
ANNALI DELL’UNIVERSITA’ DI FERRARA
https://doi.org/10.1007/s11565-023-00481-6

On free and nearly free arrangements of conics admitting
certain ADE singularities

Piotr Pokora1

Received: 21 March 2023 / Accepted: 1 November 2023
© The Author(s) 2023

Abstract
The main purpose of this paper is to provide combinatorial constraints on the con-
structability of free and nearly free arrangements of smooth plane conics admitting
certain ADE singularites.
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1 Introduction

The theory of lines arrangements in the plane is an almost ancient topic in geometry
and combinatorics. Recently, arrangements of rational plane curves have received a
lot of attention, mostly in the context of studies devoted to the freeness of curves,
see for instance [4, 5, 8, 9, 20, 21]. Classically, the freeness problem is related with
(central) hyperplane arrangements, and this is mostly due to the celebrated conjecture
by Terao. However, it turns out very shortly that the freeness problem of plane curve
is getting more and more difficult if we increase degrees of irreducible components, it
is especially visible if we pass from line arrangements to conic-line arrangements, or
just conic arrangements in the plane. The main aim of the present note is to understand
basic algebraic and combinatorial properties of free and nearly free plane curves in the
complex projective plane that are constructed using smooth plane conics as irreducible
components. Let us recall the following basic definition and then we formulate our
main results devoted to arrangements of smooth plane conics.
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Let us denote by S := C[x, y, z] the coordinate ring of P2
C
and for a homogeneous

polynomial f ∈ S let us denote by J f the Jacobian ideal associated with f , i.e., the
ideal generated by the partial derivatives ∂x f , ∂y f , ∂z f .

Let C : f = 0 be a reduced curve in P
2
C
of degree d defined by f ∈ S. Denote by

M( f ) := S/J f the Milnor algebra.

Definition 1.1 We say that C is m-syzygy when M( f ) has the following minimal
graded free resolution:

0 →
m−2⊕

i=1

S(−ei ) →
m⊕

i=1

S(1 − d − di ) → S3(1 − d) → S

with e1 ≤ e2 ≤ ... ≤ em−2 and 1 ≤ d1 ≤ ... ≤ dm .

In the light of the above definition, we define the minimal degree of the Jacobian
relations among the partial derivatives of f , namely

mdr( f ) := d1.

Amongmany examples ofm-syzygy plane curves, we can distinguish the following
important classes, and this can be done via the above homological description for a
reduced plane curve C : f = 0 and by using the information about the total Tjurina
number of C . Before we do so, let us recall the following crucial definition that we
will use throughout this note.

Definition 1.2 Let p be an isolated singularity of a polynomial f ∈ C[x, y]. Since we
can change the local coordinates, let p = (0, 0). The number

μp = dimC

(
C[x, y]/

〈
∂ f

∂x
,
∂ f

∂ y

〉)

is called the Milnor number of f at p.
The number

τp = dimC

(
C[x, y]/

〈
f ,

∂ f

∂x
,
∂ f

∂ y

〉)

is called the Tjurina number of f at p.

For a projective situation, with a point p ∈ P
2
C

and a homogeneous polynomial
f ∈ C[x, y, z], we take local affine coordinates such that p = (0, 0, 1) and then
the dehomogenization of f .

Finally, the total Tjurina number of a given reduced curve C ⊂ P
2
C
is defined as

τ(C) =
∑

p∈Sing(C)

τp.
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Definition 1.3 We say that

• C is free if and only if m = 2 and d1 + d2 = d − 1. Moreover, [11] tells us that
C with mdr( f ) ≤ (d − 1)/2 is free if and only if

(d − 1)2 − d1(d − d1 − 1) = τ(C). (1)

• C is nearly-free if and only if m = 3, d1 + d2 = d, d2 = d3, and e1 = d + d2.
Moreover, by a result due to Dimca [3], we know that C is nearly free if and only
if

(d − 1)2 − d1(d − d1 − 1) = τ(C) + 1. (2)

In the context of plane conic arrangements, we have two results that stand for the main
motivation for this paper. First of all, Dimca, Janasz and the author in [7] observed
that conic arrangements admitting only nodes and tacnodes as singularities are never
free, and they provided a complete classification of such arrangements that are nearly
free

Theorem 1.4 (Janasz–Dimca–Pokora) Let C ⊂ P
2
C

be an arrangement of k ≥ 2
smooth conics with only nodes and tacnodes as singularities. Then C is nearly-free if
and only if

k ≤ 4 and the number of tacnodes is equal to k(k − 1).

An analogous question for conic arrangements, where the list of possible singularities
was extended, was recently considered by the author in [17, Theorem B]. Among
others, the author proved the following characterization.

Theorem 1.5 (Pokora) Let C ⊂ P
2
C
be an arrangement of k ≥ 2 smooth conics with

only nodes, tacnodes, ordinary triple and quadruple points as singularities. Then C is
never free.

Our main aim is to continue this path of studies and we want to understand to what
extent one can generalize the aforementioned results. In the paper we focus on the
following class of smooth conic arrangements in the plane.

Assumption 1.6 Let C = {C1, ...,Ck} ⊂ P
2
C
be an arrangement of k ≥ 2 smooth

conics. From now on we restrict our attention to arrangements of conics that have n2
nodes, n3 ordinary triple points, t3 tacnodes, t5 points of type A5, and t7 points of type
A7.

The above assumption means that these are the worst singularities for conic
arrangements that we are allowed to use here.

Due to the notation reasons, and for the completeness of the note, let us recall the
classification of ADE singularities for plane curves:

Ak with k ≥ 1 : x2 + yk+1 = 0,
Dk with k ≥ 4 : y2x + xk−1 = 0,
E6 : x3 + y4 = 0,
E7 : x3 + xy3 = 0,
E8 : x3 + y5 = 0.
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Our selection of singularities is well-motivated by works that have been published
recently, see [6] as our main inspiration. Of course, all prescribed singularities in
Assumption 1.6 are quasi-homogeneous since these are ADE singularities.

Definition 1.7 A singularity is called quasi-homogeneous if and only if there exists
a holomorphic change of variables so that the defining equation becomes weighted
homogeneous.

Recall that f (x, y) = ∑
i, j ci, j x

i y j is weighted homogeneous if there exist ratio-

nal numbers α, β such that
∑

i, j ci, j x
i ·α y j ·β is homogeneous. One can show that if

f (x, y) is a convergent power series with an isolated singularity at the origin, then
f (x, y) is in the ideal generated by the partial derivatives if and only if f is quasi-
homogeneous. It means that in the quasi-homogeneous case one has τp = μp, i.e.,
the local Tjurina number of p is equal to the local Milnor number of p. This technical
observation will be used freely in the paper.

Let us now present the main results of the paper. Our first result is devoted to conic
arrangements which admit only nodes and ordinary triple points as singularities.

Theorem A (see Theorem 2.1) Let C = {C1, ...,Ck} ⊂ P
2
C
be an arrangement of

k ≥ 2 smooth conics that admits n2 nodes and n3 ordinary triple points. Then C is
never nearly free.

Notice that this is in someways at odds with what we know about line arrangements
with nodes and triple points since there are examples of line arrangements with double
and triple points that are nearly free [13].

Then we study free arrangements of conics with prescribed singularities according
to Assumption 1.6. We can show the following strong bound on the degree of such
conic arrangements.

Theorem B (see Theorem 2.2) Let C ⊂ P
2
C
be an arrangement of k ≥ 2 conics

satisfying Assumption 1.6. Assume that C is free, then k ∈ {2, 3, 4}.
Then we focus on constructions of new examples of conic arrangements with

prescribed singularities that are nearly free.

Theorem C (see Theorem 3.2) Let C : f = 0 be a reduced plane curve in P
2
C
that

admits onlyADE singularities such that it has at least one tacnode. Assume that there
exists a deformationC ′ : f

′ = 0which is obtained fromC by the following procedure:

• a tacnode is deformed into two nodes;
• all other singular points maintain their types.

Assume furthermore that η(C) = η(C ′), then C ′ is nearly free.

As an example, we present a direct application of the above result using Persson’s
triconical arrangement as our starting point.

In the last part of the paper we study examples of pencils of conics in the plane,
but here we allow them to possess singularities that are arbitrary (i.e., not quasi-
homogeneous and/or of arbitrary multiplicity). We present three particular families
of conic pencils in the plane, one is free, the second one is neither free nor nearly
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free, the third one is nearly free, but all of them possess an interesting combinatorial
property that we call the combinatorial supersolvability. Our main observation is that
the property of being combinatorially supersolvable in the class of conic arrangements
is not strong enough to produce a new closed class of free conic arrangements.

2 On the freeness and nearly freeness of conic arrangements in the
plane

Theorem 2.1 Let C = {C1, ...,Ck} ⊂ P
2
C
be an arrangement of k ≥ 2 smooth conics

that admits n2 nodes and n3 ordinary triple points. Then C is never nearly free.

Proof Our proof is very direct and we proceed by contradiction. Assume that C : f =
0 is nearly free. Then it satisfies the following equation

d21 − d1(2k − 1) + (2k − 1)2 = τ(C) + 1 = n2 + 4n3 + 1,

where the formula for the total Tjurina number comes from the fact that all singularities
are quasi-homogeneous and d1 = mdr( f ). By the combinatorial count for conic
arrangements with nodes and ordinary triple points we know that

2(k2 − k) = n2 + 3n3.

Then we obtain the following

d21 − d1(2k − 1) + 4k2 − 4k + 1 = n3 + 2k2 − 2k + 1

and we finally obtain

d21 − d1(2k − 1) + 2k2 − 2k − n3 = 0.

Since C is nearly free, then

�d1 = (2k − 1)2 − 4(2k2 − 2k − n3) ≥ 0.

This gives us that

n3 ≥ k2 − k − 1

4
.

Coming back to the combinatorial count, we have

2k2 − 2k = n2 + 3n3 ≥ n2 + n3 + 2

(
k2 − k − 1

4

)
,

so we finally obtain n2 + n3 ≤ 1
2 . Since n2, n3 ≥ 0 and n2 + n3 > 1, we arrive at the

contradiction. 	
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Based on results presented up to right now in the paper, we see a bright contrast with
the world of line arrangements (and conic-line arrangements) compared with what is
happening in the class of conic arrangements in the plane. Our first observation shows
that it is very difficult to construct examples of conic arrangements that are free or
nearly free. In the known cases of such arrangements we exploit singularities of type
A3, A5 and A7 which is very interesting and yet not well understood. In that context,
we show the following result strong bound on the number of irreducible components
for conic arrangements satisfyingAssumption 1.6 – it turns out that such arrangements
are extremely rare.

Theorem 2.2 Let C ⊂ P
2
C
be an arrangement of k ≥ 2 conics satisfying Assumption

1.6. Assume that C is free, then k ∈ {2, 3, 4}.
Before we pass to the proof of the above theorem, let us recall the following result
[10, Theorem 2.1].

Theorem 2.3 (Dimca-Sernesi) Let C : f = 0 be a reduced curve of degree d in P
2
C

having only quasi-homogeneous singularities. Then

mdr( f ) ≥ αC · d − 2,

where αC denotes the Arnold exponent of C.

It is worth recalling that the Arnold exponent of a given reduced curve C ⊂ P
2
C
is

defined as theminimumover all Arnold exponents of singular points p inC . Inmodern
language, theArnold exponents of singular points are nothing else but the log canonical
thresholds of singularities. Let us explain how to compute the log canonical threshold
in our setting. Since all the singularities we consider here are quasi-homogeneous, we
can use the following pattern (cf. [10, Formula 2.1]).

Recall that the germ (C, p) is weighted homogeneous of type (w1, w2; 1) with
0 < w j ≤ 1/2 if there are local analytic coordinates y1, y2 centered at p = (0, 0)
and a polynomial g(y1, y2) = ∑

u,v cu,v yu1 y
v
2 with cu,v ∈ C, where the sum is over

all pairs (u, v) ∈ N
2 with uw1 + vw2 = 1. Using this description, the log canonical

threshold can be defined as

lct p(g) := w1 + w2.

Example 2.4 Consider A7 singularity at p = (0, 0) with the normal form g(x, y) =
y2 + x8. Then w1 = 1

2 , w2 = 1
8 , and hence we have lct p(g) = 5

8 .

Now we can present our proof of Theorem 2.2.

Proof LetC be an arrangement of k conics satisfyingAssumption 1.6. Then theArnold
exponent of C is equal to αC = 5

8 since the minimum is obtained for a singular point
of type A7. Using Theorem 2.3, we have

2k − 1

2
≥ d1 ≥ 5

8
· 2k − 2.

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

It implies that

4k − 2 ≥ 5k − 8,

and we arrive at

k ≤ 6.

Now we exclude cases where k = 6 and k = 5.
Assume that k = 6. It means, by Theorem 2.3, that we have the following lower

bound on d1:

d1 ≥ 5

8
· 12 − 2 = 5.5,

and thismeans thatd1 ≥ 6.However,d1 has to be less thanor equal to 5, a contradiction.
Assume now that k = 5. It means again, by Theorem 2.3, that we have the following

lower bound on d1:

d1 ≥ 5

8
· 10 − 2 = 4.25,

and thismeans thatd1 ≥ 5.However,d1 has to be less thanor equal to 4, a contradiction.
	


To complete our degree-wise classification result, we need to construct arrange-
ments with k ∈ {2, 3, 4} conics and prescribed above singularities that are free.

Remark 2.5 Let us start with the case k = 2. We should have an arrangement of two
conics such that the total Tjurina number is equal to 7. Based on a precise discussion
in [6, Proposition 5.5], we know that there exists a 1-parameter family of two conics
that intersect at the single point being A7 singularity. Furthermore, we can check using
SINGULAR that d1 = 1, and using (1) we conclude that our arrangement is free.

Now we move on to the case k = 3, and our example here comes from [19, Remark
4.2.3]. Consider the following arrangement of conics C = {C1,C2,C3} ⊂ P

2
C
with

C1 : −3x2 + xy + yz + zx = 0,
C2 : −3y2 + xy + yz + zx = 0,
C3 : −3z2 + xy + yz + zx = 0.

This arrangement has exactly 3 singularities of type A5 and one ordinary triple
point, so the total Tjurina number is equal to 19. Using SINGULAR, one can check
that d1 = 2, and this gives us

d21 − d1(2k − 1) + (2k − 1)2 = 19 = τ(C) = 4n3 + 5t5 = 19,

hence C is free.
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It is natural to ask what to say about the case k = 4. Using the same argument as
in our proof of Theorem 2.2, we obtain that d1 = 3, so we arrive at the situation that
C has to be a maximizing octic curve, see [9, Theorem 2.9] for all necessary details.
However, this is a very subtle and complicated problem, since there are exactly 50
admissible weak combinatorial types of conic arrangements that can potentially lead
to a free arrangement. We are aware of a free conic arrangement with k = 4 conics
with only ADE singularities, but in that case the singular locus consists of two points
of type D10, two points of type D6, one tacnode and two nodes, see [9, Example
3.3]. Moreover, we have the following arrangement of conics, inspired by Persson’s
triconical arrangement [15, 2.1 Proposition], that we would like to describe below.

Example 2.6 This construction delivers an arrangement of 4 conics with exactly 4
singularities of type A7. Let us consider the arrangement P4 given by the following
homogeneous equation:

Q(x, y, z) = (x2 + y2 − z2) · (2x2 + y2 + 2xz) · (x2 + y2 + 2xz)

·(4x2 + 6y2 + 4xz − 9z2).

The four A7 singularites are located at

P1 = (−1 : 0 : 1), P2 = (0 : 0 : 1), P3 = (−2 : 0 : 1), P4 = (1 : 0 : 1),

so all these A7 singularities are collinear. We have also 8 nodes as additional singular-
ities, so altogether we have an arrangement of 4 smooth conics with 4 singularities of
type A7 and 8 nodes. We can check rather easily that the arrangement is nearly free.
In order to do so, we only need to check, via SINGULAR, that d1 = 3, and then

37 = d21 − d1(2k − 1) + (2k − 1)2 = 9 − 21 + 49 = τ(P4) + 1 = 4 · 7 + 8 · 1 + 1.

As we can see in the example above, we are very close to a free example of plane
conics, but unfortunately we cannot do any better, so the case k = 4 remains to be
decided.

Remark 2.7 Using almost the same argument as in Theorem 2.2, we can show that if
C is a nearly free arrangement of k ≥ 2 conics satisfying Assumption 1.6, then

k ≤ 8.

We know that there are examples of nearly free conic arrangements with only tacnodes
as singularities, and in this setting k ∈ {2, 3, 4}. Moreover, by Example 2.6, we have
an additional arrangement of 4 conics that is nearly free. On the other hand, we are
not aware of a single example of a nearly free conic arrangement with k ∈ {5, 6, 7, 8}
and singularities prescribed in Assumption 1.6.
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3 Constructing nearly free arrangements from free ones

Let us introduce the following definition.

Definition 3.1 Let C : f = 0 be a reduced plane curve of degree d in P
2
C
and let

mdr( f ) = d1. Then we define

η(C) = d21 − d1(d − 1) + (d − 1)2.

Our main result is the following.

Theorem 3.2 Let C : f = 0 be a reduced plane curve inP2
C
that admits onlyADE sin-

gularities such that it has at least one tacnode. Assume that there exists a deformation
C ′ : f

′ = 0 which is obtained from C by the following procedure:

• a tacnode is deformed into two nodes;
• all other singular points maintain their types.

Assume furthermore that η(C) = η(C ′), then C ′ is nearly free.

Proof Assume that C is free, then the following equation is satisfied:

η(C) = d21 − d1(d − 1) + (d − 1)2 = τ(C).

Now we look at τ(C ′). By the above assumptions observe that

τ(C ′) = (n2 + 2) + 3(t3 − 1) + . . . = −1 + τ(C),

so we arrive at the following equation

τ(C) = τ(C ′) + 1.

Since η(C) = η(C ′), we have

η(C ′) = τ(C ′) + 1,

which means that C ′ is nearly free. 	

Now we are going to use the above result in practice.

Example 3.3 Consider C = {C1,C2,C3} ⊂ P
2
C
with the defining equation

F(x, y, z) = (x2 + y2 − z2)(2x2 + y2 + 2xz)(2x2 + y2 − 2xz) = 0.

This arrangement is the aforementioned Persson’s triconical arrangement [15, 2.1
Proposition]. We have the following list of singular points:

n2 = 2, t3 = 1, t7 = 2,
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and the arrangement C is free since this is an example of a maximizing sextic in the
plane [9].

Consider now the following deformation C
′
of C given by the polynomial

G(x, y, z) = (2x2 + 2y2 + 3xz + z2)(2x2 + 2y2 − 3xz + z2)(x2 + 4y2 − z2).

It can be easily checked that this deformation satisfies the assumptions of Theorem
3.2—we have n2 = 4, t7 = 2, d1 = mdr(G) = 3, and η(F) = η(G), which leads us
to the fact that the arrangement C′ is nearly free.

4 On the combinatorial supersolvability of conic arrangements

Our main aim here is test certain combinatorial conditions in order to construct new
free conic arrangements with arbitrary singularities. Our decision to allow different
types of singularities is based on our current experience that there are only a few known
free conic arrangements with ADE singularities. In order to approach this problem
we introduce now a certain combinatorial property that might potentially help with
constructing new examples of free arrangements.

Definition 4.1 LetC ⊂ P
2
C
be a reduced plane curve which has at least two irreducible

components.We say thatC is combinatorially supersolvable if there exists a singular
point p ∈ Sing(C) such that for any singular point q ∈ Sing(C) there exists an
irreducible component C ′ of C such that p, q ∈ C ′.

In the setting of the above definition, the singular point p is called combinatorially
modular and, in general, such a point is not uniquely determined. The above definition
is a natural geometric generalization of the notion of being supersolvable in the setting
of line arrangements. Let us recall here that ifL ⊂ P

2
C
is an arrangement of lines that is

supersolvable, then L is free, and this result follows from [12]. It is natural to wonder
whether being combinatorially supersolvable in the class of conic arrangements (or
just reduced plane curves) is related with the freeness. Let us present some contrasting
examples.

Example 4.2 (Płoski’s moustache curve) Here we consider a curve P2m of degree 2m
which consists of exactly m smooth conics. We can take the following homogeneous
equation for all necessary considerations:

Q(x, y, z) =
m∏

i=1

(xz + i · x2 + y2).

By a result due to Płoski [16] we know that the above arrangement of curves has the
only one singular point with the local Milnor number equal to (2m − 1)2 − m. On
the other hand, its local Tjurina number is equal to (2m − 1)2 − (2m − 2), so this
singularity is not quasi-homogeneous. A deeper inspection tells us that the considered
singularity is a merger of A7 singularities produced by each pair of distinct conics.
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One can check (almost by hand) that d1 = mdr(Q) = 1, and hence

d21 − d1(d − 1) + (d − 1)2 − τ(P2m) = 1 − (2m − 1) + (2m − 1)2

−((2m − 1)2 − 2m + 2) = 0,

so for everym ≥ 2 the curve is free. Obviously P2m is combinatorially supersolvable.

Example 4.3 (A pencil of conics passing through 4 general points) Consider the
following two conics given by

F(x, y, z) = 3x2 + y2 − 4z2, G(x, y, z) = x2 + 3y2 − 4z2.

It is easy to see that these two conics intersect at 4 distinct general points. Now we
take the following pencil PC given by the following polynomial:

H(x, y, z) = f g ·
m−2∏

i=2

( f + i · g).

It is well-known that all four k-fold intersection points are quasi-homogeneous—see
for instance [7, Proposition 4.3]. Now we are going to check whether PC is free.
Observe that mdr(H) = 2 since we have the following relation (that can be easily
check via Singular [1]):

yz · ∂x H + xz · ∂y H + xy · ∂z H = 0.

Now we can compute the so-called defect. Let us recall that the defect of a given
reduced curve C ⊂ P

2
C
of degree d is defined as

ν(C) = d21 − d1(d − 1) + (d − 1)2 − τ(C).

Having this formula in hand, we can compute that

ν(PC) = 4 − 2(2m − 1) + (2m − 1)2 − 4 · (m − 1)2 = 3,

so PC is neither free nor nearly-free. Obviously PC is combinatorially supersolvable.

Example 4.4 (Pencil of conics with 2 base points) This constructionwas presented [14,
Section 3] and was inspired by [4]. Let us consider the following curve Ck of degree 2k
consisting of exactly k conics which is given by the following homogeneous equation:

F(x, y, z) = xk yk + z2k

with k ≥ 2. It is easy to observe that Cm has only two singular points located at
P1 = (1 : 0 : 0) and P2 = (0 : 1 : 0), so we have a pencil of conics with two base
points. Now we compute the defect ν(Ck) in order to show that our arrangement of
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conics is nearly free. Observe that d1 = mdr(F) = 1 and it follows from the obvious
check that

x · ∂x F − y · ∂y F = 0.

Moreover, the singular points are quasi-homogeneous and their local Tjurina numbers
are equal to (2k−1)(k−1). Finally we are in a position to compute the defect, namely

ν(Ck) = 1 − (2k − 1) + (2k − 1)2 − 2 · (2k − 1)(k − 1) = 1,

and this justifies our claim that the arrangements is nearly free. Obviously Ck is
combinatorially supersolvable for each k ≥ 2.

These families of examples show that a naive combinatorial generalization of the
supersolvability, taken almost literally from theword of line arrangements in the plane,
is not sufficient to produce a new closed class of free conic arrangements. However, in
certain situations we get new interesting examples of free or nearly free plane curves
which is a kind of a consolation prize.

Finishing this section, let us recall the following crucial definition which apparently
might have higher potential for further research - this notion was introduced recently
in [5].

Definition 4.5 Let C ⊂ P
2
C
be a reduced curve. We say that p ∈ C is a modular point

for C if the central projection

πp : P2
C

\ {p} → P
1
C

induces a locally trivial fibration of the complement M(C) = P
2
C
\C . We say that a

given curve C is supersolvable if it has at least one modular point.

If we restrict to the class of line arrangements, the above definition of a modular
point coincides with the usual one. In this setting, the following remains open.

Question 4.6 Is a supersolvable plane curve C always free?

We do not dare to decide whether this conjecture is true or false here, but it would
be very natural to compare the supersolvability and the combinatorial supersolvability
using different classes of curves, i.e., not only conics in the plane.

5 Addendum to [17]

Here we would like point out an observation regarding non-freeness of the so-called
d-arrangements of plane curves in P

2
C
.

Definition 5.1 Let D = {C1, ...,Ck} ⊂ P
2
C
be an arrangement of irreducible curves.

We say that D is a d-arrangement if the following conditions hold:

1. all irreducible components of D are smooth of degree d ≥ 1,
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2. all intersection points are ordinary singularities.

In the class of d-arrangements, the quasi-homogeneity property for singularities
is, generally speaking, governed by their multiplicity, namely ordinary singularities
are quasi-homogeneous if their multiplicity is less than 5—see [2, Exercise 7.31].
Based on that observation we can formulate the following result that generalizes [17,
Theorem A].

Theorem 5.2 LetD ⊂ P
2
C
be a d-arrangement with d ≥ 3 and k ≥ 3 having ordinary

singularities with multiplicities less than 5. Then D is never free.

Proof Since the proof is verbatim as in [17, Theorem A], with suitable small changes
with respect to the totalTjurina number of a given arrangementD and the combinatorial
count

d ·
(
k

2

)
= n2 + 3n3 + 6n4,

where ni denotes the number of (ordinary) points of multiplicity i , we leave the details
to the reader. 	
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