Mycological Progress (2020) 19:1001-1016 g
https://doi.org/10.1007/s11557-020-01599-z DGfM

ORIGINAL ARTICLE m

Check for
updates

Multilocus phylogeny- and fruiting feature-assisted delimitation
of European Cyclocybe aegerita from a new Asian species complex
and related species

Roman A. Frings' - Jose G. Macia-Vicente? - Sandra BuBe' - Adéla Cmokova? - Harald Kellner* - Martin Hofrichter*
Florian Hennicke '

Received: 4 April 2020 /Revised: 17 June 2020 /Accepted: 18 June 2020
© The Author(s) 2020

Abstract

Cyclocybe aegerita (synonym: Agrocybe aegerita) is a widely cultivated edible and reportedly almost cosmopolitan mushroom species
that serves as a model fungus for basidiome formation and as producer of useful natural products and enzymes. Focusing on strains from
different continents, here, we present a phylogenetic analysis of this species and some adjacent taxa that employs four phylogenetic
markers. In addition, we tested the strains’ capability to fructify on agar media. Our analysis reveals that “C. aegerita sensu lato” splits up
into the following two well-supported monophyletic geographic lineages: a European clade and an Asian clade. The European one is
closely associated with the Chinese species Cyclocybe salicaceicola. In contrast, the Asian lineage, which we preliminarily designate as
Cyclocybe chaxingu agg., may comprise several species (species complex) and clusters with the Pacific species Cyclocybe parasitica
(New Zealand). In addition, fruiting properties differ across C. aegerita and its Asian and Pacific relatives; however, strains from the
Asian clade and C. parasitica tend to form larger basidiomes with relatively big caps and long stipes and strains from the European clade
exhibit a more variable fruiting productivity with the tendency to form more basidiomes, with smaller caps and shorter stipes. Moreover,
some strains showed individual fruiting patterns, such as the preference to fruit where they were exposed to injuring stimuli. In
conclusion, the delimitation of the newly delimited Asian species complex from our multilocus phylogeny of “C. aegerita sensu
lato”, which is supported by phenotypic data, depicts an exemplary case of biogeographic diversity within a previously thought
homogeneous species of near worldwide distribution.
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Introduction

The Black Poplar Mushroom Cyclocybe aegerita (V. Brig.)
Vizzini (synonym: Agrocybe aegerita (V. Brig.) Singer) is an
agaric that causes a moderate white-rot by chiefly degrading dead
wood of deciduous trees, especially in Populus and Salix spp.
(Esser et al. 1974; Nauta 2005; Uhart and Albert6é 2007). With
respect to its practical usage, C. aegerita represents an important
fungal species cultivated as a choice edible mushroom in many
countries, which fruits in consecutive flushes on its spawn sub-
strate (Uhart et al. 2008). It also serves as a model basidiomycete
to study basidiome (fruiting body, basidiocarp, mushroom) for-
mation (Esser et al. 1974; Labarére and Noél 1992; Herzog et al.
2016) and to produce biotechnologically relevant enzymes of the
UPO-type (unspecific peroxygenases, EC 1.11.2.1; Hofrichter
et al. 2015, 2020), as well as a source of useful natural products
like bioactive terpenoids and ribotoxins (Zhao et al. 2003; Ngai
et al. 2005; Kogl et al. 2007; Hennicke et al. 2019; Surup et al.
2019; Tayyrov et al. 2019). By using the genome sequence of
C. aegerita AAE-3 (Gupta et al. 2018), a molecular genetic
toolset has recently been developed, now allowing functional
genetic approaches to this fungus (Herzog et al. 2019).

Based on single-locus DNA sequence information coding
for ribosomal RNA gene and spacer regions, it was shown
that — in contrast to the type species of the genus Agrocybe
Fayod, Agrocybe praecox that is associated to the
Strophariceae Singer and A.H. Sm. 1946 — C. aegerita is closer
to members of the Tubariaceae Vizzini 2008 (He et al. 2019).
Thus, it has been moved from Agrocybe to the resurrected
genus Cyclocybe Velen. (Vizzini et al. 2014), its currently valid
name being Cyclocybe aegerita (V. Brig.) Vizzini (Nauta 2005;
Vizzini et al. 2014; He et al. 2019; Surup et al. 2019). Apart
from C. aegerita, Vizzini et al. (2014) also moved four other
Agrocybe species to Cyclocybe because of their relatedness to
C. aegerita based on their rDNA data. This includes the
Chinese species Agrocybe chaxingu Huang (Zhi 1991), a cul-
tivated mushroom in East Asia, which Vizzini et al. (2014),
however, not least due to interfertility of a Chinese strain with
a French one (Callac et al. 2011), discussed to potentially just
represent a morphotype of the European species. In conse-
quence, here, we address the species complex a priori by the
term “C. aegerita sensu lato”. Reclassification into Cyclocybe
was also applied to the species Cyclocybe salicaceicola (Zhu L.
Yang, M. Zang & X.X. Liu) Vizzini and the Pacific species
Cyclocybe parasitica (G. Stev.) Vizzini (Vizzini et al. 2014).
The former species was described from Yunnan (China), mor-
phologically differing from C. aegerita by a pale-coloured pi-
leus, decurrent lamellae, and a lack of chlamydospore produc-
tion in artificial culture according to Yang et al. (1993). The
latter species, C. parasitica, was originally described from New
Zealand as a pathogen of the plant genera Plagianthus and
Hoheria (Stevenson 1982). Eventually, Vizzini et al. (2014)
also reclassified Agrocybe erebia (Fr.) Kiihner ex Singer into
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Cyclocybe (as Cyclocybe erebia (Fr.) Vizzini & Matheny), a
plant litter-/soil-dwelling species, which was once grouped —
along its wood-decaying relative C. aegerita — into the subge-
nus Aporus Singer. Members of this subgenus of Agrocybe
exhibit basidiospores with an absent or inconspicuous germ
pore (Nauta 2005). Furthermore, C. aegerita and C. erebia,
form basidiomes with a well-developed annulus, and, accord-
ing to phylogenetic analyses based on single ribosomal RNA
gene and spacer region sequence data by Vizzini et al. (2014),
they ought to be closely related to each other, and to Cyclocybe
erebioides Angelini & Vizzini.

Gupta et al. (2018) first hypothesized that C. aegerita
strains from different continents of this reportedly almost cos-
mopolitan fungus (Labarére and Noél 1992; Stamets 1993;
Nauta 2005; Roca et al. 2009) may differ from each other.
In this context, a clarifying comprehensive phylogenetic anal-
ysis of strains of “Cyclocybe aegerita sensu lato” from differ-
ent continents as well as of other Cyclocybe species, based on
sequence information additional to the one of single ribosomal
RNA gene and spacer regions, such as the protein-coding
genes RPB2 and TEF' 1« (Matheny et al. 2006), is still lacking.
Such an approach is the more required since intragenomic
heterogeneity of spacer regions has been reported to be much
more variable than the average 0.1-3% (Smith et al. 2007;
Simon and Weiss 2008; Kovacs et al. 2011; Vydryakova
et al. 2012) in prominent Agaricomycotina taxa, such as
Amanita and Laetiporus where 10-15% variability was re-
corded (Lindner and Banik 2011; Hughes et al. 2018).

Fructification of C. aegerita on artificial media has been
repeatedly achieved with diverse strains in different settings
(Esser et al. 1974; Labarére and Noél 1992; Uhart and Albertod
2007; Uhart et al. 2008; Herzog et al. 2016). Thus, a charac-
terization of fruiting properties of geographically distant
strains of different Agrocybe and Cyclocybe species in a stan-
dardized fruiting setup, such as the one established by Herzog
et al. (2016), may complement a comprehensive phylogenetic
analysis on this species complex, by providing additional
morpho-physiological characteristics for species delimitation.

Thus, the aim of this work was to provide such a phyloge-
netic analysis including close relatives of “C. aegerita s.1.”,
i.e., C. erebia, C. parasitica, and C. salicaceicola, and a
robust assessment on their relatedness to C. aegerita.

Material and methods

Strains, culture maintenance, and assessment of
fruiting characteristics

For culture maintenance, Agrocybe and Cyclocybe spp. strains
were routinely propagated on 2% (w/v) malt extract agar
(MEA; 70167-500G, Sigma-Aldrich Chemie GmbH
Munich, Germany). For fruiting, 1.5% MEA was used. All
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Table 2 Modified fruiting setups in some strains of “Cyclocybe
aegerita sensu lato”

Strain Pre-induction Fruiting induction
temperature (°C) temperature (°C)
C. aegerita AAE-3 25 20
30 26
Cyclocybe sp. (“C. aegerita s.1.”) 25 20
SC960903 30 26
22 26
Cyclocybe sp. (“C. aegerita s.1.”) 25 20
MES02023 30 26
22 26

strains tested under the fruiting induction regime of Herzog
et al. (2016) in this study are listed in Table 1. Despite of
requests for strains of the Chinese species C. salicaceicola
(Zhu L. Yang, M. Zang & X.X. Liu) Vizzini from the authors
Chen et al. (2012, 2015, 2017), the handing over of such
material was refused. Cryo-stocking of all strains and fruiting
induction, with some modifications in single strains (Table 2),
were carried out as previously described (Herzog et al. 2016).
In each strain, fruiting was induced only when its vegetative
mycelium had fully colonized the agar. Each fruiting experi-
ment was repeated at least three times independently, each
comprising three replicates.

For statistical assessment of potential differences in their
basidiome sizes, mean values of cap diameter and stipe length
were calculated based on 30 basidiomes of the European strain
C. aegerita AAE-3 versus 30 basidiomes of Cyclocybe sp.
[HI392 from India. A two-sample Student #- test was then used
with the programme STATA/MP version 13.1 (StataCorp
LLC, College Station, TX, USA) infer about the presence of
statistically significant differences between the mean values of
cap diameter and stipe length of both strains.

To examine whether an individual strain produced its
basidiomes either randomly distributed or at defined spots
on the cultivation medium surface, basidiomes produced by
each strain were catalogued based on the position where they
emerged. Positions were assigned in relation to one half of the
surface of a 1.5% MEA, 90 mm-diameter Petri dish that was
subdivided into four different zones starting from the centre:
“centre”, “periphery”, and “edge”. The fourth zone is referred
to as “point of injury” and circumvents a 0.5 cm® hole in the
periphery zone which was punched-out from the vegetative
mycelium using a sterilized cork borer. A schematic represen-
tation of the zones is given in Fig. S1.

Nuclear state verification

To verify each strain’s dikaryotic state, micro-cultivation
chambers were assembled as described by Herzog et al.
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(2016). For each strain, a 2% MEA agar plug of 0.5 cm?
diameter overgrown by mycelium was inoculated on top of
a glass slide of each chamber and covered with a microscope
coverslip. Inoculated micro-cultivation chambers were incu-
bated at 25 °C in the dark until at least 1 cm of hyphal out-
growth became visible (5-10 days depending on the strain).
The dikaryotic state was verified by the presence of clamp
connections between hyphal segments of each strain.

Comparative assessment of basidiospore dimensions

Spore prints from mature basidiomes of selected strains were
prepared as described for C. aegerita AAE-3 in Herzog et al.
(2016). The mature basidiomes of these strains were grown in
the axenic fruiting setup of Herzog et al. (2016), except for
Cyclocybe sp. DSM 22459 which did not fruit in this fruiting
setup. To yield spore prints of this strain, basidiomes produc-
tion from spawn culture was applied. For that, a pre-culture
plate was prepared first by centrally inoculating a 1.5% MEA
plate followed by incubation at 25 °C in the dark for 14 days.
The fully colonized plate was then chopped into pieces with a
sterile scalpel and macerated for 15 s at maximum speed in
90 mL sterilized tap water using a T 25 digital Ultra-Turrax®
handheld homogenizer (IKA, Staufen, Germany) mounted
with an autoclaved disposable plastic dispersing element (S
25 D-14 G-KS, IKA). A 1 mL-aliquot of the homogenized
mycelium was then transferred into each of four 250 mL
Erlenmeyer flasks filled with 50 mL 2% malt extract liquid
medium supplemented with 2% corn meal (Alnatura
Produktions- und Handels-GmbH, Bickenbach, Germany)
and grown for three weeks at 160 rpm on an orbital shaker
at 24 °C. All four pre-cultures were poured into a mushroom
spawn bag. The autoclaved spawn medium consisted of 200 g
wheat straw supplemented with 20 g corn meal and 800 mL
dH,O in an autoclave bag. Colonization of the spawn bag took
place in darkness at room temperature. Fruiting was induced
at room temperature over three months. For this, the colonized
bag was cut open and placed into a wet chamber that was
prepared analogously to those employed by Herzog et al.
(2016). Spores were collected using petri dishes placed under-
neath the maturating mushrooms.

A subsample of each spore print was resuspended in 20 uL
sterile dH,O, subsequently transferred to a glass slide, and
covered by a cover slip. For each strain, length and width of
50 basidiospores were microscopically measured using a light
microscope (Axio Lab.Al microscope, Carl Zeiss AG,
Oberkochen, Germany) equipped with Moticam 3.0 MP dig-
ital camera with Motic Images Plus 2.0 software (Motic
Deutschland GmbH, Wetzlar, Germany). Values of spore
length and width were visualized by means of box-and-
whiskers plots, and significant differences among strains were
assessed with analysis of variance (ANOVA) followed by the
Tukey’s honestly significant difference post hoc test, after
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visually confirming normality and homoscedasticity of the
data. Statistical analyses were performed in R v3.6.1 (R
Core Team 2019).

Isolation of fungal DNA

Genomic DNA from mycelium of each strain was isolated
applying the CTAB protocol of Gupta et al. (2018). DNA
concentration was measured using the Qubit dsDNA HS
Assay Kit (Life Technologies GmbH, Darmstadt, Germany)
on a Qubit® Fluorometer (Invitrogen, Carlsbad, CA, USA),
following the manufacturer’s instructions.

Amplification and sequencing of phylogenetic
markers

Partial genomic sequences of the internal transcribed spacer
regions and the 5.8S subunit (ITS), the ribosomal RNA large
subunit (LSU), the translation elongation factor 1-« gene
(TEF 1), and the RNA polymerase II subunit gene (RPB?2),
were obtained for all strains. The ITS and LSU regions were
jointly amplified using primers V9G (de Hoog and van den
Ende 1998) and LR8 (Vilgalys unpublished: www.botany.
duke.edu/fungi/mycolab) in reactions with 50—-100 ng of
DNA template, 2 mM MgCl,, 0.2 mM dNTPs, 0.5 uM of
each primer, and 2 U of S7 Fusion High-Fidelity DNA
Polymerase (Art.-Nr.: 332530S, Biozym Scientific GmbH,
Hessisch Oldendorf, Germany). Thermal cyclings consisted
of a denaturation step at 94 °C for 4 min, 35 cycles at 94 °C
for 30 s, 55 °C for 90 s, and 72 °C for 45 s, and a final
elongation step of 72 °C for 5 min. Amplicons of correct size
in 1% agarose electrophoreses were cut out from the gel and
purified using the Zymoclean kit (D4001, Zymo Research
Europe GmbH, Freiburg, Germany) following the manufac-
turer’s instructions, and then Sanger sequenced bidirectionally
with primers ITS1F/ITS4 (White et al. 1990; Gardes and
Bruns 1993) for the ITS region, and LROR/LR7 (Hopple Jr
and Vilgalys 1994) for LSU. Primers for partial TEF' /o« and
RPB?2 amplification were designed by accessing the genome
sequence of C. aegerita AAE-3 (Gupta et al. 2018, www.
thines-lab.senckenberg.de/agrocybe genome). Primers were
checked by Oligocalc (http://biotools.nubic.northwestern.
edu/OligoCalc.html) to ensure the absence of secondary
structures and annealing temperature variations by more than
2 °C. Resulting TEF' I ¢ and RPB2 primer sequences are listed
in Table S1. For RPB2, alternatively, primers SF_Eur and
7CR_Eur (Houbraken et al. 2012) were used where needed.
PCR reactions were performed as described previously, but
using temperature cycles of 98 °C for 30's, 35 cycles at 98 °C
for 20 s, 63 °C for 20 s, and 72 °C for 40 s, and a final step of
72 °C for 5 min. PCR products were purified and Sanger
sequenced as described above, using the same primers for
amplification. All sequences obtained in this study are

deposited in GenBank under accession numbers
MN306154-MN308284 (see Table 1 and Table S2). In some
cases where PCRs yielded multiple bands, amplicons were
cloned using the StrataClone PCR Cloning Kit (Agilent
Technologies, Santa Clara, USA) following the manufac-
turer’s instructions. In these cases, amplification and sequenc-
ing was performed with primers M13F (=20) and M13R
(—24).

Phylogenetic analysis

Two independent phylogenetic reconstructions were per-
formed. The first one aimed at establishing the phylogenetic
relationships of the strains with other related species based on
ITS and LSU sequences, whereas the second one explored
more in detail the relationships among the strains from
Table 1, which were also compared for their basidiome
formation-related features.

The first analysis included, in addition to the strains under
study, a selection of other strains representing species of
Agaricales closest to C. aegerita. The analysis was based only
on ITS and LSU sequences due to the low number of strains in
NCBI GenBank represented by all four loci. Reference strains
were selected by searching with BLAST (Altschul et al. 1990)
the best GenBank matches against the ITS and LSU sequences
of our strains, and retaining those strains represented by both
loci. Other strains were selected manually, even if only repre-
sented by one locus, based on their known affinity to
C. aegerita. Additionally, sequences of strains Cyclocybe sp.
MG21 (isolated from mushrooms acquired on a local market
in Yunnan or Sichuan, China, according to Li et al. 2018) and
C. salicaceicola YAASMO711 (isolated from Salix cavaleriei
in Zhongdian, Yunnan, China according to Chen et al. 2012)
were retrieved from their published genomes (GenBank
bioproject numbers: PRINA454572 and PRINA253770, re-
spectively) using BLAST searches. Sequences of
Schizophyllum commune were used as outgroup. Details of
all reference strains included in this analysis are provided in
Table S2. A first set of analyses was performed individually
for each locus, by aligning each dataset using MAFFT v7.271
(Katoh and Standley 2013) with the G-INS-i parameters, and
then removing ambiguously aligned regions with Gblocks
v0.91b (Castresana 2000). RAXML v8.0 (Stamatakis 2014)
was then used to build Maximum Likelihood (ML) phyloge-
nies based on the GTRGAMMA model and 1000 bootstrap
replicates. Genealogical concordance between the ITS and
LSU ML trees was assessed using the partition homogeneity
test implemented in the package ape v5.3 (Paradis et al. 2004)
of R v3.6.1. Because both topologies did not differ (Fig. S2), a
multilocus ML tree was built with RAXML after concatenat-
ing the ITS and LSU alignments, using the same settings
described above but allowing for different model parameter
estimations for each locus. A complementary phylogeny was
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built based on Bayesian analysis with MrBayes 3.2.2 x 64
(Ronquist et al. 2012), using the GTRGAMMA model, two
independent MCMC runs for 10 M generations sampling ev-
ery 100th generation, and a burn-in of 30% of the sampled
trees. Convergence of the runs was checked using TRACER
v1.6 (Drummond and Rambaut 2007).

The second phylogenetic analysis, based on ITS, LSU,
TEFI1ox and RPB2 sequences, included only the ones of the
strains in Table 1 plus those of three additional strains of which
all four loci are available (see Table S2). After assessing genea-
logical concordance among all four sequence sets (Fig. S3),
multilocus ML and Bayesian phylogenies were obtained as de-
scribed above. All alignments (Online Resources 1-2) and trees
have been deposited in TreeBASE (accession number S25303).

Results

Two-locus tree confirms separation of Agrocybe spp.
and Cyclocybe spp.

The first phylogenetic reconstruction is based on ITS and
LSU sequences and included, in addition to the strains
under study, a selection of other strains representing agaric
species, belonging to the families, according to He et al.
(2019), Cortinariaceae, Hymenogastraceae, Mycenaceae,
Schizophyllaceae (outgroup), and Strophariaceae (Fig. 1).
This phylogeny shows a clear-cut separation between the
genus Agrocybe (Strophariaceae), among others represent-
ed by several strains of Agrocybe arvalis, Agrocybe dura,
Agrocybe firma, Agrocybe pediades, as well as Agrocybe
praecox, and the genus Cyclocybe (Tubariaceae).
Agrocybe species form two clusters of their own, although
in a part of the phylogeny containing both members of the
Hymenogastraceae and Strophariceae in unresolved rela-
tionship towards each other. There, together with all in-
cluded Agrocybe spp., typical Strophariaceae like
Hypholoma sublateritium or Stropharia rugosoannulata
form a little supported cluster together with members of
the Hymenogastraceae, such as three species from the ge-
nus Psilocybe, Gymnopilus penetrans, Flammula alnicola,
Hebeloma velutipes, or Galerina marginata.

Within the genus Cyclocybe, two main clades are re-
solved, one comprising C. erebia and the other one
“C. aegerita sensu lato”, C. parasitica and
C. salicaceicola. Strains of “C. aegerita s.1.” split up, clus-
tering across two separate but not fully resolved branches.
The first one almost exclusively comprises strains of
European origin, except for C. aegerita (AaM) that was
isolated from basidiomes bought in a US supermarket. The
Chinese species C. salicaceicola (solely based on
C. salicaceicola YAASMO0711 from Yunnan, China), a
close relative of C. aegerita according to Yang et al.
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(1993) and Chen et al. (2012, 2015, 2017), groups in a
well-supported sister clade towards the European lineage of
“C. aegerita s.1.”. The second major branch of “C. aegerita
s..” includes all its Asian strains, all assigned to Cyclocybe
sp., and one outlier (C. parasitica PDD 95998) of the
Pacific species C. parasitica from New Zealand. All other
C. parasitica strains form a potential sister clade relationship
to the outlier and Cyclocybe sp. which exclusively comprises
Asian strains with the exception of Cyclocybe sp. DSM
22459 that was originally isolated from a straw pile in
Jena (East Germany) in 1970. The phylogenetic relatedness
of the strains within the Asian clade to each other and their
relationship to C. parasitica is not sufficiently resolved with-
in the two-locus phylogeny. The same is true for the
European group of “C. aegerita s.1.” that also includes two
strains of C. cylindracea.

Multilocus tree-based division of “C. aegerita s.l.” into
two diverging monophyla

The second phylogenetic reconstruction is based on four ge-
netic markers, including ribosomal (ITS, LSU) and
proteinogenic (TEF I« and RPB2) DNA sequences. Taxon
sampling includes one strain each of A. arvalis, A. firma,
and A. praecox, as well as several geographically distant
strains of “C. aegerita s.1.” (including three strains of
A. chaxingu a priori subsumed here, see Table 1) and strains
of its close relatives C. erebia, C. parasitica, and
C. salicaceicola (Fig. 2). Except for three strains
(C. salicaceicola YAASMO711, Cyclocybe sp. MG21, and
A. praecox AFTOL ID 728), the fruiting performance was
determined experimentally for all strains employed in this
analysis applying the fruiting setup of Herzog et al. (2016).
This yielded different degrees of fruiting productivity as
depicted by the coloured circles in Fig. 2.

In comparison to the tree in Fig. 1, that of Fig. 2 confirms
major results of the former but at a significantly higher resolu-
tion. Thus, the clear separation of Agrocybe spp. from
Cyclocybe spp. and the relationship of C. erebia as a sister clade
of “C. aegerita s.1.”, C. salicaceicola, and C. parasitica of the
two-locus phylogeny was confirmed and reappeared even more
pronounced in the multilocus phylogeny. The multilocus tree
fully resolves the splitting of “C. aegerita s.1.” into two mono-
phyletic clades and sharply delimits them from their sister
monophyla C. salicaceicola and C. parasitica. The first lineage
of “C. aegerita s.1.” includes solely European strains (except for
C. aegerita AaM). It clearly separates from its second lineage
made up by strains from Asia (except for the East German straw
heap isolate Cyclocybe sp. DSM 22459 that seems to represent
a species of its own to be described in the future). We propose
to delimit these Asian strains from the European C. aegerita as
a clearly separate monophylum, preliminarily referred to as
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Fig. 1 Maximum likelihood (ML) tree of Agrocybe spp. and Cyclocybe
spp. towards a selection of hymenogastraceous or strophariaceous
Agaricales taxa, based on a concatenated alignment of ITS and LSU
sequences. Strains of Agrocybe spp. and Cyclocybe spp. also studied for
their fruiting-related characteristics in this study are highlighted in bold.
Support values above the branches: left side = % Bayesian inference

posterior probability (PP); right side =% ML bootstrap value (BT) in
absolute numbers. Branches of significant support (PP>0.99 and BT >
95%) are thickened. Only support values of PP>0.90 and BT >70 are
displayed for each node. Arrow in the left points to the outgroup
(Schizophyllum commune)
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@® Immature/stunted, occasionally
developed fruiting bodies

@ Fully developed fruiting bodies chiefly
on second flush
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right away

1.00/74

1.00/89.

Fig. 2 Maximum likelihood (ML) tree of Cyclocybe aegerita and
adjacent species, based on a concatenated multigene alignment of
ribosomal (ITS, LSU) and proteinogenic (TEFl«, RPB2) DNA
sequences. Support values above the branches: left side = % Bayesian
inference posterior probability (PP); right side = % ML bootstrap value
(BT) in absolute numbers. Branches of significant support (PP >0.99 and

Cyclocybe chaxingu agg., which may comprise several species
(species complex).

The latter scenario is supported by the subclade structure of
the Asian monophylum. In a first subclade, the three strains from
China, i.e. Cyclocybe sp. MG21, Cyclocybe sp. MES02023, and
Cyclocybe sp. THI15 cluster together, with the first two strains
forming a sister clade of the latter one, and the latter two strains
being referenced as A. chaxingu (see Table 1). The first subclade
forms a sister group to Cyclocybe sp. THI392 from India and
Cyclocybe sp. DSM 22459 which make up a second subclade.
The Thai strain Cyclocybe sp. SC960903 (another A. chaxingu
strain after Gonzalez and Labarére 1998, see Table 1) forms an
outgroup to the two former subclades.

With respect to their fruiting productivity, C. aegerita strains
differed visibly from their Asian relatives and the Pacific species
C. parasitica. In this context, “C. aegerita s.1.” and C. parasitica
also differ from the strains of C. erebia, A. arvalis, and A. firma
studied here (see respective colour code in Fig. 2).

Fruiting features of C. aegerita versus its relatives
from Asia and New Zealand

Applying the fruiting setup by Herzog et al. (2016) with small

modifications for a few individual strains (see Table 2), mature
basidiomes were ultimately formed by thirteen out of nineteen
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BT >95%) are thickened. Only support values of PP >0.90 and BT >70
are displayed for each node. Coloured circles encode the fruiting
performance of each tested strain in the fruiting setup of Herzog et al.
(2016); the term 'stunted' means that either aborted immature basidiomes
and/or aborted primordia were seen with a certain strain

tested strains from the genera Cyclocybe and Agrocybe, and
immature basidiomes were formed by one strain (Figs. 3 and
4). All strains were confirmed to be dikaryotic (Fig. S4) and
could be assigned to subgroups based on their fruiting produc-
tivity ranging from abundant production of mature basiomes to
no fruiting at all (see Fig. 2, Figs. 3—4, and Figs. S5-S8). A more
variable spectrum of fruiting productivities was recorded among
strains of C. aegerita from Europe, ranging from highly produc-
tive to fairly productive strains. This is in contrast to its relatives
from Asia and New Zealand, in the case of which individual
strains either exhibited no fruiting at all or an even more efficient
production of mature mushrooms than all European strains, i.e.
an almost exclusive immediate production of mature basidiomes
in the first fruiting flush (see Figs. 24, Figs. S5-S8).

Within their first fruiting flush, the fruiting-wise most produc-
tive subgroup within C. aegerita, comprising C. aegerita CBS
358.51, C. aegerita AAE-3, C. aegerita DSM 9613, C. aegerita
AaM, C. aegerita THI536, and C. aegerita IHI8, mostly but not
exclusively produced basidiomes remaining in the stage of im-
maturity, e.g. lacking full cap expansion and spore shedding.
However, they also produced several mature mushrooms along-
side the immature ones, exemplarily shown by C. aegerita CBS
358.51 (Fig. 3a) or C. aegerita IHI536 (Fig. S6b, right photo). In
their second fruiting flush, those strains mainly produced fully
developed mushrooms (Fig. 3b, ¢, e-g). The second subgroup,
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Fig. 3 Fruiting characteristics of European Cyclocybe aegerita strains in
the fruiting setup of Herzog et al. (2016), 25-50 days post-inoculation
(pre-incubation, pi: 11-13 d at 25 °C in the dark; fruiting induction, fi:
15-39 d at 20 °C 12 h light/12 h dark). Blue arrows point to mature
basidiomes (FBs), and, if not specified differently, red arrows point to
stunted immature FBs. (a) Italian C. aegerita strain CBS 358.51, 13 d pi,
15 d fi; red arrow points to a stunted primordium. (b) Strain C. aegerita
AaM isolated from C. aegerita mushrooms bought in a US supermarket,
12 d pi, 35 d fi. (¢) Genome-sequenced strain C. aegerita AAE-3 derived

made up by C. aegerita CBS 127.88 and C. aegerita CBS
832.87, mainly formed stunted immature basidiomes, i.e. mature
basidiomes were only occasionally observed (Fig. 3d, h, Fig.
S5d, and Fig. S6d). The third subgroup consists solely of
C. aegerita CBS 178.69, which only produced immature mush-
rooms (Fig. 3i and Fig. S7a).

Among strains from the newly delimited Asian species
complex, and the Pacific species C. parasitica, two fruiting
productivity subgroups were categorized. Most strains of the
former, except for Cyclocybe sp. IHI15 and Cyclocybe sp.

from the reportedly Italian strain C. aegerita 4022, 11 d pi, 30 d fi. (d)
Dutch strain C. aegerita CBS 127.88, 11 d pi, 39 d fi. (e) Italian strain
C. aegerita DSM 9613, 12 d pi, 36 d fi. (f) Strain C. aegerita THI536
isolated from C. aegerita mushrooms bought in an Italian supermarket,
11 d pi, 36 d fi. (g) German strain C. aegerita IHI8, 11 d pi, 36 d fi. (h)
Strain C. aegerita CBS 832.87 of unknown origin, 13 d pi, 25 d fi; red
arrows point to stunted primordia. (i) English strain C. aegerita CBS
178.69, 11 d pi, 18 d fi. Bar=2 cm

DSM 22459, and all C. parasitica strains, produced almost
only mature basidiomes already in their first fruiting flush
(Fig. 4a, c, e—g, Fig. S7b—d, and Fig. S8). The mentioned
exceptions (Fig. 4b, d) did not fruit within the fruiting setup
of Herzog et al. (2016). Similarly, the fruiting-induced strains
C. erebia THI606, A. firma CBS 390.79, and A. arvalis DSM
9710 also did not fruit under these conditions (Fig. 4h—j). Still,
they either produced some brownish pigments instead, with an
extensive brown pigmentation in the case of C. erebia THI606
and a more scattered light brown one in A. arvalis DSM 9710
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Fig. 4 Fruiting features of (a)—(j) Strains from the Asian monophylum/
monophyletic species complex preliminarily named Cyclocybe chaxingu
agg., C. erebia, Agrocybe firma and A. arvalis, and statistic evaluation of
basidiome dimensions of (k) a C. aegerita strain versus a strain from the
Asian monophylum in the fruiting setup of Herzog et al. (2016), 25—
70 days post-inoculation (pre-incubation, pi: 12-37 d at 25 °C in the dark;
fruiting induction, fi: 12-41 d at 20 °C 12 h light/12 h dark), with mod-
ifications where specified. (a) Chinese strain Cyclocybe sp. MES02023
displaying a mature basidiome (FB), 12 d pi, 33 d fi. (b) Chinese breeding
strain Cyclocybe sp. IHI15 only showing mycelium, 13 d pi, 37 d fi. (¢)
Indian strain Cyclocybe sp. IHI392 exhibiting a mature FB, 13 d pi; 12.d
fi. (d) East German strain Cyclocybe sp. DSM 22459 only displaying
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mycelium, 19 d pi, 35 d fi. (e) Thai strain Cyclocybe sp. SC960903
exhibiting a mature FB 14 d pi at 30 °C, 41 d fi at 26 °C. (f) New
Zealand strain C. parasitica ICMP 16333 displaying a mature FB, 15 d
pi, 35 d fi. (g) New Zealand strain C. parasitica ICMP 11668 showing a
mature FB, 13 d pi, 21 d fi. (h) German strain C. erebia IHI606 exhibiting
mycelium with brown pigmentation, 22 d pi, 35 d fi. (i) Strain A. firma
CBS 390.79 (unknown origin) showing initial fruiting stages, 29 d pi,
34 d fi. (j) German strain A. arvalis DSM 9710 displaying mycelium, 37 d
pi, 33 d fi. Bar=2 cm. (k) Statistical comparison by student’s t test of
mean cap diameter and mean stipe length of FBs from C. aegerita AAE-3
versus Cyclocybe sp. IHI392. Error bars represent the standard deviation
(n =30). *** indicates a P < 0.001
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(Fig. 4h, j), or they at least showed initial signs of fruiting as
observed for A. firma CBS 390.79 (Fig. 4i).

Qualitatively, two additional aspects of the general fruiting
patterns among the newly delimited Asian monophylum and
C. parasitica versus C. aegerita were noticed. On the one
hand, we recorded that the overall amount of basidiomes pro-
duced by the strains of C. aegerita was generally higher than
the amount produced by the Asian strains (Table S3). On the
other hand, in return, representatives of the proposed Asian
monophylum and C. parasitica seem to form bigger
basidiomes compared to the ones produced by C. aegerita
(see Figs. 3—4 and Figs. S5-S8). We checked this visual as-
sessment by a statistical comparison of the stipe length and the
cap diameter of mushrooms either harvested from the
European strain C. aegerita AAE-3 or from the Asian strain
Cyclocybe sp. IHI392. Statistic evaluation of the results shows
that the Asian strain produces mushrooms of significantly lon-
ger stipe length and significantly wider cap diameter (Fig. 4k).

Basidiospore size in C. aegerita versus its relatives
from Asia and New Zealand

From the assessed strains of C. aegerita, the Asian species
complex we delimited from our multilocus phylogenetic anal-
ysis, and C. parasitica, Cyclocybe sp. IHI392 and
C. parasitica ICMP 16333 display the longest and the widest
spores of all tested strains (Fig. 5). The European strains
C. aegerita CBS 358.51, C. aegerita IHIS, and C. aegerita

[HI536 exhibit both the shortest spores (Fig. 5a) and the slim-
mest spores, the latter together with Cyclocybe sp. MES02023
from China (Fig. 5b).

Although the shortest spores were seen among C. aegerita
strains (CBS 358.51, IHIS8, and IHI536) and the longest ones
among the second subclade of the Asian monophylum
(IHI392, and the geographic outlier DSM 22459; see Fig. 2),
there were also two Asian strains (SC960903, and
MESO02023) with spores about as short as in the remaining
two C. aegerita strains (CBS 127.88, and AAE-3). A compa-
rable variability applies between the two strains of
C. parasitica, one of which ICMP 11668) shows a spore
length as in the longest-spored European strain (CBS
127.88), while the spores of the other one are as long as those
of Cyclocybe sp. IHI392 (see Fig. 5a). In the case of the spore
width, we also recorded a considerable strain-specific variabil-
ity within C. aegerita, across strains from the newly delimited
Asian monophylum, as well as across the two strains of
C. parasitica (see Fig. 5b).

Altered fruiting temperature in individual Asian
strains and fruiting patterns

In the strain Cyclocybe sp. SC960903, in contrast to the con-
trol strains C. aegerita AAE-3 (Fig. S9a) and Cyclocybe sp.
MES02023 (Fig. S9b), no fruiting was achieved when it (Fig.
S9c¢) faced the default cultivation and fruiting regime by
Herzog et al. (2016). However, increasing the temperature to
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Fig.5 Box-and-whisker plots showing the distribution of spore length (a) and spore width (b) values across the studied strains of “Cyclocybe aegerita sensu lato”,
and Cyclocybe parasitica.. Different letters above boxes indicate differences at P < 0.05 as assessed by the Tukey’s honestly significant difference post hoc test
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30 °C during vegetative growth and to 26 °C for fruiting
induction, ultimately, in contrast to both control strains (Fig.
S9d, e), yielded fruiting in Cyclocybe sp. SC960903 (Fig.
S9f). A third temperature regime comprising a temperature
of 22 °C during vegetative growth and one of 26 °C for
fruiting induction only lead to fruiting in the control strain
Cyclocybe sp. MES02023 (Fig. S9g, h).

Most strains seemingly produced their basidiomes random-
ly distributed over the surface of the cultivation medium. Still,
some of them exhibited a pattern where they preferentially
produce them (see Fig. S1, Table S3, and Figs. S5-S8). The
Italian strain C. aegerita CBS 358.51 nearly exclusively fruit-
ed at the point of injury, where the mycelium was injured by
punching out a 0.5 cm? agar plug to locally stimulate fruiting
(see Fig. 3a, Fig. S5a, and Table S3). Furthermore, this strain
produced high numbers of basidiome initials, with only a few
of them developing into mushrooms. The only other strain
that preferentially fruited at the point of injury, but by far not
as exclusively as C. aegerita CBS 358.51, was C. aegerita
AaM (see Fig. 3b, Fig. S5b, and Table S3). Cyclocybe
aegerita CBS 178.69 exhibited a strong preference to fruit in
the plate centre, however, only producing immature mush-
rooms that often emerged directly on the inoculation plug of
the plate (see Fig. 3i, Fig. S7a, and Table S3). Similarly,
C. aegerita CBS 832.87 preferentially fruited in the plate cen-
tre, also especially on the inoculation plug (see Fig. 3h, Fig.
S6d, and Table S3). In contrast to them, C. aegerita THI8
mostly avoided fruiting in or nearby the centre as it almost
exclusively fruited at the plate edge (see Fig. 3g, Fig. Séc, and
Table S3). Cyclocybe parasitica ICMP 11668 showed a sim-
ilar fruiting pattern as C. aegerita IHI8 but preferred not to
fruit “far away” from the centre, by chiefly fruiting in the
peripheral zone (see Fig. 4g, Fig. S8b, and Table S3).

A few general positional fruiting preferences can be noticed
for C. parasitica and the newly delimited Asian monophylum
versus C. aegerita: The former species do not fruit at the point
of injury at all. On average, C. aegerita strains most abundantly
fruited in the zone around the plate centre, while their Asian
relatives showed an about fifty-fifty divided fruited preference
between plate edge and plate centre. In contrast, C. parasitica
most frequently fruited in the peripheral zone (Table S3).

Discussion

Multilocus phylogeny of Cyclocybe spp. harmonizes
with their fruiting features

Our two-locus-based phylogeny of concatenated ITS and LSU
sequences confirms the single locus-based findings by Vizzini
etal. (2014), who, thus, assigned Agrocybe spp. and Cyclocybe
spp. to separate Agaricales families. These assignments were
recently updated by He et al. (2019). Accordingly, our results
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add further support to the resurrection of the genus Cyclocybe
for C. aegerita (V. Brig.) Vizzini, A. chaxingu Huang (Zhi
1991) in this study a priori assigned to “C. aegerita s.1.”,
C. parasitica (G. Stev.) Vizzini, C. salicaceicola (Zhu L.
Yang, M. Zang & X.X. Liu) Vizzini, and C. erebia (Fr.)
Vizzini & Matheny. Due to our focus on “C. aegerita s.1.”, a
check-up on C. erebioides Angelini & Vizzini, which clusters
between C. erebia and “C. aegerita s.1.” in the single locus
trees of Vizzini et al. (2014), was not pursued in this study.

We are also aware of the fact that the species status of
C. aegerita towards C. cylindracea is not completely clear.
Currently, both names are valid according to Index
Fungorum. Nevertheless, the focus of the present study
was not to clarify whether both species are potentially con-
specific based on type specimens. We chiefly aimed at elu-
cidating the status of the Asian species complex of
“C. aegerita sensu lato” and the Pacific species
C. parasitica towards strains from Europe. Thus, even
though our two-locus tree contains ITS + LSU sequences
from two non-type specimens assigned to C. cylindracea,
which cluster among European C. aegerita (see Fig. 1), we
refrain from suggesting that both taxa may be conspecific.
Such would entail suggesting a bold nomenclatural change
giving C. cylindracea, based on the older name Agaricus
cylindraceus DC. 1815, if not a sanctioned name, priority
over C. aegerita (based on Agaricus aegerita Brig. 1837).
However, such a proposition must instead be based on solid
groundwork, i.e. on unrelenting efforts to obtain molecular
(for a multilocus analysis) and morphological data of type
material or epitypes generated by sampling-intensive field-
work from the locus typi of each species.

The same stipulations apply to the number of species to
diagnose within the newly delimited Asian monophylum/
potential species complex, we preliminarily refer to as
C. chaxingu agg., and which our multilocus phylogeny
allowed to separate from C. aegerita. The Pacific species
C. parasitica revealed itself as a sister clade to this potential
species complex which was also reflected by their similar
fruiting properties (see Fig. 4, Fig. S7b—d, and Fig. S8).
Moreover, the fact that spore size seems to vary across the
subclades of the monophylum we preliminarily refer to as
C. chaxingu agg. (see Fig. 2 and Fig. 5) provides additional
reason to expect it getting further characterized as a species
complex in future studies with larger taxon samplings includ-
ing basidiomes and spore prints from specimens collected in
the field which should include the locus typi of the name
giving species.

The multilocus tree also confirmed the tight association of
C. salicaceicola to C. aegerita. This is an interesting finding as
C. salicaceicola was originally described from Yunnan (China) as
a species that is morphologically similar to C. aegerita according
to Yang et al. (1993) and hardly to distinguish from C. aegerita
according to Chen et al. (2012), who based their conclusions on
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molecular species differentiation. Unfortunately, our official re-
quest for strains of C. salicaceicola to the authors of Chen et al.
(2012, 2015, 2017) was refused with the statement that it is their
core resource, which they cannot give abroad. Hence, we could
not check whether the fruiting properties of C. salicaceicola may
resemble those of C. aegerita. This would have helped further
reflecting upon the taxonomic relations between these species.
Nevertheless, it is still a remarkable finding that C. salicaceicola
YAASMO711, despite its geographic origin, clusters more closely
to C. aegerita strains from Europe. Our finding is still based on
just one four-locus dataset from one C. salicaceicola strain.
Therefore, it should be reassessed by future multilocus-based
phylogenetic analyses including a set of C. salicaceicola strains.

Within each of the two clades of “C. aegerita s.1.”, we no-
ticed two geographic outliers. Within the C. aegerita clade, only
C. aegerita AaM originates from outside Europe as it was iso-
lated from commercially acquired basidiomes from a supermar-
ket in Madison, Wisconsin, USA. The status of C. aegerita as a
cultivated edible mushroom in numerous countries worldwide
(Uhart et al. 2008) may provide one hypothetic explanation for
this finding. Potentially, an originally European production
strain may have been sold to mushroom growers/vendors in
North America, or edible mushrooms originally produced in
Italy, the second biggest player in this industry (Friedman
2016). Our observation on the common individual fruiting
pattern exhibited by both the US strain C. aegerita AaM and
the Italian strain C. aegerita CBS 358.51 to fruit preferentially
upon injury stimuli may, thus, not just be coincidence.
Prospective comparative genomics or transcriptomics studies
versus a strain, like the genome-sequenced one C. aegerita
AAE-3 (Gupta et al. 2018), that seemingly never fruits where
its mycelium is injured, may detect putative genetic alterations
or expression patterns of fruiting-related genes in C. aegerita
CBS 358.51 and C. aegerita AaM accounting for their specific
fruiting pattern.

Within the newly delimited Asian monophylum, the East
German strain Cyclocybe sp. DSM 22459 is an odd geographic
outlier. It was isolated in 1970 from a straw pile in the outskirts
of Jena (Thuringia, Germany) by Gerhard Gramss, a renowned
mycologist who has been actively publishing on basidiomyce-
tous fungi over five decades (Gramss 1979, 1980; Gramss et al.
1999; Gramss and Bergmann 2008; Gramss and Voigt 2013).
To see whether this strain will remain the only geographic ‘odd-
ball’” within the Asian monophylum, it will certainly help to
extend the taxon sampling in the region around Jena and in
similar places in Thuringia to obtain more specimens of
Cyclocybe spp./“C. aegerita s.1.” One still may speculate that
the strain Cyclocybe sp. DSM 22459 came to Jena in 1950s or
1960s in the course of academic collaborations of the Jena uni-
versity and other research institutions with partners in China and
Vietnam. Since this strain is the prototypical producer of wild-
type peroxygenase (UPO, EC 1.11.2.1) — a hotspot of current
biocatalytic research (Wang et al. 2017) — future studies

comparing the peroxygenase levels and isoenzyme patterns of
different Agrocybe/Cyclocybe spp. will help as well to further
disentangle its position within the respective phylogenetic tree
(Ullrich et al. 2004; Hofrichter et al. 2015, 2020). In this context,
the description of this strain as a species of its own appears to be
plausible.

Metabolism-related aspects of fruiting features from
different Cyclocybe spp.

Some strains did not fruit at all within the default fruiting setup
of Herzog et al. (2016). In Cyclocybe sp. SC960903, this
could be changed by applying a different temperature regime
within the cultivation setup of Herzog et al. (2016), i.e. a
higher vegetative growth and fruiting induction temperature
(see Fig. SOf). Given the Southeastern Asian origin of this
strain, an ecotype-like adaptation of this strain can be as-
sumed, linking the induction of basidiome formation with
environmental cues related to the tropical monsoon climate
in Thailand. This conclusion is supported by the failure of
Cyclocybe sp. MES02023 to fruit in the 30 °C/26 °C regime
(see Fig. S9e). This strain originates from the Jilin Province in
Northern China, which is characterized by temperate climate.
The European reference strain C. aegerita AAE-3 (Herzog
et al. 2016; Gupta et al. 2018) also failed to fruit at elevated
temperature (see Fig. S9d), which may indicate that its parent
strain (see Table 1) also rather originates from a region in Italy
that is characterized by moderately warm climate.

In other cases, where no fruiting was achieved by applying the
default fruiting setup of Herzog et al. (2016), for instance, in
Cyclocybe sp. DSM 22459, fruiting could be achieved by using
a mushroom spawn substrate instead (see Material and
Methods). On the one hand, such ‘behaviour’ may relate to
physiological requirements of the particular strain, which can
simply exceed the nutrient amounts required for fruiting from
an agar plate. According to Chanter (1979), nutrition should
accumulate as a ‘storage substrate’ in the mycelium and fruiting
is initiated only when the substrate density in the mycelium ex-
ceeds a threshold level. On the other hand, the phenomenon that
fructification cannot be induced on agar plates is common in
other commercially grown mushroom species such as Agaricus
bisporus or Lentinula edodes, where only a complex voluminous
mushroom spawn substrate allows fiuiting, being either compost
with a casing layer (Morin et al. 2012; Straatsma et al. 2013) or a
nearly exclusively wood-based substrate (Chen et al. 2016).

Testing the other non-fruiters from the present study, i.e.
Cyclocybe sp. IHI15, C. erebia THI606, A. firma CBS 390.79,
or A. arvalis DSM 9710 for their fruiting capability on a
spawn substrate as applied in Cyclocybe sp. DSM 22459,
and, if applicable, also within a customized temperature re-
gime, might eventually lead to basidiome production under
laboratory conditions with these strains.
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Implications of the biogeographic diversity for
C. aegerita as a model organism

C. aegerita is used as model system to study or exploit diverse
capabilities of mushroom-forming basidiomycetous fungi
including fruiting (Herzog et al. 2016), the production of biotech-
nologically relevant enzymes (Hofrichter et al. 2020) or the
biosynthesis of various metabolites including volatiles
(Zhao et al. 2003; Ngai et al. 2005; Kogl et al. 2007; Kleofas
et al. 2014; Hennicke et al. 2019; Surup et al. 2019;
Tayyrov et al. 2019; Orban et al. 2020). Therefore, the here
reported split-up of “C. aegerita s.l.” into a European and an
Asian monophylum/species complex brings along some
practical implications for these research fields. So far,
approaches with an interest towards gene functions were
carried out with the genome-sequenced (Gupta et al. 2018)
European strain C. aegerita AAE-3 (Herzog et al. 2019; Surup
et al. 2019; Tayyrov et al. 2019). By sequencing genomes of
strains from the Asian monophylum/species complex,
preliminarily named C. chaxingu agg. (including Cyclocybe sp.
DSM 22459), one can expect to find new genes/alleles
encoding, e.g., fruiting-related proteins. Also, this may reveal
new variants of ribotoxins, terpenoids, peroxygenases,
peroxidases or other carbohydrate active enzymes differing
from those of C. aegerita AAE-3 (Gupta et al. 2018; Surup
et al. 2019; Tayyrov et al. 2019). Such data will be of general
interest to a broad scientific community dealing with natural
products chemistry including volatiles (Kleofas et al. 2014;
Citores et al. 2019; Surup et al. 2019; Tayyrov et al. 2019;
Orban et al. 2020), enzyme biochemistry and biotechnology
(Hofrichter et al. 2015; Wang et al. 2017; Karrer and Riihl
2019; Hofrichter et al. 2020), or developmental biology
(Herzog et al. 2016).

Conclusion

The present study indicates a well-supported delimitation of a
new Asian species complex from “classic” C. aegerita, a result
that is supported by the fruiting properties of respective strains.
Furthermore, a sister group affiliation of this species complex to
C. parasitica and of C. aegerita to C. salicaceicola has been
elucidated. Given that fruiting properties differ between
C. aegerita versus its relatives from Asia and New Zealand, as
well as between certain individual strains, we can speculate in
how far they emerge as a result of selective pressure, potentially
manifesting as ecotype-like adaptations. Future comparative ge-
nomics analyses will help to unravel how genetic differences
may have translated into differing fruiting properties. Such
knowledge will also extend our understanding of the origin and
function of biodiversity in basidiomycetous mushrooms from
genes to ecotypes based on genomic diversity.
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