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Abstract
In this paper, we address the preconditioned iterative solution of the saddle-point linear
systems arising from the (regularized) Interior Point method applied to linear and
quadratic convex programming problems, typically of large scale. Starting from the
well-studied Constraint Preconditioner, we review a number of inexact variants with
the aim to reduce the computational cost of the preconditioner application within the
Krylov subspace solver of choice. In all cases we illustrate a spectral analysis showing
the conditions under which a good clustering of the eigenvalues of the preconditioned
matrix can be obtained, which foreshadows (at least in case PCG/MINRES Krylov
solvers are used), a fast convergence of the iterative method. Results on a set of
large size optimization problems confirm that the Inexact variants of the Constraint
Preconditioner can yield efficient solution methods.
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1 Introduction

In this paper, we consider linear and convex quadratic programming (LP and QP)
problems of the following form:

min
x

(
cT x + 1

2
xT Qx

)
, s.t. Ax = b, x ≥ 0, (1.1)

where c, x ∈ R
n , b ∈ R

m , A ∈ R
m×n . For quadratic programming problems we

assume that Q � 0 ∈ R
n×n , while for linear programming we have Q = 0. The

problem (1.1) is often referred to as the primal form of the quadratic programming
problem; the dual form of the problem is given by

maxx,y,z
(
bT y − 1

2
xT Qx

)
, s.t. − Qx + AT y + z = c, z ≥ 0, (1.2)

where z ∈ R
n , y ∈ R

m . Problems of linear or quadratic programming form are funda-
mental problems in optimization, and arise in a wide range of scientific applications.

A variety of optimization methods exist for solving the problem (1.1). Two popular
and successful approaches are interior point methods (IPMs) and proximal methods
of multipliers (PMMs). Within an IPM, a Lagrangian is constructed involving the
objective function and the equality constraints of (1.1), to which a logarithmic barrier
function is then added in place of the inequality constraints. Hence, a logarithmic
barrier sub-problem is solved at each iteration of the algorithm (see [36] for a survey
on IPMs). The key feature of a PMM is that, at each iteration, one seeks the minimum
of the problem (1.1) as stated, but one adds to the objective function a penalty term
involving the norm of the difference between x and the previously computed estimate.
Then, an augmented Lagrangian method is applied to approximately solve each such
sub-problem (see [55, 63] for a review of proximal point methods, and [16, 41, 61,
62] for a review of augmented Lagrangian methods).

Upon applying either naive IPM or IP-PMM, the vast majority of the computational
effort arises from the solution of the resulting linear systems of equations at each IP–
PMM iteration. These linear equations can be tackled in the form of an augmented
system, or the reduced normal equations: we focus much of our attention on the
augmented system, as unless Q has some convenient structure it is highly undesirable
to form the normal equations or apply the resulting matrix within a solver. Within
the linear algebra community, direct methods are popular for solving such systems
due to their generalizability, however if the matrix system becomes sufficiently large
the storage and/or operation costs can rapidly become excessive, depending on the
computer architecture used. The application of iterative methods, for instance those
based around Krylov subspace methods such as the Conjugate Gradient method (CG)
[42] or MINRES [54], is an attractive alternative, but if one cannot construct suitable
preconditioners which can be applied within such solvers then convergence can be
prohibitively slow, and indeed it is possible that convergence is not achieved at all.
The development of powerful preconditioners is therefore crucial.

A range of general preconditioners have been proposed for augmented systems aris-
ing from optimization problems, see [14, 17, 24, 29, 53, 66] for instance. However, as
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is the case within the field of preconditioning in general, these are typically sensitive
to changes in structure of the matrices involved, and can have substantial memory
requirements. Preconditioners have also been successfully devised for specific classes
of programming problems solved using similar optimization methods: applications
include those arising from multicommodity network flow problems [22], stochastic
programming problems [21], formulations within which the constraint matrix has pri-
mal block-angular structure [23], and PDE-constrained optimization problems [56,
57], or various applications [26]. However, such preconditioners exploit particular
structures arising from specific applications; unless there exists such a structure which
hints as to the appropriate way to develop a solver, the design of bespoke precondi-
tioners remains a challenge. We finally remark that also selection of a proper stopping
criterion for the inner linear solver is crucial to devise an efficient outer–inner iteration
(see [74] for a recent study).

The block structure of the linear system we will address is the well-known saddle-
point system:

[
G AT

A 0

] [
u1
u2

]
=

[
d1
d2

]
(1.3)

where G is an R
n×n SPD matrix, while A ∈ R

m×n rectangular matrix with full row
rank, as usually m < n. The exact constraint preconditioner (CP) is defined as

M =
[
D AT

A 0

]
. (1.4)

Application of M−1 to a vector, required at each iteration of a Krylov solver, rests on
the efficient computation of the square-root free Cholesky factorization of the negative
Schur complement of D in M ,

AD−1AT = LD0L
T , (1.5)

which allows for the following factorization:

M =
[

I 0
AD−1 I

] [
D 0
0 −LD0LT

] [
I D−1AT

0 I

]
. (1.6)

The aim of this paper is to review the block preconditioners proposed mainly for
solving system (1.3) with focus on the approximate construction (or factorization) of
the Schur complement matrix, a key issue for the development of efficient iterative
solver.

This paper is structured as follows. In Sect. 2 we describe the structure of a linear
system to be solved at each IP iteration in the case of Quadratic (Linear) and Non
Linear problems. In Sect. 3 we recall the main properties of the exact constraint
preconditioner (see e.g. [44]), whereas in Sects. 4, 5 and 6we describe three variants of
this approach, to make the cost of the preconditioner application affordable also when
addressing large size problems. Namely, in Sect. 4 we describe the Inexact Constraint
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Preconditioner obtained by sparsifying matrix A [12, 13], in Sect. 5 we approximate
directly the Schur complement matrix AD−1AT by neglecting small terms in D−1 as
proposed in [11]; in Sect. 6 we review an approach which considers application of the
exact CP at selected IP iterations while simply updating it (by a BFGS-like formula) in
the subsequent iterations [8]. Some numerical results are shown in Sect. 7 and, finally,
in Sect. 8 we give some concluding remarks.
Notation: Given an arbitrary square (or rectangular) matrix A, then λmax(A) and
λmin(A) (or σmax(A) and σmin(A)) denote the largest and smallest eigenvalues (or
singular values) of the matrix A, respectively. In all the following sections we will
indicate with the symbol H the coefficient matrix, with M the preconditioner in its
“direct” form (i.e. M ≈ H ) and with P the inverse preconditioner (satisfying P ≈
H−1).

2 Linear algebra in interior point methods

Interior pointmethods for linear, quadratic and nonlinear optimization differ obviously
in many details but they rely on the same linear algebra kernel. We discuss briefly two
cases of quadratic and nonlinear programming, following the presentation in [14].

2.1 Quadratic programming

Consider the convex quadratic programming problem

min cT x + 1
2 x

T Qx

s.t. Ax = b,

x ≥ 0,

where Q ∈ R
n×n is positive semidefinite matrix, A ∈ R

m×n is the full rank matrix
of linear constraints and vectors x, c and b have appropriate dimensions. The usual
transformation in interior point methods consists in replacing inequality constraints
with the logarithmic barriers to get

min cT x + 1

2
xT Qx − μ

n∑

j=1
ln x j

s.t. Ax = b,

where μ ≥ 0 is a barrier parameter. The Lagrangian associated with this problem has
the form:

L(x, y, μ) = cT x + 1

2
xT Qx − yT (Ax − b) − μ

n∑

j=1

ln x j
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and the conditions for a stationary point write

∇x L(x, y, μ) = c − AT y − μX−1e + Qx = 0
∇y L(x, y, μ) = Ax − b = 0,

where X−1 = diag{x−1
1 , x−1

2 , . . . , x−1
n }. Having denoted

s = μX−1e, i.e. XSe = μe,

where S = diag{s1, s2, . . . , sn} and e = (1, 1, . . . , 1)T , the first order optimality
conditions (for the barrier problem) are:

Ax = b,

AT y + s − Qx = c,

XSe = μe

(x, s) ≥ 0. (2.1)

Interior point algorithm for quadratic programming [72] applies Newton method to
solve this system of nonlinear equations and gradually reduces the barrier parameter
μ to guarantee the convergence to the optimal solution of the original problem. The
Newton direction is obtained by solving the system of linear equations:

⎡

⎣
A 0 0

−Q AT I
S 0 X

⎤

⎦

⎡

⎣
�x
�y
�s

⎤

⎦ =
⎡

⎣
ξp
ξd
ξμ

⎤

⎦ , (2.2)

where

ξp = b − Ax,

ξd = c − AT y − s + Qx,

ξμ = μe − XSe.

By elimination of

�s = X−1(ξμ − S�x) = −X−1S�x + X−1ξμ,

from the second equation we get the symmetric indefinite augmented system of linear
equations

[−Q − �−1
1 AT

A 0

] [
�x
�y

]
=

[
ξd − X−1ξμ

ξp

]
. (2.3)

123



342 ANNALI DELL’UNIVERSITA’ DI FERRARA (2022) 68:337–368

where �1 = XS−1 is a diagonal scaling matrix. By eliminating �x from the first
equation we can reduce (2.3) further to the form of normal equations

HNE ≡ (A(Q + �−1
1 )−1AT )�y = bQP .

For a generic large and sparse matrix Q it is generally inefficient to form explicitly
the normal equation matrix HNE so that this kind of problems are usually tackled in
their augmented form (2.3).

2.2 Special cases. linear programming, separable problems

Simplified versions of (2.3) are obtained for linear programming by simply setting
Q ≡ 0, thus obtaining

[−�−1
1 AT

A 0

] [
�x
�y

]
=

[
ξd − X−1ξμ

ξp

]
. (2.4)

This problem is usually solved by resorting to the normal equation system which now
reads

HNE ≡ (A�1A
T )�y = bLP .

Differently from the quadratic case, the normal equation matrix can be explicitly
formed. As HNE is symmetric positive definite, the system HNE�y = bLP can be
solved by the Preconditioned Conjugate Gradient (PCG) iterative method. However,
as it is observed by many authors, the condition number of HNE grows rapidly as the
Interior Point method approaches the solution to the optimization problem, and finding
suitable preconditioners for this problem is currently under research. This topic will
be discussed in Sect. 5.

Separable problems are characterized by the fact that Q is a diagonal matrix and
hence easily invertible. As in the linear case, HNE can be formed allowing to address
the normal equation system.

2.3 Nonlinear programming

Consider the convex nonlinear optimization problem

min f (x)

s.t. g(x) ≤ 0,

where x ∈ R
n , and f : Rn 	→ R and g : Rn 	→ R

m are convex, twice differentiable.
Having replaced inequality constraints with an equality g(x) + z = 0, where z ∈ R

m
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is a nonnegative slack variable, we can formulate the associated barrier problem

min f (x) − μ
m∑

i=1
ln zi

s.t. g(x) + z = 0.

and write the Lagrangian for it

L(x, y, z, μ) = f (x) + yT (g(x) + z) − μ

m∑

i=1

ln zi .

The conditions for a stationary point write

∇x L(x, y, z, μ) = ∇ f (x) + ∇g(x)T y = 0
∇y L(x, y, z, μ) = g(x) + z = 0
∇z L(x, y, z, μ) = y − μZ−1e = 0,

where Z−1 = diag{z−1
1 , z−1

2 , · · · , z−1
m }. The first order optimality conditions (for the

barrier problem) have thus the following form

∇ f (x) + ∇g(x)T y = 0,
g(x) + z = 0,
Y Ze = μe
(y, z) ≥ 0,

(2.5)

where Y = diag{y1, y2, · · · , ym}. Interior point algorithm for nonlinear programming
[72] applies Newton method to solve this system of equations and gradually reduces
the barrier parameter μ to guarantee the convergence to the optimal solution of the
original problem. The Newton direction is obtained by solving the system of linear
equations:

⎡

⎣
Q(x, y) A(x)T 0
A(x) 0 I
0 Z Y

⎤

⎦

⎡

⎣
�x
�y
�z

⎤

⎦ =
⎡

⎣
−∇ f (x) − A(x)T y

−g(x) − z
μe − Y Ze,

⎤

⎦ , (2.6)

where

A(x) = ∇g(x) ∈ R
m×n

Q(x, y) = ∇2 f (x)+
m∑

i=1
yi∇2gi (x) ∈ R

n×n .

Using the third equation we eliminate

�z = μY−1e − Ze − ZY−1�y,
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from the second equation and get

[−Q(x, y) A(x)T

A(x) ZY−1

] [
�x

−�y

]
=

[∇ f (x) + A(x)T y
−g(x) − μY−1e

]
. (2.7)

The matrix involved in this set of linear equations is symmetric and indefinite. For
convex optimization problem (when f and g are convex), the matrix Q is positive
semidefinite and if f is strictly convex, Q is positive definite and the matrix in (2.7) is
quasidefinite. Similarly to the case of quadratic programming by eliminating�x from
the first equation we can reduce this system further to the form of normal equations

(
A(x)Q(x, y)−1A(x)T + ZY−1

)
�y = bNLP .

The two systems (2.3) and (2.7) have many similarities. The main difference is that
in (2.3) only the diagonal scaling matrix �1 changes from iteration to iteration, while
in the case of nonlinear programming not only the matrix �2 = Z−1Y but also the
matrices Q(x, y) and A(x) in (2.7) change in every iteration. Both these systems are
indefinite. However, to avoid the need of using 2 × 2 pivots in their factorization we
transform them to quasidefinite ones by the use of primal and dual regularization [1].
Our analysis in the following sections is concerned with the quadratic optimization
problems, and hence A and Q are constant matrices. However, the major conclusions
can be generalized to the nonlinear optimization case.

3 Exact constraint preconditioner

In this section we shall discuss the properties of the preconditioned matrices involved
in (2.3). For ease of the presentation we shall focus on the quadratic programming
case with linear equality constraints hence we will assume that�−1

2 = 0 (we also drop
the subscript in �1). In [14] these results are extended to the nonlinear programming
case.

Due to the presence of matrix �−1, the augmented system

H =
[−Q − �−1 AT

A 0

]
. (3.1)

is very ill-conditioned. Indeed, some elements of � tend to zero while others tend to
infinity as the optimal solution of the problem is approached. The performance of any
iterative method critically depends on the quality of the preconditioner in this case.

Block-type preconditioners are widely used in linear systems obtained from a dis-
cretization of PDEs [10, 15, 34, 58, 73]. The preconditioners for the augmented system
have also been used in the context of linear programming [33, 53] and in the context
of nonlinear programming [29, 44, 47, 48, 64]. As was shown in [53], the precondi-
tioners for indefinite augmented system offer more freedom than those for the normal
equations. Moreover, the factorization of the augmented system is sometimes much
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easier than that of the normal equations [2] (this is the case, for example, when A con-
tains dense columns). Hence even in the case of linear programming (in which normal
equations is a viable approach) augmented system offers important advantages. For
quadratic and nonlinear programming the use of the augmented system is a must and
so we deal with the augmented system preconditioners in this paper. On the other
hand, we realize that for some specially structured problems such as multicommodity
network flows, very efficient preconditioners for the normal equations [22, 43] can
also be designed.

3.1 Spectral analysis

We consider the augmented system

Hu = d, with H =
[
G AT

A 0

]
, u =

[
x
y

]
, d =

[
b
c

]
,G = Q + �−1.

(3.2)

CPs for matrix H have the following form:

M =
[
D AT

A 0

]
, (3.3)

where D is some symmetric approximation to G. Any preconditioner of this type
can be regarded as the coefficient matrix of a Karush-Kuhn-Tucker (KKT) system
associated with an optimization problem with the same constraints as the original
problem, thus motivating the name of the preconditioner. We note that D should be
chosen so that M is nonsingular and is “easier to factorize” than H ; furthermore, it
must involve � in order to capture the key numerical properties of H . A common
choice is

D = diag(G); (3.4)

a different approach consists in implicitly defining D by using a factorization of the
form M = UCUT , where U and C are specially chosen matrices [28]. Here we
consider (3.4), which is SPD. The spectral properties of the preconditioned matrix
M−1H and the application of CG with preconditioner M to the KKT linear system
have been deeply investigated. For the sake of completeness, in the next theorem we
summarize some theoretical results about CPs, given in e.g. [8, 14, 44, 47].

Theorem 3.1 Let Z ∈ R
n×(n−m) be a matrix whose columns span the nullspace of A.

Assume also that D is SPD. The following properties hold.

1. M−1H has an eigenvalue at 1 with multiplicity 2m.
2. The remaining n −m eigenvalues of M−1H are defined by the generalized eigen-

value problem

ZT GZw = λZT DZw. (3.5)
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3. The eigenvalues, λ, of (3.5) satisfy

λmin(D
−1G) ≤ λ ≤ λmax (D

−1G). (3.6)

4. If CG is applied to system (3.2) with preconditioner M and starting guess u0 =
[ xT0 yT0 ]T such that Ax0 = c, then the corresponding iterates x j are the same as
the ones generated by CG applied to

(ZT GZ)x = ZT (b − Gx0), (3.7)

with preconditioner ZT DZ. Thus, the component x∗ of the solution u∗ of system
(3.2) is obtained in at most n − m iterations and the following inequality holds:

‖x j − x∗‖ ≤ 2
√

κ

(√
κ − 1√
κ + 1

) j

‖x0 − x∗‖, j = 1, . . . , n − m,

where κ = κ((ZT DZ)−1ZT GZ).
5. The directions p j and the residuals r j generated by applying CG with precon-

ditioner M to system (3.2), with the same starting guess as in item 4, take the
following form:

p j =
[
Z p̄ j,1
p j,2

]
, r j =

[
r j,1
0

]
, (3.8)

where p̄ j,1 and r j,1 are the direction and the residual, respectively, at the j-th
iteration of CG applied to (3.7) with preconditioner ZT DZ, and

pTj Hpi = p̄Tj,1Z
T GZ p̄i,1. (3.9)

From the previous theorem it follows that the preconditioned matrix has 2m unit
eigenvalues independently of the particular choice of D; on the other hand, properties
2 and 3 show that the better D approximates G, the more the remaining n − m
eigenvalues of M−1H are clustered around 1. Furthermore, the application of CG
to the KKT system (3.2) with preconditioner M is closely related to the application
of CG to system (3.7) with preconditioner ZT DZ . We note that property 4 does not
guarantee that y j = y∗ after at most n−m iterations; actually, a breakdownmay occur
at the (n − m + 1)-st iteration. However, this is a “lucky breakdown”, in the sense
that y∗ can be easily obtained starting from the last computed approximation of it, as
shown in [47].More generally, since itmay happen that the 2-normof the PCG residual
may not decrease as fast as the H -norm of the PCG error, a suitable scaling of the
KKT system matrix can be used to prevent this situation [64]. We mention that other
constraint-preconditioned Krylov solvers, such as MINRES, SYMMLQ and GMRES
have been analyzed and implemented in [27].

Remark 3.2 The excellent spectral properties of the constraint-preconditioned matrix
and the possibility of employing a suitable Conjugate Gradient method makes this
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preconditioner a natural choice for solving the IP linear systems.However, we note that
the effectiveness of CPs may be hidden by the computational cost for the factorization
of their Schur complements, thus reducing the efficiency of the overall IP procedure.
Sects. 4, 5 and 6 will be devoted to address this issue. In particular we will focus on

1. Constructing an inexact-constraint preconditioner, thus allowing a sparser L-factor
for the Normal Equation matrix AD−1AT .

2. Dropping small elements in D−1, in this way producing a far sparser Schur com-
plement matrix.

3. Avoiding factorization of the Schur complement matrix at each IP iteration by
modifying, with a low rank matrix, the preconditioner computed at one of the
previous iterations.

4 Inexact jacobian constraint preconditioner

We consider the preconditioning of the KKT system Hu = d by the inexact Jacobian
constraint preconditioner MI J , where

H =
[
G AT

A 0

]
and MI J =

[
D ÃT

Ã 0

]
, (4.1)

Once againwewill consider D as a diagonal approximation ofG and Ã a sparsification
of A in order to have a sparse matrix ÃD−1 ÃT which is needed at each application of
the preconditioner MI J . The eigenvalue distribution of M−1

I J H has been investigated
in [12, 13].

Following [12] we define E = A − Ã, rank(E) = p. Here σ̃1 is the smallest
singular value of ÃD−1/2. We introduce two error terms:

eQ = ‖EQ‖ = ‖D−1/2QD−1/2 − I‖ and eA = ‖ED−1/2‖
σ1( ÃD−1/2)

(4.2)

which measure the errors of the approximations to the (1, 1) block and to the matrix
of the constraints, respectively. The distance |ε| of the complex eigenvalues from one
with ε = λ − 1, will be bounded in terms of these two quantities.

Theorem 4.1 Assume A and Ã have maximum rank. If the eigenvector is of the form
(0, y)T then the eigenvalues of M−1

I J H are either one (with multiplicity at least m− p)
or possibly complex and bounded by |ε| ≤ eA. The eigenvalues corresponding to
eigenvectors of the form (x, y)T with x �= 0 are

1. equal to one (with multiplicity at least m − p), or
2. real positive and bounded by

λmin(D
−1/2QD−1/2) ≤ λ ≤ λmax(D

−1/2QD−1/2), or
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3. complex, satisfying

|εR | ≤ eQ + eA (4.3)

|εI | ≤ eQ + eA, (4.4)

where ε = εR + iεI .

The efficiency of the inexact Jacobian constraint preconditioner rely on (1) the
clustering of the eigenvalues around one, stated by Theorem 4.1, and (2) by the ability
to exactly (and economically) factorize ÃD−1 ÃT =: LD0LT .

5 An inexact normal equations preconditioner

Following [11] we consider the following augmented system after regularization.

[−(Q + �−1
k + ρk In) AT

A δk Im

] [
�xk
�yk

]
=

[
rx
ry

]
, (5.1)

In (5.1) two positive and decreasing sequences ρk and δk have been introduced in order
to obtain a regularized interior point method. In the sequel we will assume that both
ρk and δk are O(μk) i.e. go to zero as the barrier parameter.

We remind the important feature of the matrix �k : as the method approaches an
optimal solution, the positive diagonal matrix has some entries that (numerically)
grow like μ−1

k , while others approach zero. By observing the matrix in (5.1), we
can immediately see the benefits of using regularization in IPMs. On one hand, the
dual regularization parameter δk ensures that the system matrix in (5.1) is invertible,
even if A is rank-deficient. On the other hand, the primal regularization parameter
ρk controls the worst-case conditioning of the (1, 1) block of (5.1), improving the
numerical stability of the method (and hence its robustness). We refer the reader to [1,
59, 60] for a review of the benefits of regularization in the context of IPMs.

The normal equations, at a generic step k of the Interior Point method, read as
follows:

HNE�y = ξ, HNE = A(�−1
k + Q + ρk In)

−1AT + δk Im, (5.2)

In order to employ preconditioned MINRES or CG to solve (5.1) or (5.2) respec-
tively, we must find an approximation for the coefficient matrix in (5.2). To do so,
we employ a symmetric and positive definite block-diagonal preconditioner for the
saddle-point system (5.1), involving approximations for the negative of the (1,1) block,
as well as the Schur complement HNE . See [45, 51, 68] for motivation of such saddle-
point preconditioners. In light of this, we approximate Q in the (1,1) block by its
diagonal, i.e. Q̃ = diag(Q) and define the diagonal matrix G̃k as

G̃k = (
�−1

k + Q̃ + ρk In
)−1

. (5.3)
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Then, we define the diagonal matrix Ek with entries (dropping the index k in Ek

and G̃k)

Eii =
{
0 if Gii < Ck min{μk, 1},
Gii otherwise,

(5.4)

where i ∈ {1, . . . , n},Ck is a constant, and we construct the normal equations approx-
imation MNE = LMLT

M , by computing the (exact) Cholesky factorization of

MNE = AEk A
T + δk Im . (5.5)

The dropping threshold in (5.4) guarantees that a coefficient in the diagonal matrix
(�−1 + Q̃ + ρk In)−1 is set to zero only if it is below a constant times the barrier
parameter μk . As a consequence fewer outer products of columns of A contribute to
the normal equations, and the resulting preconditioner MNE is expected to be more
sparse than HNE . This choice is also crucial to guarantee that the eigenvalues of the
preconditioned normal equations matrix are independent of μ. Before discussing the
role of the constant Ck , let us first address the preconditioning of the augmented
system matrix in (5.1). The matrix MNE acts as a preconditioner for CG applied to
the normal equations. In order to construct a preconditioner for the augmented system
matrix in (5.1), we employ a block-diagonal preconditioner of the form:

MAS =
[
G̃−1

k 0
0 MNE

]
, (5.6)

with G̃k and MNE defined in (5.3) and in (5.5), respectively. Note that MINRES
requires a symmetric positive definite preconditioner and hence many other block
preconditioners for (5.1) are not applicable.

As we will show in the sequel, following the developments in [60], forcing the
regularization variables δk, ρk to decrease at the same rate as μk is numerically
beneficial, will provide the spectrum of the preconditioned normal equations to be
independent of μk ; a very desirable property for preconditioned systems arising from
IPMs.

5.1 Spectral analysis. LP or separable QP cases

In this section we provide a spectral analysis of the preconditioned normal equations
in the LP or separable QP case, assuming that (5.5) is used as the preconditioner.
Although this is a specialized setting, we may make use of the following result in our
analysis of the augmented system arising from the general QP case.

Let us define this normal equations matrix H̃N E , using the definition of G̃k (5.3),
as

H̃N E = AG̃k A
T + δk Im . (5.7)
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The following Theorem provides lower and upper bounds on the eigenvalues of
M−1

NE H̃N E , at an arbitrary iteration k of Algorithm IP–PMM.

Theorem 5.1 There are m− r eigenvalues of M−1
NE H̃N E at one, where r is the column

rank of AT , corresponding to linearly independent vectors belonging to the nullspace
of AT . The remaining eigenvalues are bounded as

1 ≤ λ ≤ 1 + Ckμk

δk
σ 2
max(A).

Proof The eigenvalues of M−1
NE H̃N E must satisfy

AG̃k A
T u + δku = λAEk A

T u + λδku. (5.8)

Multiplying (5.8) on the left by uT and setting z = AT u yields

λ = zT G̃k z + δk‖u‖2
zT Ekz + δk‖u‖2 = 1 +

zT
(
G̃k − Ek

)
z

zT Ekz + δk‖u‖2 = 1 + α.

For every vector u in the nullspace of AT we have z = 0 and λ = 1. The fact that both
Ek and G̃k − Ek � 0 (from the definition of Ek) implies the lower bound. To prove
the upper bound we first observe that, in view of (5.4), λmax(G̃k − Ek) ≤ Ckμk ; then

α =
zT

(
G̃k − Ek

)
z

zT Ekz + δk‖u‖2 ≤
zT

(
G̃k − Ek

)
z

δk‖u‖2

=
zT

(
G̃k − Ek

)
z

‖z‖2
1

δk

‖z‖2
‖u‖2 ≤ Ckμk

δk

uT AAT u

‖u‖2 ≤ Ckμk

δk
σ 2
max(A).

��
Remark 1 Following the discussion in the end of the previous section, we know that
μk

δk
= O(1), since IP–PMM forces δk to decrease at the same rate as μk . Combining

this with the result of Theorem 5.1 implies that the condition number of the precon-
ditioned normal equations is asymptotically independent of μk .

Remark 2 In the LP case (Q = 0), or the separable QP case (Q diagonal), Theorem 5.1
characterizes the eigenvalues of the preconditioned matrix within the CG method.

5.1.1 BFGS-like low-rank update of theMNE preconditioner

Given a rectangular (tall) matrix V ∈ R
m×p withmaximum column rank, it is possible

to define a generalized block-tuned preconditioner M satisfying the property

M−1 H̃N EV = νV ,
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so that the columnsofV becomeeigenvectors of the preconditionedmatrix correspond-
ing to the eigenvalue ν. A way to construct M (or its explicit inverse) is suggested
by the BFGS-based preconditioners used e.g. in [7] for accelerating Newton linear
systems or analyzed in [50] for general sequences of linear systems, that is

M−1 = νVV T + (Im − VV T H̃N E )M−1
NE (Im − H̃N EVV T ), with

 = (V T H̃N EV )−1.

We notice that BFGS-like updates for sequences of linear systems have also been
investigated e.g. in [31, 38].

Note also that if the columns of V would be chosen as e.g. the p exact rightmost
eigenvectors of M−1

NE H̃N E (corresponding to the p largest eigenvalues) then all the
other eigenpairs,

(λ1, z1), . . . , (λm−p, zm−p),

of the new preconditioned matrix M−1 H̃N E would remain unchanged (nonexpansion
of the spectrum of M−1 H̃N E , see [39]).

Usually columns of V are chosen as the (approximate) eigenvectors of M−1
NE H̃N E

corresponding to the smallest eigenvalues of this matrix [6, 65]. However, this choice
would not produce a significant reduction in the condition number of the precondi-
tioned matrix as the spectral analysis of Theorem 5.1 suggests a possible clustering
of smallest eigenvalues around 1. We choose instead, as the columns of V , the right-
most eigenvectors of M−1

NE H̃N E , approximated with low accuracy by the function
eigs of MATLAB. The ν value must be selected to satisfy λmin(M

−1
NE H̃N E ) < ν �

λmax(M
−1
NE H̃N E ). We choose ν = 10, to ensure that this new eigenvalue lies in the

interior of the spectral interval, and the column size of V as p = 10. This last choice
is driven by experimental evidence that in most cases there are a small number of large
outliers in M−1

NE H̃N E . A larger value of p would (unnecessarily) increase the cost of
applying the preconditioner.

Finally, by computing approximately the rightmost eigenvectors, wewould expect a
slight perturbation of λ1, . . . , λm−p, depending on the accuracy of this approximation.
For a detailed perturbation analysis see e.g. [70].

Updating a given preconditioner and reusing it, in the framework of solution of
sequences of linear systems, have been analyzed in various papers. Among the others
we quote [71] in which an adaptive automated procedure is devised for determining
whether to use a direct or iterative solver, whether to reinitialize or update the precon-
ditioner, and how many updates to apply. In [69] the update involves an inexact LU
factorization of a given matrix in the sequence, [46] in the context of slightly varying
coefficient matrices in the sequence (which is not the case in IP optimization). More
related to the Interior Point iteration are [3, 4] where the LDLT factorization of the
saddle point matrix is updated at each IP iteration, and cheap approximations of the
initial Schur complement matrix are provided.
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5.2 Spectral analysis. QP case

In the MINRES solution of QP instances the system matrix is

HAS =
[−Fk AT

A δk Im

]
, Fk = Q + �−1

k + ρk In,

while the preconditioner is

MAS =
[
F̃k 0
0 MNE

]
, F̃k = Q̃ + �−1

k + ρk In ≡ G̃−1
k .

The following Theorem will characterize the eigenvalues of M−1
AS HAS in terms of

the extremal eigenvalues of the preconditioned (1,1) block of (5.1), F̃−1
k Fk , and of

M−1
NE H̃N E as described by Theorem 5.1. We will work with (symmetric positive

definite) similarity transformations of these matrices defined as

F̂k = F̃−1/2
k Fk F̃

−1/2
k , M̂N E = M−1/2

NE H̃N EM
−1/2
NE , (5.9)

and set

αNE = λmin(M̂N E ), βNE = λmax

(
M̂N E

)
, κNE = βNE

αNE
,

αF = λmin

(
F̂k

)
, βF = λmax

(
F̂k

)
, κF = βF

αF
.

Hence, an arbitrary element of the in the range of the Rayleigh Quotient of these
matrices is represented as:

γNE ∈ q(M̂N E ) = [αNE , βNE ], γF ∈ q(F̂k) = [αF , βF ].
Similarly, an arbitrary element of q(MNE ) is denoted by

γp ∈ [λmin(MNE ), λmax(MNE )] ⊆
[
δk,

σ 2
max(A)

ρk
+ δk

)
.

Observe that αF ≤ 1 ≤ βF as

1

n

n∑

i=1

λi

(
F̃−1
k Fk

)
= 1

n
Tr

(
F̃−1
k Fk

)
= 1.

Theorem 5.2 Let k be an arbitrary iteration of IP–PMM. Then, the eigenvalues of
M−1

AS HAS lie in the union of the following intervals:

I− =
[
−βF − √

βNE ,−αF

]
; I+ =

[
1

1 + βF
, 1 + √

βNE − 1

]
.
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Proof The proof of this theorem, following an idea in [5], can be found in [11]. ��
Remark 5.3 It is well known that a pessimistic bound on the convergence rate of
MINRES can be obtained if the sizes of I− and I+ are roughly the same [40]. In our
case, as usually βF � βNE , we can assume that the length of both intervals is roughly√

βNE . As a heuristic we may therefore use [30, Theorem 4.14], which predicts the
reduction of the residual in theM−1

AS -norm in the casewhere both intervals have exactly
equal length. This then implies that

‖rk‖
‖r0‖ ≤ 2

(
κ − 1

κ + 1

)�k/2�
,

where

κ ≈ 1 + βF

αF

(
1 + √

βNE − 1
)

(βF + √
βNE ) ≤ 2κF

(√
1 + βNE

)
(βF + √

βNE )

≈ 2βNE · κF ≤ 2κNE · κF .

6 Multiple BFGS-like updates of the constraint preconditioner

In order to avoid the factorization (1.5) at a certain IP iteration k, we construct a
preconditioner for the KKT system at that iteration by updating a CP computed at
an iteration i < k. We extend to KKT systems and CPs the preconditioner updating
technique for SPD matrices presented in [39], which in turn exploits ideas from [52,
67].

Let us consider, as before,

H =
[
G AT

A 0

]
, M =

[
D AT

A 0

]
, P = M−1 (6.1)

and

S =
[
S1
S2

]
∈ R

(n+m)×q , q ≤ n − m (6.2)

with S1 ∈ R
n×q such that

rank(S1) = q, AS1 = 0. (6.3)

We first define a preconditioner for H by applying a BFGS-like rank-2q update to M :

Mupd = M + HS(ST HS)−1ST H − MS(ST MS)−1ST M, (6.4)

which is well defined because ST MS = ST1 DS1 and ST HS = ST1 GS1. By using the
Sherman-Morrison-Woodbury inversion formula, we get the inverse of Mupd :

Pupd = M−1
upd = S(ST HS)−1ST
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+(I − S(ST HS)−1ST H)P(I − HS(ST HS)−1ST ), (6.5)

which is analogous to the BFGS update discussed in [39] for SPD matrices.
It is easy to see that the previous rank-2q update allows the preconditioned matrix

to have at least q eigenvalues equal to 1 by directly verifying that

(Pupd H)S = S.

We also prove most important property of Mupd i.e. that the rank-2q update (6.4)
(or, equivalently, (6.5)) produces a CP. To this aim, define

S = SL−T
S , (6.6)

where LS is the lower triangular Cholesky factor of the matrix ST HS.

Theorem 6.1 The matrix Mupd given in (6.4) is a CP for the matrix H in (3.2).

Proof We show that the update (6.4) involves only the (1, 1) block of M and that Mupd

is nonsingular; hence the thesis holds. Let us splitS into two blocks:

S =
[
S1
S2

]
, S1 ∈ R

n×q , S2 ∈ R
m×q .

From (6.3) it follows that AS1 = 0. Then,

HSST H =
[
GS1 + ATS2

0

]
[
S T

1 G + S T
2 A 0

] =
[
� 0
0 0

]
,

where

� = (GS1 + ATS2)(S
T
1 G + S T

2 A).

Likewise, we have

MS1(S
T MS)−1ST M =

[
� 0
0 0

]
,

where

� = (DS1 + AT S2)(S
T
1 DS1)

−1(ST1 D + ST2 A).

It follows that

Mupd = M + HSS T H − MS(ST MS)−1ST M =
[
D + � − � AT

A 0

]
. (6.7)
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In order to prove that Mupd is nonsingular, we consider a matrix Z ∈ R
n×(n−m) whose

columns span the nullspace of A and prove that ZT (D + � − �)Z is SPD (see, e.g.,
[25]). We observe that

ZT (D + � − �)Z = ZT DZ + ZT (GS1 + ATS2)(S
T
1 G + S T

2 A)Z

− ZT (DS1 + AT S2)(S
T
1 DS1)

−1(ST1 D + ST2 A)Z

= ZT DZ + ZT GS1S
T
1 GZ − ZT DS1(S

T
1 DS1)

−1ST1 DZ

= ZT Dupd Z , (6.8)

where we set

Dupd = D + GS1S
T
1 G − DS1(S

T
1 DS1)

−1ST1 D. (6.9)

Then, by using the Sherman-Morrison-Woodbury formula, we have

D−1
upd = S1S

T
1 + (I − S1S

T
1 G)D−1(I − GS1S

T
1 ), (6.10)

which implies that Dupd is SPD. This concludes the proof. ��

The unit eigenvalues of the preconditioned matrix Pupd H , in view of Theorem 3.1,
are those of

(ZT GZ)w = λ(ZT (D + � − �)Z)w, (6.11)

where Z ∈ R
n×(n−m) spans the nullspace of A.

Following [8] the following results on the eigenvalue distribution of Pupd H can be
proved:

Theorem 6.2 Let Pupd be the matrix in (6.5). Then Pupd H has an eigenvalue at 1 with
multiplicity at least 2m + q.

The next theorem shows that the nonunit extremal eigenvalues of D−1
updG are bounded

by the extremal eigenvalues of D−1G. Thus, byTheorem3.1,we expect the application
of Pupd to H to yield better spectral properties than the application of P .

Theorem 6.3 Let Dupd be as in (6.9), then any eigenvalue of D−1
updG satisfies

min
{
λmin(D

−1G), 1
}

≤ λ(D−1
updG) ≤ max

{
λmax (D

−1G), 1
}

.

Proof See [8]. ��

We defer a discussion on the choice of columns of matrix S in Sect. 7.3.
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Table 1 Characteristics of the test problems. L is the Cholesky factor of AD−1AT

Problem Type n m nz(A) nz(L)

CVXQP3 QP 20000 15000 44997 869197

CVXQP3N QP 20000 15000 104983 94015382

SQP2500_2 QP 4500 7000 52319 1909275

LP-NUG-20 LP 72600 15280 304, 800 82204872

LP-NUG-30 LP 72600 15240 1567800 out of memory

7 Numerical results

Extensive numerical results regarding all the proposed inexact block precondition-
ers can be found in [8, 11–13]. We will briefly report some examples in which the
advantages for the proposed inexact CP variants are evident. The problems we will
consider, whose characteristics are reported in Table 1, are taken from the CUTEst
[37] collection or they are modifications of them.

7.1 Inexact jacobian

In the definition of preconditioner MI J we used the following dropping rule to deter-
mine matrix E :

ei j =
{
ai j if |ai j | < drop · ‖A j‖ and |i − j | > nband

0 otherwise

where with A j we denote the j th column of A.
In other words, we drop an element from matrix A if it is below a prescribed

tolerance and outside a fixed band. The first requirement prevents ‖E‖ from becoming
too largewith consequent going away of the eigenvalues from the unity (see the bounds
in Theorem 4.1). The second requirement attempts to control the fill-in of AAT and
hence of its Cholesky factor L.

The following results refer to the runs on an Intel Xeon PC 2.80 GHz with 2 GB
RAM of a pure FORTRAN version of the HOPDM code [35], with the g77 compiler
and the -O4 option.We solved the SQP2500_2 problem using both the exact CP (with
PCGas the inner solver) andwith the Inexact JacobianConstraint Preconditioner (IJCP
– in combination with QMRs [32]).

The results are reported in Table 2 which shows the impressive gain in terms of
CPU time provided by the inexact preconditioner. The number of inner iterations are
(clearly) larger using IJCP, however the extreme sparsity of the preconditioner reduces
considerably the cost of a single iteration.

To show how the drop and nband values may affect the distribution of the eigen-
values of M−1

I J H , we have plotted in Fig. 1 all the eigenvalues of the preconditioned
matrix on the complex plane. In the “no-drop” case (exact constraint preconditioner),
the eigenvalues are all real (the ones are 4007 > 2m = 4000, as expected). With
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Table 2 Performance of the proposed preconditioner with optimal combination of the parameters vs PCG
preconditioned with exact CP for problem SQP2500_3

Solver itmax tol nband drop CPU nnz(E) nnz(L) Its LinIt

PCG (CP) 20 1.e-2 120.37 1909275 19 499

QMRs (IJCP) 50 1.e-2 10 1.0 6.11 49413 37 20 1740

Fig. 1 Distribution of the eigenvalues of M−1
I J H in the complex plane for problem sqp2500_2 with

different combinations of the parameters nband,drop

E �= 0, the number of unit eigenvalues is smaller but still remains important. Increas-
ing thedrop parameter, also |ε| increases, but the real part of eigenvalues still remains
bounded away from zero.

This is also shown in Table 3, where we report the number of unit eigenvalues, the
maximum distance from the unity (|ε|, see Theorem 4.1), and the smallest real part of
all the eigenvalues.
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Table 3 Spectral properties of
the preconditioned matrices for
problem sqp2500_2

nband drop p nnz(E) ones |ε| min{�(λ)}
∞ 0 0 0 4007 0.33 0.79

100 0.01 909 1042 2005 0.33 0.79

10 0.10 1996 12534 1551 1.64 0.23

100 0.25 2000 30157 1550 5.08 0.04

7.2 Inexact NE preconditioner

The experiments reported in this Section were conducted on a PC with a 2.2GHz Intel
Core i7 processor (hexa-core), 16GB RAM The MATLAB version used was R2019a.
We set the tolerance for the PCG/MINRES relative residual to 10−4 and 100 (300) the
maximum number of PCG (MINRES) iterations.

7.2.1 Low-rank updates and dynamic refinement

At each IP iterationwe check the number of non-zeros of the preconditioner used in the
previous iteration. If this number exceeds some predefined constant (depending on the
number of constraints m), we perform certain low-rank updates to the preconditioner,
to ensure that its quality is improved, without having to use very much memory. In
such a case, the following tasks are performed as sketched in Algorithm LRU-0. Then,
at every Krylov iteration, the computation of the preconditioned residual r̂ = M−1r
requires the steps outlined in Algorithm LRU-1.

Algorithm LRU-0 Low-Rank Updates-0: Before the Krylov Solver Iteration
Compute the p rightmost (approximate) eigenvectors vm , . . . , vm−p+1 of HNEv = λMNEv.
Set V = [

vm . . . vm−p+1
]

Compute Z = HNEV ; T = V T Z;  = T−1.

Algorithm LRU-1 Low-Rank Updates-1: Computation of r̂ = M−1r

w = (V T r).
z = r − Zw.
Solve MNE t = z.
u = (ZT t).
r̂ = V (νw − u) + t .

In our implementation, the first step of Algorithm LRU-0 is performed using the
restarted Lanczos method through the inbuilt MATLAB function eigs, requesting
1-digit accurate eigenpairs. We finally remark that a good approximation of the largest
eigenvalues of the preconditionedmatrix could be extracted for free [9] during the iter-
ative solution of the correction linear system and used them to accelerate the predictor
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Table 4 Results of the MNE
preconditioner for LP-NUG
problems

Problem CPU(s.) Iterations

Outer Inner

LP-NUG-20 132.41 17 785

LP-NUG-30 2873.67 22 1141

Table 5 CPU times and number of linear iterations for the various preconditioners at IP iteration #12 for
problem LP-NUG-20

CPU(eigs) Predictor Corrector CPU tot

Its CPU Its CPU

No tuning 95 10.71 95 11.10 21.81

LR (5, 0.1) 2.39 79 9.51 78 9.59 21.49

LR (10, 0.1) 3.00 69 8.14 67 7.64 18.78

LR (20, 0.1) 5.98 64 7.79 63 7.85 22.62

LR (20, 10−3) 9.59 64 7.79 63 7.85 26.23

linear system by the low-rank correction. This approach, would save on the cost of
computing eigenpairs but would provide acceleration in the second linear system only.

The quality of both preconditioners in (5.6) and (5.5) depends heavily on the quality
of the approximation of the normal equations. If the Krylov method converged fast in
the previous IP–PMM iteration (compared to themaximum allowed number of Krylov
iterations), while requiring a substantial amount of memory, then the preconditioner
quality is lowered (i.e.Ck+1 > Ck). Similarly, if the Krylovmethod converged slowly,
the preconditioner quality is increased (i.e.Ck > Ck+1). If the number of non-zeros of
the preconditioner is more than a predefined large constant (depending on the available
memory), and the preconditioner is still not good enough, we further increase the
preconditioner’s quality (i.e. we decrease Ck), but at a very slow rate. This behavior
is observed in practice very close to the IP convergence especially on large scale
problems.

To show the efficiency of this variant we first present in Table 4 the results of the
MNE preconditioner for the LP-NUG-20 and LP-NUG-30 problems.

From this table we can see that the MNE preconditioner (plus low-rank correction)
is able to keep very low the number of inner iterations in both problems. Note that
the largest instance can not be solved by an exact Constraint Preconditioner. In order
to clarify the benefit of the low-rank (LR) updates in Table 5 we report the results in
solving these linear systems with the low-rank strategy and different accuracy/number
of eigenpairs (LR(p,tol) meaning that we approximate p eigenpairs with eigswith
a tolerance tol). The best choice, using p = 10 and 0.1 accuracy, improves the MNE

preconditioner both in terms of linear iterations and total CPU time.
To summarize the comparison of the two approaches, we include Fig. 2. It contains

the performance profiles of the two methods, over the 26 largest linear programming
problems of the QAPLIB, Kennington, Mittelmann, and Netlib libraries, for which
at least one of the two methods was terminated successfully. In particular, in Fig. 2a
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(a) (b)

Fig. 2 Performance profiles for large-scale linear programming problems

we present the performance profiles with respect to time, while in Fig. 2b we show
the performance profiles with respect to the number of IPM iterations. IP–PMM with
factorization is represented by the green line (consisting of triangles), while IP–PMM
with PCG is represented by the blue line (consisting of stars).

As one can observe, IP–PMM with factorization was able to solve only 84.6%
of these problems, due to excessive memory requirements (namely, problems LP-
OSA-60, LP-PDS-100, RAIL4284, LP-NUG-30 were not solved due to insufficient
memory).As expected, however, it converges in fewer iterations formost problems that
are solved successfully by bothmethods.Moreover, IP–PMMwithPCG is able to solve
every problem that is successfully solved by IP–PMMwith factorization. Furthermore,
it manages to do so requiring significantly less time, which can be observed in Fig. 2a.
Notice that we restrict the comparison to only large-scale problems, since this is the
case of interest.

Finally, with regards to convex quadratic problems, the IP–PMM method with
MINRES as the inner iterative solver and MAS as the preconditioner was able to solve
more than 99% of theMaros–Mészáros test set [49], which is comprised of 127 convex
quadratic programming problems. See [11] for details.

7.3 Low-rank update of an exact CP

To experimentally analyze this CP variant, we first focus on the choice of the matrix S
needed for building Pupd for the k-thKKT system in the sequence under consideration,
by suggesting a number of choices:
BFGS-P. k-th iteration is obtained by setting its columns equal to the he first q H -
orthonormal directions constructed during the PCG solution of IP step k − 1. Since
we have experimentally verified that the PCG directions can rapidly lose the property
of being mutually Hk−1-orthogonal when Hk−1 is highly ill conditioned, we perform
a selective reorthogonalization of the directions forming S, during their computation.
More precisely, pi is Hk−1-reorthogonalized against pl , with l < i , whenever needed.
We now present a different choice of S, which deserves a detailed explanation.
BFGS-C. Matrix S used to build Pupd for the KKT system at the k-th iteration is
obtained by setting its columns equal to the first q H -orthonormal directions con-
structed during the PCG solution of the current IP step k. The suffix -C in BFGS-C
refers to the fact that PCG directions from the current system are used to define S. As

123



ANNALI DELL’UNIVERSITA’ DI FERRARA (2022) 68:337–368 361

Fig. 3 CVXQP3 test problem, KKT system at the 24-th IP iteration: normalized scalar products (7.1) for
BFGS-C and FIXED (the latter with and without orthogonalization) and l = 50.

for BFGS-P, a selective Hk-reorthogonalization of the directions is performed in the
first q PCG iterations.

It is easy to show [8] that in exact arithmetic the BFGS-C procedure is equiva-
lent to PCG with preconditioner P . Thus, BFGS-C may appear completely useless.
Nevertheless, it is useful in finite-precision arithmetic. Freezing the preconditioner P
computed at a certain IP iteration and using it in subsequent IP iterations yields direc-
tions which rapidly and dramatically lose orthogonality. BFGS-C appears to mitigate
this behavior, improving the performance of PCG.

In order to illustrate this situation, we discuss some numerical results obtained with
one of the 35 KKT systems arising in the solution, by an IP procedure, of the CVXQP3
convex QP problem, with dimensions n = 20000 and m = 15000 (see Sect. 7 for the
details).

We considered PCG with the following preconditioning procedures:

• BFGS-C with q = 50 and seed CP recomputed every 6 IP iteration;
• CP recomputed from scratch every sixth IP iteration and frozen in the subsequent
five iterations (henceforth this is referred to asFIXED preconditioning procedure).

In order to make a fair comparison, we performed a selective reorthogonalization of
the first 50 directions during the execution of PCG with FIXED preconditioning. We
also run PCGwith FIXED preconditioning without any reorthogonalization.We focus
on the KKT system at the 24-th IP iteration, hence the seed preconditioner comes from
the 19-th IP iteration.
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Figure 3 shows the normalized scalar products

pTj Hpl

‖p j‖‖Hpl‖ , l = 50, j > l, (7.1)

for BFGS-C and both versions of the FIXED procedure. In the latter case, we observe
a quick loss of orthogonality with respect to the first q directions, even when the
reorthogonalization procedure is applied. Conversely, BFGS-C appears to better pre-
serve orthogonality. As a consequence, the number of PCG iterations corresponding
to BFGS-C is smaller than in the other cases (122 iterations for BFGS-C vs 176 and
196 for FIXED with and without reorthogonalization, respectively).

Applying the FIXEDpreconditioning approachwith a selective reorthogonalization
of each PCG direction with respect to the first 50 ones we achieved a worst PCG
behavior than the one obtained with the BFGS-C strategy. This observation led us to
consider a further preconditioning procedure.
DOUBLE.We apply q PCG iterations to the current system Hku = dk by using a CP,
say P(0)

upd , built with the BFGS-P procedure, i.e., by updating a seed preconditioner P
with the first q normalized PCG directions obtained at the (k−1)-st IP iteration. Then
we restart PCG from the last computed iterate uq , with the following preconditioner:

Pupd = SC (SC )T + (I − SC (SC )T Hk)P
(0)
upd(I − HkS

C (SC )T ), (7.2)

where SC contains the normalized directions computed in the first q PCG iterations. As
for the previous preconditioning procedures, a selective reorthogonalization is applied
to the PCG directions used to build P(0)

upd and to those used for Pupd .
The sequences ofKKT systems have been obtained by running the Fortran 95 PRQP

code, which implements an infeasible inexact potential reduction IP method [18, 20,
25] using as the tolerances on the relative duality gap and the relative infeasibilities
10−6 and 10−7, respectively. Within PRQP, the PCG iterations have been stopped as
soon as

‖r ( j)‖ ≤ τ, τ = min{max{τ1, 10−8}, 10−2‖r (0)‖},

where τ1 depends on the duality gap value at the current IP iteration (see [19] for the
details). A maximum number of 600 PCG iterations has been considered. The pre-
conditioning procedures FIXED, BFGS-P, BFGS-C and DOUBLE have been applied
with different values of s and q, while the PCG solver has been also applied with the
CP recomputed from scratch for each KKT system (RECOM).

The code has been implemented in Fortran 95 and run on an Intel Core i7 CPU (2.67
GHz) with 6 GB RAM and 8 MB cache. The factorization of the Schur complement
has been performed by the MA57 routine from HSL Mathematical Software Library
(http://www.hsl.rl.ac.uk).

In Table 6 we report some results concerning the application of the preconditioning
procedures, including the FIXED one, to CVXQP3N: the cumulative number of PCG
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Table 6 Results for problem CVXQP3N (number of KKT systems in the sequence: 36)

Prec s qmax PGC iters Tf-Schur Ta-seed Tupd Ttot
RECOM – — 513 2421.51 46.57 – 2469.18

FIXED 6 0 3005 403.75 258.20 – 665.58

6 20 2931 403.83 251.26 0.28 658.92

6 50 2724 403.77 233.85 1.05 642.02

BFGS-P 6 20 2350 404.40 202.80 5.49 615.20

6 50 2053 404.04 177.44 11.21 594.95

BFGS-C 6 20 2223 403.89 193.07 2.93 602.81

6 50 2132 404.06 185.26 5.06 597.21

DOUBLE 6 20 1959 404.16 171.36 6.29 584.49

6 50 1796 403.54 155.93 12.25 575.19

Fig. 4 Problem CVXQP3N, KKT system at IP iteration #24: PCG convergence profile for the different
updates and with s = 8 and qmax = 50. The seed preconditioner comes from the IP iteration #17

iterations (PGC iters), the relevant CPU times (in seconds), namely: for the factoriza-
tion of the Schur complement (Tf-Schur), for the application of the seed preconditioner
P within PCG (Ta-seed), for the preconditioner updates and the reorthogonalization
steps (Tupd), and the total times (Ttot).

The factorization of the Schur complement is rather expensive, and the recomputa-
tion of the CP from scratch produces by far the largest execution time, even if it yields
a much smaller number of PCG iterations than the other preconditioning procedures.
Furthermore, the updating procedures generally produce a significant reduction of the
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number of iterations with respect to the FIXED one, and hence smaller execution
times. BFGS-C and DOUBLE turn out to be the most efficient procedures.

The PCG convergence histories for the KKT systems at the 24-th IP iteration, with
the updating procedures and the FIXED ones for s = 8 and qmax = 50, clearly show
how each procedure compares with the others in terms of PCG iterations (see Fig. 4):
the best preconditioning procedure is DOUBLE, followed by BFGS-P, BFGS-C and
then FIXED. This is a general behavior, although sporadic failures have been observed
with BFGS-P and DOUBLE in cases where BFGS-C and FIXED work.

8 Concluding remarks

We have presented three inexact variants of the Constraint Preconditioner for solving
Convex Linear and Quadratic Programming Problems of very large size. Any of these
procedures aims at reducing the complexity of the exact factorization of the CP, often
prohibitive for realistic problems. We list below the pros and cons of these approaches
to help driving the reader to the best choice for the problem at hand.

• Inexact Jacobian. This preconditioner is suggested when the coefficients in the
matrix of constraint display variation of magnitudes and/or the matrix displays
some band structure. Solvers like PCGorMINRES can not be used, and theoretical
convergence estimates are problematic due to the presence of complex eigenvalues
in the preconditioned matrix.

• Inexact NE preconditioner. This is a promising variant which drives the sparsity
of the of the Cholesky factor of the (approximate) Schur complement matrix by
means of a sequence, {Ck}. At each IP iteration k, Ck is defined dynamically as a
function of the fill-in and the number of iterations at previous iteration k−1.Krylov
solvers such as PCG (Linear and Quadratic separable Problems) or MINRES
(Quadratic Problems) are allowed.

• Low Rank updates of an exact CP. This method can be employed whenever the
exact CP factorization is expensive but applicable. It reduces considerably themain
cost of the overall algorithm, which is the factorization of the Schur complement.
The PCG is allowed also for the augmented system since updated CPs are still CPs
(see Theorem 3.1).
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