% (5pv)) + V- [(3oVIVI = p(3V2) = pv - ¥,
VY eba(V-u)ug =V - [v) 0y @ugl.

Hence the summation of (4) on « leads to
pé+pv-v=V.vT)—-V.-q+ pr,
where
q4=> 000 — VoTa + po(ea + SUDU],  pr =Y o para +be-ve). (17)
Then in view of (14) we obtain

pé =T-D—V.q+pr. (18)
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Lastly, consider the balance of entropy (6) and use (13) to obtain

Palla = 0 (Patla) + V- (PaaV) + V - (PaTaly) (19)

Letting

) , Pal
o= uPallas = ula+ Pallalle), pS =, — PY =y PaVa

o 9(){ ’
(20)
and summing (19) with respect to o we find
I (pn) + V- (pnV) + V- 32, panala = p1 + V- 3, PallaUa-
Thus the sum of (6) yields
pn+V.-j—ps=py. (21)

Notice that py is just the entropy production, per unit volume, occurring in the second
law for mixtures (7).

Equations (12), (14), (18), and (21) have the standard form of balance equations for
continua; they are so provided the relations between peculiar quantities py, Vg, - - -, Vu
and single-body quantities p, v, ..., y are given by (9), (15), 16), (17), (20). Some
equations define properties of the mixture as simple averages like e.g.

V=) WaVas 0= Wallay ¥V =2 40qVa,

where

Pao

Wy = —

0

is the mass fraction (or concentration) of the «-th constituent. Other quantities instead
involve diffusive effects like e.g.

1.2
&= Zawc{(ga + jua)’

T= Z(Ta — Pally @ Ug), q=I[qy — VoTy + po(eq + %ui)ua]-
a

As is exemplified in § 5, seemingly different conclusions arise according as we apply
the CD inequality or the equations for the mixture as a whole.

4 Remarks on mixtures with a single temperature
Quite often mixtures are assumed to be subject to a single temperature. It is worth

inspecting the differences among mixtures with several temperatures and those with
a single temperature.
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Mixtures with a single temperature are viewed as subject to the constraint

Look at (8) and, following [11], consider

N

1
PaNalu + — - V.
O

Now 6, = 6 implies that
Oy = 90 +Vq - VO =6 +uy - V6.

Consequently, since ), pa7le = p17, We might replace

1
—(u - V@a]

1 N
_Z(x a[panaga + 6,

with
1.
—5{0n9 + Y o [ba + panabuy] - V).

This seems to indicate that a single temperature induces a heat flux p,ne60u, in any
a-th constituent. Yet we follow a different view.

5 Exploitation of the CD inequality
The CD inequality (8) involves the detailed, distinct components of the entropy pro-
duction while (21) gives an average description of the peculiar entropy productions. To

derive a more accurate description of the mixture it is then natural to apply inequality
(8). This is accomplished as follows for fluid mixtures and fluid—solid mixtures.

5.1 Mixtures of fluids
Consider a mixture of two viscous fluids and let
Pas 0o Doy Qo VO, a=1,2,
be the variables for the constitutive functions ¥, 0y, Te, Qe Ko of constituent a.

Instead the interaction terms &, and y, are allowed to depend on all of the variables
(o = 1, 2). The function q, for the rate of q, has to be consistent with the objectivity

principle. The simplest way is to consider the corotational derivative (Ola and to assume

]

X 1
Q= o~ Walla = ——(@o + 6 V0,), 7o > 0. (22)
o
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For definiteness the stress T, is assumed in the Newtonian form
Ty = _pa(pa: 0u)1 + oDy + Ay (tr D)1 (23)

Computation of 1/>a and substitution in (8) yields

> ea{ P (g, Voo + 116)00 — Pedpy VPt — PadD, Voo - Day
— Pa aqa Yo - élot - Paavea (/% (V6y) + Ty - Dy (24)

1
- e_qa VO + 04V Ky +eq —my -V} = Zapayw
o

The linearity and arbitrariness of l\)O[, (V8 éa imply that

aDO(‘poz =0, aVQO,W(x =0, Na = _agaWa-

To exploit the remaining inequality we use (2), (22), and (23) to replace py, (e, and
T, in (24) and obtain

> {(paapma Pt Dy + 210Dy - Dy + A (tr Dy )?

(190[

Pak,
— e (Bq, Ve ® Qo) - Wa + aqawa Qo + (— "‘8%%—

+60,V kg + ey —mg - Vot} = Zapayoz-

1
aqa) : Vea

The arbitrariness of the skew tensor W, implies
g, Vo ® qq € Sym.
We find that k,, can depend only on 6, so that
V- Ky = 99, Ko - V.

Yet, by the isotropy of the constituent, k, cannot depend only on 6, and hence it
follows that k, = 0. Now if q, V6, vanish and the remaining constituents make
eq =0, my = 0, we get

1
> a7 {0305, Vo — Pt Do + 210D - Dy + Ao (trD)?) = 0
o
for any stretching tensor Dy,. It follows that

Pa = Padp,Var ta =0, 2ty + 3k = 0.
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Again we let e, = 0, m, = 0 and observe that by the arbitrariness of q,, V6, implies

Paka
Ta

1

Oqq Vo — Q_Qa =0, 0g,¥a-qa =0.
o

Hence it follows that

Vo = WP, ) + —2—
o o \Pas YV Z,anaKot o

which satisfies both conditions
0q, Vo ® Qo € Sym, 09y Yo Qe > 0.

The conclusions attained so far hold for any mixture. For definiteness we now
restrict attention to binary mixtures and then consider the quantity

2

a@{ea —my -V}

as n = 2. It is reasonable to assume that e, and m, depend on differences of temper-
ature and velocity. Hence we can write

1 A
Zae_{ea —my Vo) = Zapa]/oz >0,
o

where y, is the entropy production when Dy = 0, q, = 0, VO, = 0. Let

e1 =Ny —01)+M(vy —vy)-V=—ey,
m; = M(vy —vy) = —mpy,

possibly with N, M dependent on p1, p2. We have

1 (62 — 61)? w oo
> o — —Mmy Vgl =N———+ My —vVvy) - (— — —).
(xea{ea a " Vol 6,6, + M(v2 1) (92 91)
Now observe that
P22 prug
U2=—:——.
02 P2

Hence it follows that

up uj 1 1 1
My —v) - (2 =S o2 2+ (25)
0 61 02 P26 01

Consequently the assumption on e, and m, makes the entropy production ), 0 Vo
positive definite with respect to the differences 8; — 6>, u; — up. We might notice

@ Springer



ANNALI DELL'UNIVERSITA’ DI FERRARA (2024) 70:547-563 557

the seeming unboundedness of ), paVa = >, (1/0u){ea — My - Vo} as p1 (or p2)
approaches zero. This is avoided by letting, e.g., M = c,ofp%, and likewise N =
d ,012,05.

5.2 Mixtures with a single temperature

The local contact between the constituents makes it reasonable to assume that the
constituents be at the same temperature 6. A remarkable example in this sense is often
given by plasma models where electrons and ions might be viewed as fluids with

different temperatures.
Let6y, =60,a0=1,2,...,n.If 6, = 6 then we find that

Zaé[panaéa + éa(h Vo] = é{pné + 2 el + Panat (Vo — V)] - VO
This might indicate that the effective a-th heat flux would be
Qo + Pallad (Vo — V),
which is not consistent with the result
4= [4e — VaTo + palea + 7u5)uq]

for the mixture as a single body.
Instead, the CD inequality (24) reads

1 .
Zae—{—/’a(%% + 1[0 + (Vo —V) - VO] ...

P Pak 1
+ =0, Vo Qo + (g, Vo — —Aa) - VO =Y, PaVar-
To To Oy
By (24) it follows that
Na = _a% V.

This relation holds for each constituent and any value of 6,. Hence it holds even if
90[ = 9’

Ne = —0pVa-
The analogous conclusion is valid for each q, and then

Lok 1
- aaqal/fa = 5‘]01-

Ta
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6 Solid-fluid mixtures

Also with a view to the modelling of porous media, we consider a binary mixture
with a solid and a fluid. We first examine the possibility of modelling a fluid of the
Kelvin—Voigt type [2]. The classical Kelvin—Voigt solid is characterized by letting
the stress be a superposition of a strain term and a strain-rate term ([12], §6.1.7). A
Kelvin—Voigt fluid is characterized by letting

T = uD + vD.
Yet D is not objective and hence it cannot enter a constitutive equation. We then assume

T depends on D and an objective derivative of D. For definiteness we consider the
corotational derivative

O .

D=D - WD - DWW/,
where W is the spin tensor. Likewise we use the corotational derivative f]: q—Wq
to represent the rate equation of the heat flux q.

Denote by the subscripts f, s the quantities pertaining to the fluid and solid con-
stituents. Hence we let

Ff = (pfv 05 Df’ Df5 qf9 vg)’ F.Y = (ES’ 07 qS: Ve)

be the set of variables for the fluid and the solid. Since 6y = 6; = 0 then we observe
that

Zaéa = _Zama " Uy
we putmy = —B(ju)u, u = uy — uy, and hence
> wba = B(ul) [ul’.
Furthermore we let

Tf=—plos,O1+Ts, Tp=uDys+ox Dy, (26)

o 1 o 1
qr = —;(Qf +xrVOp), q= —T—(Qs +KsVO), tr, 7 >0, (27)
)

where K; € Sym is non-singular. With these assumptions the extra-entropy fluxes
k7, K turn out to be zero; to save writing we omit them. Hence the CD inequality
takes the form

_;Of(l/\’f +77féf) - ;Os(l/\fs +7)sés) — prtrDy +Tf Dy + Ty - Dy

1 1
5,9 Oy = g Vo + g(uDlul® = 0(osys + psys)-
S
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Compute w (e, @S (I'y and observe that the relations

ng=—dgvp. o= —OVs.  pr=piopr,

oveyr =0, Odves =0,

hold as particular cases when 6y = 6; = 6. We now recall the identity Es = FSTDSFS

and notice that, by (27),
. o 1

and the like for . Furthermore, by (26), we have
Tf =uDys + U(Df -W;Dy - DfW?).

Thus we can write the remaining terms of the CD inequality as

(—psdp, Vs + VD) - Dy — pedp, ¥y - Dy + Ty - Dy — pydg, ¥y - (F] DyFy)

1 1
+050q, s - (Wrqy + t_f(qf +k£VOF)] — 9_qu V6

1 1
+Ps3qs Ws . [qus + _L__(qs + stes)] - e_qs . V@S
s

s

+u Dy Dy + 0 (~WyDy —DWE) Dy + B(luDul® = 6o vy + pove)-

The linearity and arbitrariness of D fs Ds, Vor, VO, Wy, W, imply the following

consequences,

prop vy =0oxDys, Ty = pFsop, ¥, Fl
prKy 1 Ps 1

V= —qs, —oq VK =—qs,

T/ qr wf 9s qs T qs 1//s X 9s qs

dq,Vr ®qy € Sym, g, Y5 ® qs € Sym.

By (28) and (29) we have the results

V= — g P+ DR+ WO py)
20f85k s 2pf
T

26,

q - K 'qs + W (6, Ey),

Vs

which are valid also if 65 = 6.
Furthermore, since D f/D s € Sym then

Dy- (WD) =0, (DsWy)-Dy=0.

(28)
(29)
(30)
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Thus the CD inequality reduces to
1 2 1 -1 2
@qul + 5% Koas+uvDy Dy + f(ublul™ =0 ys + psys) 2 0.

The arbitrariness of q 7, q5, Dz, u implies that

Kf > 07 KS > 07 153% Z Oa ﬁ 2 0' (31)

7 Consequences on models for viscous fluids in porous media

The flow of a viscous fluid in a porous medium has been widely investigated mainly
in connection with rate-type models of heat conduction(see, e.g., [2-6]). Here we
inspect the thermodynamic consistency of a model often involved to describe thermal
convection.

For definiteness here the model is considered in a form recently investigated (see
[2] and refs therein) though with attention restricted to incompressible fluids. The
equation of motion is taken in the form

1
\"—)»KAE),V:——Vp—}-vVAV—}-ot@g—/,LDV, (32)
1Y

with v subject to the incompressibility constraint
V.-v=0,

while g is the gravity acceleration vector and @ < 0 is the coefficient of thermal
expansion. The balance of energy is taken in the form

6=—V-q+ A6, (33)
while the heat flux is subject to a Maxwell-Cattaneo like equation
tDq = —q—«VO0+EAq+EV(V-qQ). 34
Here the fields of interest are those pertaining to the fluid and, for ease of notation, we
omit the subscript f. Accordingly,e.g.,v, D, pstandforvy, D¢, py whileu = uy—uy
stands for v in case vy = 0.
We now compare the scheme (32)—(34) of the literature with the analogous one of

§ 6. We begin with Eq. (32) and observe that, within the scheme of § 6, the equation
of motion reads

pv=—=Vp(,0)+uyV-D+0orV-D —pu. (35)

The last term Bu is the generalization of the Darcy term v, in that g is a positive-
valued function of u. The non-linear function B(|u|)u is just the representation of
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Forchheimer’s law [14]; thermodynamics merely requires that 8 > 0. If § is constant
then the classical Darcy term v is recovered.

The viscous term 'V - D simplifies to pvy Av in case the fluid is incompressible,
namely V - v = 0.

The analog of the Kelvin—Voigt term, o V- D, involves the objective derivative D.
If WD and DW are neglected then

oxV-D~oxV-D~oyV-9,D=0xAdv, if V.-v=0,

and we get the term Ag Ad;v of (32). The positiveness of Ay = o /p is obtained if
the free energy v 7 is assumed to attain a minimum at equilibrium (D = 0).

The pressure p in (35) is a function of p, #) while p is undetermined in (32) as a
consequence of incompressibility. In (35)

Vp=0,pVp+3dpVo.
Now, to model the variation of p we consider the identity

—Vp+pg=-Vp+pog+ (p—pog

where g is the gravity acceleration vector. At the rest state (pg, 6y, po) we have
—Vpo + pog = 0.
Based on a linear approximation of p(6) we put
P — po = apo?, V=6 — 6, a < 0.
Hence we have
—Vp+pog=—-VZ+appdg,

where & = p— po; this is the Oberbeck—Boussinesq approximation [15, 16]. Accord-
ingly the vector —(1/p)V p +a6g has to be meantas —(1/p)V & +ag. The viscous
term vy Av traces back to Brinkman [3, 17, 18] and is merely given by the viscous
stress in Newtonian fluids.

The balance of energy (33) arises from an internal energy that depends only on 6
possibly in a composite form (o (6), 6). The term ¢ A6 is quite unusual in that it is not
the classical term provided by V - q. This term is suggested by Payne and Song [19]
and the motivation is not immediate [2, 20]. We observe that { Af cannot be an energy
growth within & s because it does not seem to provide a (positive) entropy production.
We might view { A as an energy supply but the physical mechanism leading to the
supply is not familiar for a mixture solid—fluid or merely a fluid.

The rate equation for the heat flux is assumed in the form (34). The higher-order
terms £1 Aq, £ V(V - q) have not been considered in this paper: they are investigated
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in [21] and found to be thermodynamically consistent in that they are framed as extra-
entropy fluxes. Instead the objective derivative allows the rate equation to be consistent
with the objectivity principle: the constitutive equations must be invariant under the
group of Euclidean transformations. Yet the thermodynamic restrictions depend on the
chosen derivative. In the present mixture theory the chosen derivative is the corotational
one and hence q 7, qy are not cross-coupled with other (stress) terms; cross-coupling
happens with other derivatives [22]. Instead choosing the Truesdell derivative, as is
done in [2], gives the possibility of a Lagrangian formulation with the material time
derivative.

8 Conclusions

This paper investigates current models of flows in porous media. From the viewpoint of
acontinuum theory, the natural setting of porous media is that of mixture theory, chiefly
solid—fluid mixtures. Accordingly, some aspects of the modelling are considered and
hence the thermodynamic consistency of constitutive equations are examined for com-
pressible, viscous, heat-conducting fluids subject to relaxation phenomena expressed
by suitable rate equations.

The thermodynamic analysis is performed via the CD inequality based directly
on the peculiar («-th) fields of the mixture. This analysis is more detailed and hence
more significant than analogous procedures based on equations for the mixture as a
whole. As an example, the detailed analysis involves the peculiar heat fluxes q, per
se while the balance equations for energy and entropy of the whole body involve, e.g.,
the resulting heat flux

q= Za[% — Vo Ty + po(ea + %ui)ua]v

which is affected by the diffusion velocities uy,.

As to the Kelvin—Voigt term, it is pointed out that objectivity requires the rate of the
stretching D be objective. Instead usually the rate is merely expressed by the partial
time derivative.
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