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Abstract
Adaptive Histogram Equalization (AHE) and its contrast-limited variant CLAHE are well-known and effective methods for 
improving the local contrast in an image. However, the fastest available implementations scale linearly with the filter mask 
size, which results in high execution times. This presents an obstacle in real-world applications, where large filter mask sizes 
are desired while maintaining low execution times. In this work, we propose an efficient algorithm for AHE that reduces 
the per-pixel computational complexity to O(1) . To the best of our knowledge, this is the first time that a constant-time 
algorithm is proposed for AHE and CLAHE. In contrast to commonly used fast implementations, our method computes the 
exact result for each pixel without interpolation artifacts. We benchmark and compare our method to existing algorithms. 
Our experiments show that our method exhibits superior execution times independent of the filter mask size, which makes 
AHE and CLAHE fast enough to be usable in real-world applications.

Keywords Histogram equalization · Contrast enhancement · Image processing · Computational efficiency

1 Introduction

Histogram Equalization (HE) is a classical method for 
improving the global contrast of an image. It linearizes the 
gray value histogram, such that the result image uses the 
full range of the possible gray values. A drawback of this 
method is, however, that local variations are not taken into 
account. Adaptive Histogram Equalization (AHE) [4, 5, 11] 
solves this issue by considering only the gray values within 
a rectangular filter window around each pixel to compute 
an individual HE transfer function for the respective pixel. 
Because AHE can lead to over-amplification of noise, Pizer 
et al. [12] proposed Contrast-Limited Adaptive Histogram 
Equalization (CLAHE), which allows to limit the maximum 
desired contrast in homogeneous regions. Due to its efficacy, 
CLAHE is still a popular image preprocessing method [9, 
14] and has successfully been used to improve the perfor-
mance of Deep Learning models [2, 13]. The computational 
complexity of AHE and CLAHE is very high, because they 

require computing the histogram of each filter window. 
Using a naive implementation in which the histogram is rec-
omputed explicitly for each window, the runtime can easily 
become multiple seconds, minutes, or even hours, depending 
on the size of the filter window. To circumvent this prob-
lem, most publicly available implementations of AHE and 
CLAHE are based on an approximative algorithm that is 
fast, but can lead to visible artifacts in the resulting image. 
This severely impacts the applicability of AHE in many real-
world scenarios, where runtimes of just a few milliseconds 
are required and visual artifacts are not acceptable. Because 
of this restriction, we only consider methods that implement 
an exact variant of AHE and CLAHE and thus do not lead 
to such artifacts.

In this work, we propose a fast constant-time algorithm 
for AHE and CLAHE that is free of visual artifacts and 
thus suitable for practical applications. Section 2 discusses 
related work. In Sect. 3, we describe the O(1) algorithm for 
sliding-window histograms as well as efficient implementa-
tions of the AHE and CLAHE transfer functions. In Sect. 4, 
we benchmark our method against previous algorithms and 
discuss the results. Finally, Sect. 5 presents our conclusions. * Philipp Härtinger 
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2  Related work

In the past, many improvements for AHE and CLAHE have 
been proposed. Pizer et al. [12] suggest an approximative 
approach in which the HE transfer function is computed 
only for a subset of all pixels and interpolated between 
these points. This method is also referred to as Interpolated 
Adaptive Histogram Equalization (IAHE). It is a popular 
choice in many computer vision libraries due to its low 
execution time. However, the interpolation can lead to 
artifacts, as shown in Fig. 1. In practice, filtering an image 
translated by several pixels can lead to a significantly 
different result than filtering the original image, meaning 
that the interpolation-based approach is not shift-equivariant. 
This poses a problem, e.g., in industrial inspection, where the 
artifacts might be interpreted as defects, leading to falsely 
rejected parts. Our work differs fundamentally from IAHE in 
that we compute the exact transfer function for each pixel and 
thus avoid the interpolation artifacts shown in Fig. 1b. Kim 
et al. [7] propose Block-Overlapped Histogram Equalization 
(BOHE), which applies Huang’s O(n) sliding-window 
histogram method [3] to AHE. The core idea in [3] is that 
when the window slides one pixel to the right, one can simply 
update the histogram computed for the previous pixel instead 
of fully recomputing it. Sund et al. [15, 16] propose Sliding-
Window Adaptive Histogram Equalization (SWAHE), which 
applies the O(n) algorithm from [3] to CLAHE. Wang and 
Tao [17] also apply [3] to AHE and propose several small 

improvements to speed up the computation of the HE transfer 
function. Kong and Ibrahim [8] propose Multiple Layers 
Block-Overlapped Histogram Equalization (MLBOHE), 
which also applies Huang’s O(n) algorithm [3] to AHE. 
Furthermore, they employ an optimized zig-zag sliding 
order to avoid recomputation of the window histogram at 
the beginning of each row. Kim et al. [6] propose Partially 
Overlapped Sub-Block Histogram Equalization (POSHE), 
where HE is applied to overlapping sub-blocks of the image 
and the results are accumulated. Due to the large stride of 
half the window size, the result must be filtered to reduce 
blocking artifacts. Fu et  al. [1] propose POSHE-based 
Optimum Clip-Limit Contrast Enhancement (POSHEOC), 
which combines POSHE [6] with CLAHE.

Our work mainly follows [7] and [15–17] in that we 
improve the computational complexity of the AHE and 
CLAHE algorithms. In contrast to the existing linear-time 
methods, our proposed method has a constant per-pixel 
runtime that is independent of the filter window size. Con-
trary to [1, 6, 12], we do not use approximative algorithms. 
This means that our method reproduces the exact same 
results as the original algorithms for AHE and CLAHE 
and does not introduce visual artifacts.

3  Efficient adaptive histogram equalization

In this section, we describe the main building blocks for 
efficient AHE: First, we show how the gray value histogram 
of a sliding window can be maintained with O(1) complexity. 
Second, given the histogram for a window, we compute the 
HE transfer function for the center pixel of the window in 
an efficient manner. Third, we describe how the CLAHE 
transfer function can be implemented efficiently. Fourth, we 
describe how multilevel histograms can be applied to AHE 
and CLAHE, respectively. A high-level overview on the 
complete AHE and CLAHE process is given in Algorithm 1.
Algorithm 1  High-level overview on AHE and CLAHE

(a) Input

(b) IAHE

(c) CLAHE

Fig. 1  Interpolation artifacts of IAHE. (a) shows the original input 
image with a linear gray value ramp. (b) shows the result of IAHE, 
with banding artifacts due to the interpolation. (c) shows the smooth 
result of exact CLAHE. The artifacts on the left and right are due to 
border treatment and thus inevitable
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3.1  Notation

We consider an image I ∈ {0,… , 255}M×N  with rows 
i ∈ {0,… ,M − 1} and columns j ∈ {0,… ,N − 1} . Note that 
we use 8-bit images in this description, but the underlying 
methods are not restricted to this case. Without loss of 
generality, we consider a square filter window with radius 
r ∈ ℕ , hence the window size is (2r + 1) × (2r + 1) . We 
denote the gray value histogram of the window centered 
at pixel (i, j) as the kernel histogram Hi,j ∈ ℕ

L , where the 
number of bins L ∈ ℕ is typically 256 for 8-bit images. The 
histogram bin Hi,j(g) counts how often a gray value g occurs 
in the filter window

where 
[

Ii,j = g
]

 is the indicator function that evaluates to 
1 if Ii,j = g and 0 otherwise. The cumulative histogram is 
defined as

It counts the number of pixels that have a gray value less 
than or equal to g.

3.2  Sliding‑window histogram computation

For each pixel position (i, j) in the image, AHE requires the 
computation of a histogram Hi,j for the filter window centered 
at the pixel (i, j). This is implemented using a sliding window 
approach where the filter window moves pixel-wise from left 
to right for each row. Histograms of sliding windows have been 
used for a long time in the filtering literature, e.g., to compute 
the median filter [3]. Thus, there exist efficient algorithms 
that avoid redundant computations in the overlap regions 
of neighboring windows. The choice of a suitable sliding 
window histogram method is crucial, because the runtime of 
existing AHE and CLAHE implementations is dominated by 
the computation of histograms. In the following, we describe 
the sliding-window histogram algorithms commonly used in 
the literature.

A naive but straightforward implementation of a sliding 
window histogram algorithm simply computes the full 
histogram at each spatial position in the image. To compute the 
histogram for a window, all (2r + 1)2 pixels within the window 
need to be assessed and the corresponding histogram bins are 
increased. This operation requires (2r + 1)2 bin increments; 
hence, its computational complexity is O(r2).

Huang et al. [3] noticed that most of the computation in 
the naive algorithm is redundant and can be avoided by only 
updating the parts of the histogram that actually changed. Their 

(1)Hi,j(g) =

i+r
∑

x=i−r

j+r
∑

y=j−r

[

Ix,y = g
]

,

(2)Ci,j(g) =

g
∑

k=0

Hi,j(k).

improved algorithm starts with initializing a full histogram of 
the window centered at the first pixel (i, 0) in row i. When 
the window moves one column to the right, the histogram is 
updated by removing the values of the leftmost column j − r 
from the histogram and adding the new rightmost column 
j + r + 1 . Although the initialization of the first window of 
each row still requires (2r + 1)2 bin increments, each further 
update only requires 2r + 1 subtractions and 2r + 1 additions. 
Thus, for large image sizes, the amortized computational 
complexity becomes O(r) . A slight modification of Huang’s 
algorithm was proposed by Kong and Ibrahim [8]. They 
propose a “zig-zag” sliding order where the window first 
slides from left to right, then down by one row, and then slides 
backwards from right to left. Using this sliding order, the full 
histogram needs to be initialized only once instead of at the 
beginning of each row. However, since each update of the 
sliding-window histogram still requires 2r + 1 bin decrements 
and 2r + 1 bin increments, the overall computational 
complexity remains O(r).

Perreault and Hébert [10] noticed that in Huang’s 
algorithm, each pixel is still added to and removed from 
2r + 1 histograms, since no information is retained when the 
window slides down by one row. Their improved algorithm 
makes use of the distributivity of histograms, i.e., the property 
that the kernel histogram can be expressed as the sum of the 
histograms of the filter window’s columns. For the current row 
i, column histograms hc ∈ ℕ

L are defined as

Using this to rearrange Eq. (1), the kernel histogram can be 
expressed as

Note that this implies that, in addition to the kernel 
histogram, N additional column histograms hc are 
maintained, where c ∈ {0,… ,N − 1} . Starting at the top-
left pixel of the image, the kernel histogram is initialized by 
summing over its column histograms as in Eq. (4). Moving 
the window one column to the right, the kernel histogram 
is updated by subtracting the leftmost column histogram 
hj−r and adding the new rightmost column histogram hj+r+1 . 
When moving the window down to the next row, the column 
histograms are updated by subtracting the gray values of the 
top row i − r and adding the gray values of the new bottom 
row i + r + 1 . For a single window, each update consists 
of one addition and one subtraction for updating the new 
rightmost column histogram, as well as L additions and L 
subtractions for updating the kernel histogram. Since the 
update step for the kernel histogram is now independent of 

(3)hc(g) =

i+r
∑

x=i−r

[

Ix,c = g
]

.

(4)Hi,j(g) =

j+r
∑

c=j−r

hc(g).
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the filter mask radius r, the amortized per-pixel complexity 
becomes O(1) . In practice, the addition of histograms 
with L = 256 bins is naturally vectorizable using SIMD 
instructions, which leads to a relatively low constant cost of 
the update step. Furthermore, when moving to the next row, 
all column histograms can be updated at once, which leads 
to a more advantageous memory access pattern.

AHE and CLAHE can be implemented based on the 
sliding window histogram methods described above. The 
histogram obtained for each window is then used to compute 
the output gray value in the center of the window. This 
mapping, called histogram equalization, is described in 
detail in the next section.

3.3  Histogram equalization

HE improves the contrast of an image by mapping the gray 
values proportional to their rank. As a consequence, the 
histogram of the resulting image has a uniform distribution 
over the whole gray value range. The HE transfer function 
f(g) for the gray value g is given by the cumulative histogram

where n is the number of pixels under consideration, i.e., 
all pixels in the image for classical HE or n = (2r + 1)2 for 
window-based approaches.

AHE computes the transfer function for pixel (i, j) using 
the histogram of the filter window centered at pixel (i, j). 
Thus, the transfer function is not the same for the whole 
image, but depends on the local neighborhood of each pixel. 
This has the advantage that local variations in the image can 
be considered for the mapping, but it comes with increased 
computational cost. In the following, we describe how the 
per-pixel cost can be reduced.

The HE transfer function f(g) given in Eq. (5) requires 
the computation of the cumulative histogram C(g). In a 
straightforward implementation, one could simply compute 
∑g

k=0
H(k) , which requires g + 1 additions. In the worst case, 

when the window contains only the gray value g = L − 1 , 
this leads to L additions. As Wang and Tao [17] point out, 
the amount of computation required for C(g) can be reduced 
by utilizing the fact that the number of values n within a 
window is constant

Using this, the summation can be split such that at most half 
of the bins need to be added

(5)f (g) =
L − 1

n
C(g) =

L − 1

n

g
∑

k=0

H(k),

(6)n =

L−1
∑

k=0

H(k) =

g
∑

k=0

H(k) +

L−1
∑

k=g+1

H(k).

Using Eq. (7), the computation of f(g) requires at most L
2
 

additions and one subtraction, as well as one multiplication 
with a constant factor L−1

n
 . Note that the number of 

operations depends only on the number of histogram bins 
L and is therefore in O(1) with respect to the filter window 
size.

3.4  Histogram clipping

In homogeneous image regions, the dominant gray values 
typically produce high peaks in the respective histogram 
bins. After the equalization, an originally narrow range of 
input values will be mapped to a wide range of output values, 
which can lead to an undesired over-amplification of noise. 
CLAHE [12] reduces the amount of contrast enhancement 
by limiting the histogram bins to a clip limit C ∈ ℕ before 
computing the HE transfer function f(g). The clipped 
values nC ∈ ℕ are redistributed evenly over all histogram 
bins. Algorithm 2 shows how the clipped and redistributed 
histogram Ĥ is computed.
Algorithm 2  Compute clipped histogram Ĥ , based on the 
description in [12]

Analogous to Eq. (5), the CLAHE transfer function is 
defined as

where Ĥ  is the clipped and redistributed histogram as 
described in Algorithm 2. Note that, for a sliding-window 
implementation of CLAHE, we need to evaluate the transfer 
function only for the gray value in the center of the window. 
Hence, it is unnecessary to compute the entire clipped 
histogram explicitly. Instead, we introduce a more efficient 
algorithm to compute the clipped cumulative histogram 
Ĉ(g) as follows. We split the sum in Eq. (8) into the sum of 

(7)C(g) =

�

∑g

k=0
H(k) if g <

L

2

n −
∑L−1

k=g+1
H(k) otherwise.

(8)f̂ (g) =
L − 1

n

g
∑

k=0

Ĥ(k),
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the clipped histogram up to g and the sum of redistributed 
values up to g

Using a similar approach as in Eq. (6), we can express nC as 
the difference between the total number of gray values and 
the sum of the clipped, but not yet redistributed histogram 
bins

Combining the rearrangements made in Eqs. (9) and (10), 
we end up with Algorithm 3, where we compute Ĉ(g) in 
a single pass over the histogram. Note that the number of 
operations depends only on the number of histogram bins 
L and is therefore in O(1) with respect to the filter window 
size.
Algorithm 3  Efficient evaluation of Ĉ(g)

3.5  Multilevel histograms

Perreault and Hébert [10] propose using multilevel 
histograms and conditional updating of the kernel for the 
median filter. In the following, we investigate how these 
optimizations can be applied to AHE and CLAHE.

The idea of multilevel histograms is as follows: Instead of 
a single histogram, two histograms with different granularity 
are maintained. The “fine” histogram counts the frequency 
of each gray value, whereas a bin in the “coarse” histogram 
accumulates a segment of multiple gray values. Typically, 
the fine histogram consists of 256 bins, while the coarse 
histogram only consists of 16 bins, each containing the sum 
of 16 corresponding fine bins. In our experiments, we also 

(9)

g
∑

k=0

Ĥ(k) =

g
∑

k=0

(

min{H(k), C} +
nC

L

)

= (g + 1)
nC

L
+

g
∑

k=0

min{H(k), C}

(10)

nC =

L−1
∑

k=0

max{0,H(k) − C}

= n −

L−1
∑

k=0

min{H(k), C}.

evaluate a configuration with 8 coarse bins, where each bin 
contains the sum of 32 corresponding fine bins.

Keeping two histograms in parallel introduces a slight 
computational overhead, but allows two interesting 
optimizations. First, the cumulative sum up to a certain 
bin can be computed with fewer additions by summing 
over the coarse histogram. Second, segments of the fine 
histogram can be computed on demand, as the sum of the 
segments is already stored in the corresponding bins of the 
coarse histogram. This is particularly beneficial when the 
image is smooth, such that the histograms of neighboring 
filter windows differ only slightly. Then, most bins of the 
histogram stay unchanged and only a few fine segments 
need to be updated. On the contrary, high-frequency images 
can lead to significantly slower processing times due to the 
increased overhead. Note that the coarse and fine column 
histograms as well as the coarse kernel histogram are always 
updated. The segments of the fine kernel histogram are 
updated only on demand.

Extending AHE with multilevel histograms is 
straightforward. We compute the HE transfer function 
Eq. (5) by first summing over the coarse histogram, followed 
a single fine histogram segment up to the gray value g. The 
extension of CLAHE with multilevel histograms is more 
complicated, because the naive implementation described 
in Algorithm 2 requires computing the full histogram on 
the fine level. This would render multilevel histograms 
useless, as the increased overhead of computing them is not 
compensated. Using our method proposed in Algorithm 3, 
however, we can skip segments of the fine histogram 
conditionally based on the value of the corresponding coarse 
bin. In our experiments, we only update the fine segment 
when the value of the coarse bin is above the clip limit. This 
simple criterion ensures that none of the corresponding fine 
histogram bins exceeds the clip limit. Thus, there is no need 
to clip them.

4  Experiments

In this section, we benchmark our method against previous 
algorithms and discuss the results. To measure the effect of 
the proposed improvements independently from each other, 
we separately evaluate the sliding-window methods and the 
transfer function implementations for AHE and CLAHE, 
respectively.

We measure the runtimes of the algorithms using a data-
set of 25 grayscale images taken from the MVTec HALCON 
machine vision library.1 The images cover different scenes 
with varying contrast and are scaled to a size of 1000 × 1000 

1 https:// www. mvtec. com/ produ cts/ halcon.

https://www.mvtec.com/products/halcon
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pixels. Figure 2 shows an overview of the dataset. For each 
image, we first perform 3 warm-up runs and then measure 
the average time over 10 runs. The reported values are the 
mean over the average times of all 25 images. Timing was 
conducted on an Intel Core i9-10900X CPU using a sin-
gle thread. Note that, in general, all described methods can 
be further accelerated using parallelization with multiple 
threads. We implemented all algorithms in C for the best 
performance. Furthermore, we ensure that all analyzed 
implementations of AHE and CLAHE produce the exact 
same result images by computing the sum of absolute differ-
ences (SAD) with respect to the results of a baseline imple-
mentation. The SAD is 0 for all analyzed variants of AHE 
and CLAHE, respectively.

4.1  Sliding‑window methods

We compare the runtime of our O(1) algorithm for AHE 
against the sliding-window methods described in Sect. 3.2. 
For this, we implemented AHE using the naive O(r2) 

method, the O(r) method based on Huang’s algorithm [3, 
7, 15–17], and the O(r) method with zig-zag sliding order 
proposed in [8]. Figure 3 shows the timings as a function of 

Fig. 2  The dataset of 25 images 
used for our experiments

0 50 100 150 200 250 300
0

200

400

600

800

1,000

Filter Radius (pixels)

P
ro
ce
ss
in
g
T
im

e
(m

ill
is
ec
on

ds
)

naive – O(r2)
Huang – O(r)
zig-zag – O(r)

ours – O(1)

Fig. 3  Runtime comparison of AHE implementations using different 
sliding-window methods on images of size 1000 × 1000 pixels



Journal of Real-Time Image Processing           (2024) 21:93  Page 7 of 9    93 

the filter radius r ∈ {1,… , 300} . The naive O(r2) method 
exhibits very high execution times, even for small filter sizes. 
It already takes about 1 s for a filter radius of r = 22 , which 
makes the method impracticable for real-world applications. 
The runtimes of the O(r) methods grow linearly with the 
filter size. It can be observed that the zig-zag sliding order 
[8] has a slight runtime advantage, particularly for large fil-
ter sizes. For instance, at r = 300 , it is about 8% faster than 
Huang’s algorithm. Our proposed O(1) method achieves 
constant processing times of around 45ms for arbitrary fil-
ter sizes. Note that the O(r) methods are slightly faster for 
very small filter sizes due to the higher constant cost of our 
method. For r = 9 , our O(1) method is on par with the O(r) 
methods, and for larger filter sizes, it is significantly faster. 
For instance, at r = 300 , it is about 94% faster than the O(r) 
methods.

Note that we do not provide extensive benchmark data 
for sliding window implementations of CLAHE, since the 
results for AHE are transferable. The only difference is a 
slightly higher constant cost. See Sect. 4.2 for details.

4.2  Transfer function computation

We provide benchmarks for the efficient implementations 
of the AHE and CLAHE transfer functions described in 

Sect. 3.3 and Sect. 3.4, as well as the multilevel histogram 
approach described in Sect. 3.5. Tables 1 and 2 show the 
runtimes of AHE and CLAHE, respectively, with different 
implementations of the transfer functions. Although the 
runtime of our sliding-window approach is basically inde-
pendent of the filter mask size, we report the runtimes for 
r = 25 , r = 150 , and r = 300 . Our experiments show that the 
runtime increases slightly with increasing filter radius due 
to the increased overhead for managing large filter windows.

The AHE baseline achieves runtimes between 40.4ms 
and 47.8ms , depending on the filter radius. Splitting 
the histogram range as described in Eq. (7) improves the 
runtime only slightly by 0.6 − 1.5% . Even though one might 
theoretically expect a higher speedup based on Eq. (7), the 
additional branching and the diverse gray value distributions 
of real images diminish the advantage of this optimization. 
Using multilevel histograms with 16 coarse bins, the runtime 
improves significantly by 16.7 − 30.2% . Using multilevel 
histograms with only 8 coarse bins improves the runtime 
further by 26.4 − 32.2% compared to the baseline. Note 
that the histogram splitting optimization does not decrease 
the runtime any further when using multilevel histograms. 
Furthermore, note that both optimizations make assumptions 
on the gray value distributions in the image and thus make 
the runtime dependent on the image content.

Table 1  Timing of the 
proposed AHE algorithm using 
different implementations for 
computing the transfer function. 
‘Multilevel’ refers to the usage 
of multilevel histograms and the 
number of coarse bins. ‘Split’ 
denotes whether the transfer 
function is computed using 
Eq. (7)

Multilevel Split r = 25 r = 150 r = 300

Time (ms) Speedup (%) Time (ms) Speedup (%) Time (ms) Speedup (%)

40.4 46.4 47.8
✓ 39.8 1.5 46.0 0.9 47.5 0.6

✓ (16 bins) 28.2 30.2 37.1 20.0 39.8 16.7
✓ (16 bins) ✓ 28.3 30.0 37.1 20.0 39.8 16.7
✓ (8 bins) 27.4 32.2 33.5 27.8 35.2 26.4
✓ (8 bins) ✓ 27.4 32.2 33.6 27.6 35.3 26.2

Table 2  Timing of the proposed CLAHE algorithm using different 
implementations for computing the transfer function. ‘Multilevel’ 
refers to the usage of multilevel histograms and the number of coarse 

bins. ‘Implicit’ denotes whether the transfer function is computed 
using Algorithm 3

r = 25 r = 150 r = 300

Clip Limit Multilevel Implicit Time (ms) Speedup (%) Time (ms) Speedup (%) Time (ms) Speedup (%)

C = 0.1n 68.5 73.5 75.4
✓ 58.7 14.3 63.2 14.0 64.5 14.5

✓ (16 bins) ✓ 55.0 19.7 65.7 10.6 69.5 7.8
✓ (8 bins) ✓ 44.1 35.6 52.9 28.0 55.7 26.1

C = 0.01n 71.5 79.9 81.8
✓ 64.9 9.2 72.9 8.8 74.8 8.6

✓ (16 bins) ✓ 77.7 −8.7 108.0 −35.2 120.2 −46.9
✓ (8 bins) ✓ 60.0 16.1 83.3 −4.3 91.8 −12.2
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The CLAHE baseline described in Algorithm 2 achieves 
runtimes of 68.5 ms to 75.4 ms for C = 0.1n and 71.5 ms to 
81.8 ms for C = 0.01n . Note that a lower clip threshold C 
leads to clipping more bins and thus to an increased com-
putation time. Computing the transfer function implicitly, 
as described in Algorithm 3, improves the runtime signifi-
cantly by 8.6–14.5%. It can be observed that the optimiza-
tion is particularly beneficial for low clip thresholds as well 
as small mask radii. The benefits of multilevel histograms 
for CLAHE are mixed. For a high clip limit of C = 0.1n , 
the runtime improves by 7.8–19.7% using 16 coarse bins 
and by 26.1–35.6% using 8 coarse bins. For a low clip limit 
of C = 0.01n , the runtime worsens by 8.7–46.9% using 16 
coarse bins. Using 8 coarse bins, the runtime improves by 
16.1% for r = 25 , but worsens by 4.3–12.2% for larger mask 
radii.

In general, multilevel histograms turn out to be more 
beneficial for small mask sizes and for high clip thresholds, 
where AHE can be seen as a special case of CLAHE with 
C = 1 , i.e., no clipping occurs. Small mask sizes lead to 
sparse changes in the histogram, meaning that many fine 
segments of the histogram do not need to be updated. High 
clip thresholds lead to a high probability that the values in 
a segment do not need to be clipped, which allows skipping 
whole segments when computing the CLAHE transfer 
function. Low clip thresholds lead to a high probability that a 
segment of the histogram must be clipped. Then, it becomes 
necessary to compute the respective fine histogram segment 
for the evaluation of the transfer function. Unfortunately, our 
decision criterion causes too many fine histogram updates 
for low clip thresholds and thus diminishes the advantages 
of the multilevel histogram optimization.

5  Conclusion

In this work, we presented an efficient O(1) algorithm for 
AHE and CLAHE. Our method reduces the processing time 
by at least an order of magnitude to just a few milliseconds, 
even when using very large filter sizes. This allows using 
contrast enhancement methods, such as AHE and CLAHE, 
to be used in practical applications. Contrary to commonly 
used approximative approaches like IAHE, our method 
computes the exact HE transfer function for each pixel 
without interpolation artifacts. Future work might address 
the constant cost of computing the HE transfer function 
for each window. If f(g) could be computed incrementally 
[18], it could be updated in the next window instead of 
being recomputed from scratch. Furthermore, multilevel 
histograms have proven very effective for AHE, but not for 
CLAHE. We encourage researchers to find a better suiting 

implementation of multilevel histograms for CLAHE, 
because the potential speedup is promising.
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