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Abstract
The main purpose of this paper is pedagogical. Despite its importance, all proofs of
the correctness of Strassen’s famous 1969 algorithm to multiply two 2 × 2 matrices
with only seven multiplications involve some basis-dependent calculations such as
explicitly multiplying specific 2 × 2 matrices, expanding expressions to cancel terms
with opposing signs, or expanding tensors over the standard basis, sometimes involving
clever simplifications using the sparsity of tensor summands. This makes the proof
nontrivial to memorize and many presentations of the proof avoid showing all the
details and leave a significant amount of verifications to the reader. In this notewegive a
short, self-contained, basis-independent proof of the existence of Strassen’s algorithm
that avoids these types of calculations. We achieve this by focusing on symmetries
and algebraic properties. Our proof can be seen as a coordinate-free version of the
construction of Clausen from 1988, combined with recent work on the geometry of
Strassen’s algorithm by Chiantini, Ikenmeyer, Landsberg, and Ottaviani from 2016.
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1 Introduction

The discovery of Strassen’s matrix multiplication algorithm [28] was a breakthrough
result in computational linear algebra. The study of fast (subcubic) matrix multiplica-
tion algorithms initiated by this discovery has become an important area of research
(see [3] for a survey and [21] for the currently best upper bound on the complex-
ity of matrix multiplication). Fast matrix multiplication has countless applications
as a subroutine in algorithms for a wide variety of problems, see e.g. [7, §16] for
numerous applications in computational linear algebra. In practice, algorithms more
sophisticated than Strassen’s are rarely implemented, but Strassen’s algorithm is used
for multiplication of large matrices (see [13,19,25] on practical fast matrix multipli-
cation).

The core of Strassen’s result is an algorithm for multiplying 2 × 2 matrices with
only 7multiplications instead of 8. It is a bilinear algorithm, whichmeans that it arises
from a decomposition of the form

XY =
7∑

k=1

uk(X)vk(Y )Wk, (�)

where uk and vk are cleverly chosen linear forms on the space of 2×2matrices andWk

are seven explicit 2 × 2 matrices. Because of this structure it can be applied to block
matrices, and its recursive application results in an algorithm for the multiplication of
two n × n matrices using O(nlog2 7) arithmetic operations (see [7, §15.2] or [3] for
details).

Because of the great importance of Strassen’s algorithm, our goal is to understand
it on a deep level. In Strassen’s original paper, the linear forms uk , vk , and the matrices
Wk are given, but the verification of the correctness of the algorithm is left to the reader.
Unfortunately, such a description does not yield many further immediate insights.

Shortly after Strassen’s paper, Gastinel [15] published a proof of the existence of
decomposition (�) using simple algebraic transformations that is much easier to follow
and verify. Many other papers provide alternative descriptions of Strassen’s algorithm
or proofs of its existence. Brent [4] and Paterson [26] present the algorithm in a graph-
ical form using 4×4 diagrams indicating which elements of the twomatrices are used.
A more formal version of these diagrams are matrices of linear forms, which are used,
for example, by Fiduccia [14] (the same proof appears in [29]), Brockett and Dobkin
[5] and Lafon [20]. Makarov [22] gives a proof that uses ideas of Karatsuba’s algo-
rithm for the efficient multiplication of polynomials. Büchi and Clausen [6] connect
the existence of Strassen’s algorithm to the existence of special bases of the space of
2 × 2 matrices in which the multiplication table has a specific structure (their results
are more general and apply not only to matrix multiplication). Alexeyev [1] describes
several algorithms for matrix multiplication as embeddings of the matrix algebra into
a 7-dimensional nonassociative algebra with a special properties.

Sometimes the clever use of sparsity makes a proof rather short (e.g. [14]), but
usually the verification of these proofs requires simple but somewhat lengthy compu-
tations: expansion of explicit decompositions in some basis, multiplication of several
matrices or following chains of algebraic transformations in which careful attention
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to details is required. To obtain a more conceptual proof of the existence of Strassen’s
algorithm, we do not focus on the explicit algorithm, but on the algebraic properties
of the 2 × 2 matrices, their transformations and symmetries of Strassen’s algorithm.
It is well-known that the decomposition (�) is not unique. Given one decomposition,
we can obtain another one by applying the identity

XY = A−1
[
(AXB−1)(BYC−1)

]
C

and using the original decomposition for the product in the square brackets. Alterna-
tively, we can talk about 2× 2 matrices as linear maps between 2-dimensional vector
spaces. Any choice of bases in these vector spaces gives a new bilinear algorithm.
De Groote [12] proved that the algorithm with seven multiplications is unique up
to these transformations (this result is also announced without a proof in [23], see
also [24]). Thus, Strassen’s algorithm is unique in this sense and there should be a
coordinate-free description of this algorithm which does not use explicit matrices.
One such description is given in [10] and the proof of its correctness uses the fact
that matrix multiplication is the unique (up to scale) bilinear map invariant under the
transformations described above. This is a nontrivial fact which requires representa-
tion theory to prove. Moreover, the verification of the correctness in [10] is left to the
reader.

Symmetries of Strassen’s algorithm are also useful for its understanding. Clausen
[11] gives a description of Strassen’s algorithm in terms of special bases, as in [6], and
notices that the elements of these bases form orbits under the action of the symmetric
group S3 on the space of 2×2 matrices defined via conjugation with specific matrices,
i. e., Strassen’s algorithm is invariant under this action. Clausen’s construction is also
describled in [7, Ch.1]. Grochow andMoore [17,18] generalize Clausen’s construction
to n×n matrices using other finite group orbits. Another symmetry is only apparent in
the trilinear representation of the algorithm: the decompositions (�) are in one-to-one
correspondence with decompositions of the trilinear form tr(XY Z) of the form

tr(XY Z) =
7∑

k=1

uk(X)vk(Y )wk(Z)

where uk , vk and wk are linear forms. The decomposition corresponding to Strassen’s
algorithm is then invariant under the cyclic permutation ofmatrices X ,Y , Z . This sym-
metry is exploited in the proof of Chatelin [9], which uses properties of polynomials
invariant under this symmetry. He also notices the importance of a matrix which is
related to the S3 symmetry discussed above. The symmetries of Strassen’s algorithm
are explored in detail in [8,10]. Several earlier publications note their importance
[16,27]. The paper [2] explores symmetries of algorithms for 3 × 3 matrix multipli-
cation.

In this paper we provide a proof of Strassen’s result which is

• coordinate-free we do not use explicit matrices, which allows us to focus on the
algebraic properties required to prove the correctness of the algorithm.We avoid all
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tedious explicit calculations, in particular any expansions of expressions and any
verification of explicit sign cancellations. Our proof can be seen as a coordinate-
free version of Clausen’s construction.

• elementary our proof uses only simple facts from basic linear algebra and does not
require knowledge of representation theory. This is also why we do not use tensor
language. Proofs from [10] and [18] are based on more complicated mathematics
and may offer other insights.

Formally, the result that we prove is the following.

Theorem 1 (Strassen [28]) Fix any field F. There exist fourteen linear forms
u1, . . . , u7, v1, . . . , v7 : F2×2 → F and seven matrices W1, . . . ,W7 ∈ F

2×2 such
that for all pairs of 2 × 2 matrices X and Y the product satisfies

XY =
7∑

k=1

uk(X)vk(Y )Wk . (�)

2 Preliminaries from linear algebra

If u1, . . . , un and v1, . . . , vm form bases of the spaces of column vectors Fn×1 and
row vectors F1×m respectively, then the nm products of the form uiv j form a basis of
the space of matrices Fn×m

The trace tr(A)of a squarematrix A is the sumof its diagonal entries. If tr(A) is zero,
then the matrix A is called traceless. Taking the trace of a product of (rectangular)
matrices is invariant under cyclic shifts: tr(A1A2 · · · An) = tr(A2 · · · An A1). As a
consequence, the trace of a matrix is invariant under conjugations: tr(B−1AB) =
tr(ABB−1) = tr(A). Another implication is that if u is a column vector and vT is a
row vector, then vT u = tr(vT u) = tr(uvT ).

The characteristic polynomial of a 2 × 2 matrix A is λ2 − tr(A)λ + det(A). The
Cayley—Hamilton theorem says that substituting A for λ yields the zero matrix.

3 Rotational symmetry

In this section we collect some standard facts about rotation matrices. We think of the
2×2 matrix D as a rotation of the plane by 120◦, but to make our approach work over
every field we use a more algebraic definition for D.

Let D have determinant 1 and trace −1, that is, D has characteristic polynomial
λ2 + λ + 1. We assume that D is not a multiple of the identity id (this is implicitly

satisfied if the characteristic is not 3). For example, we could choose D =
[
0 −1
1 −1

]
,

the matrix that cyclically permutes the three vectors

(
1
0

)
,

(
0
1

)
,

(−1
−1

)
.

Claim 2 For the matrix D we have D3 = id, D−1 = D2, D−2 = D. Additionally, D
has the following properties: id+D + D−1 = 0 and tr(D−1) = −1.
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Proof The characteristic polynomial of D is λ2 + λ + 1. By the Cayley—Hamilton
theorem D2 + D + id = 0. Multiplying by D we obtain D + D2 + D3 = 0 =
id+D + D2 and hence D3 = id. Consequently, D−1 = D2 and D−2 = D. Using
D−1 = D2 we get id+D+D−1 = 0. This implies tr(D−1) = − tr(id)−tr(D) = −1.

��
For every column vector u define u⊥ as the row vector satisfying conditions

u⊥u = 0 and u⊥Du = 1. If u is not an eigenvector of D, then u and Du are linearly
independent, so u⊥ is uniquely defined. If, on the other hand, u is an eigenvector of
D, the two conditions are inconsistent and u⊥ does not exist.

We fix a vector u that is not an eigenvector of D and define u⊥ as above. In our

example we could choose u =
(
1
0

)
, which is not an eigenvector of

[
0 −1
1 −1

]
.

A first simple observation relates u⊥ and (Du)⊥:

Claim 3 u⊥D−1 = (Du)⊥.

Proof We need to verify the two defining properties for (Du)⊥. We have (u⊥D−1)

(Du) = u⊥u = 0 and (u⊥D−1)D(Du) = u⊥Du = 1 as required. ��
The following observation complements the fact that u⊥Du = 1.

Claim 4 u⊥D−1u = −1.

Proof Using Claim 2 we have id+D + D−1 = 0 and thus

u⊥u + u⊥Du + u⊥D−1u = 0.

Since u⊥u = 0 and u⊥Du = 1, the claim follows. ��

4 Sevenmultiplications suffice

In this section we apply structural properties from Sect. 3 to prove Theorem 1. We set
M := uu⊥. Clearly tr(M) = u⊥u = 0 and we obtain the following identities that can
be used to simplify products of M , D, and D−1:

Claim 5 M2 = 0 and MDM = M and MD−1M = −M.

Proof

M2 = (uu⊥)(uu⊥) = u(u⊥u)u⊥ = 0.

MDM = (uu⊥)D(uu⊥) = u(u⊥Du)u⊥ = uu⊥ = M .

MD−1M = (uu⊥)D−1(uu⊥) = u(u⊥D−1u)u⊥ = −uu⊥ = −M,

where in the last line we used Claim 4. ��
By Claim 2, conjugation with D is a map of order 3 on the vector space of all

2 × 2 matrices, i.e. for any matrix A there is a triple of conjugates A �→ D−1AD �→
DAD−1 �→ A. Moreover, if A is traceless, then so are its conjugates.
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Claim 6 The matrices M, D−1MD, and DMD−1 form a basis of the vector space of
traceless matrices.

Proof Since M is traceless, its conjugates are also traceless. Hence it is enough to
prove that M , D−1MD and DMD−1 are linearly independent.

Since u is not an eigenvector of D, the vectors u and Du are linearly independent and
thus form a basis of the space of column vectors. The row vectors u⊥ and u⊥D−1 =
(Du)⊥ (Claim 3) are orthogonal to u and Du, respectively. Therefore they form a
basis of the space of row vectors. Thus, the four matrices

u · u⊥ = M, u · u⊥D−1 = MD−1, Du · u⊥ = DM, Du · u⊥D−1 = DMD−1

obtained as products of these basis vectors form a basis of the space of 2×2 matrices.
The matrices M and DMD−1 are contained in this basis. Adding up all four matrices,
we get (id+D)M(id+D−1), which can be simplified to (−D−1)M(−D) = D−1MD
usingClaim2. Therefore thematricesM , DMD−1, D−1MD are linearly independent.

��
Since D and D−1 have trace −1 	= 0 (Claim 2), adding D or D−1 to

the basis in Claim 6 yields two bases for the full space of 2 × 2 matrices:
{D, M, D−1MD, DMD−1} and {D−1, M, D−1MD, DMD−1}.

Using the properties D2 = D−1, D−2 = D andM2 = 0 fromClaim 2 and Claim 5,
we can write down the multiplication table with respect to these two bases. We further
simplify it using the identities MDM = M and MD−1M = −M from Claim 5.

Proof of Theorem 1 Notice that in the body of the table only (scalar multiples of) 7
matrices are used, and the entries are aligned in such a way that two occurrences
of the same matrix are either in the same row or in the same column. At this point
we are done proving Theorem 1, because the existence of such a pattern gives a
simple way to construct a matrix multiplication algorithm as follows. To multi-
ply matrices X and Y , represent them in the bases {D, M, D−1MD, DMD−1} and
{D−1, M, D−1MD, DMD−1}, respectively:

X = x1D + x2M + x3D
−1MD + x4DMD−1

Y = y1D
−1 + y2M + y3D

−1MD + y4DMD−1 (4.1)
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Note that the xi are linear forms in the entries of X and the y j are linear forms in
the entries of Y . We expand the product XY and group together summands according
to the table:

XY = x1 × y1 × id
+ x2 × (y1 + y4) × MD−1

+ x3 × (y1 + y2) × D−1M
+ x4 × (y1 + y3) × DMD
+ (x1 − x4) × y2 × DM
+ (x1 − x2) × y3 × MD
+ (x1 − x3) × y4 × D−1MD−1

↑ ↑ ↑
uk(X) vk(Y ) Wk

This finishes the proof. ��

Remark Taking the trace in (4.1) and using the fact that M and its conjugates are
traceless, we see that tr(X) = x1 tr(D) = −x1, and tr(Y ) = −y1. Thus the first of the
7 summands is tr(X) tr(Y ) id.
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