
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:93
https://doi.org/10.1007/s11554-024-01465-1

RESEARCH

Adaptive histogram equalization in constant time

Philipp Härtinger1 · Carsten Steger1

Received: 11 March 2024 / Accepted: 17 April 2024
© The Author(s) 2024

Abstract
Adaptive Histogram Equalization (AHE) and its contrast-limited variant CLAHE are well-known and effective methods for
improving the local contrast in an image. However, the fastest available implementations scale linearly with the filter mask
size, which results in high execution times. This presents an obstacle in real-world applications, where large filter mask sizes
are desired while maintaining low execution times. In this work, we propose an efficient algorithm for AHE that reduces
the per-pixel computational complexity to O(1) . To the best of our knowledge, this is the first time that a constant-time
algorithm is proposed for AHE and CLAHE. In contrast to commonly used fast implementations, our method computes the
exact result for each pixel without interpolation artifacts. We benchmark and compare our method to existing algorithms.
Our experiments show that our method exhibits superior execution times independent of the filter mask size, which makes
AHE and CLAHE fast enough to be usable in real-world applications.

Keywords Histogram equalization · Contrast enhancement · Image processing · Computational efficiency

1 Introduction

Histogram Equalization (HE) is a classical method for
improving the global contrast of an image. It linearizes the
gray value histogram, such that the result image uses the
full range of the possible gray values. A drawback of this
method is, however, that local variations are not taken into
account. Adaptive Histogram Equalization (AHE) [4, 5, 11]
solves this issue by considering only the gray values within
a rectangular filter window around each pixel to compute
an individual HE transfer function for the respective pixel.
Because AHE can lead to over-amplification of noise, Pizer
et al. [12] proposed Contrast-Limited Adaptive Histogram
Equalization (CLAHE), which allows to limit the maximum
desired contrast in homogeneous regions. Due to its efficacy,
CLAHE is still a popular image preprocessing method [9,
14] and has successfully been used to improve the perfor-
mance of Deep Learning models [2, 13]. The computational
complexity of AHE and CLAHE is very high, because they

require computing the histogram of each filter window.
Using a naive implementation in which the histogram is rec-
omputed explicitly for each window, the runtime can easily
become multiple seconds, minutes, or even hours, depending
on the size of the filter window. To circumvent this prob-
lem, most publicly available implementations of AHE and
CLAHE are based on an approximative algorithm that is
fast, but can lead to visible artifacts in the resulting image.
This severely impacts the applicability of AHE in many real-
world scenarios, where runtimes of just a few milliseconds
are required and visual artifacts are not acceptable. Because
of this restriction, we only consider methods that implement
an exact variant of AHE and CLAHE and thus do not lead
to such artifacts.

In this work, we propose a fast constant-time algorithm
for AHE and CLAHE that is free of visual artifacts and
thus suitable for practical applications. Section 2 discusses
related work. In Sect. 3, we describe the O(1) algorithm for
sliding-window histograms as well as efficient implementa-
tions of the AHE and CLAHE transfer functions. In Sect. 4,
we benchmark our method against previous algorithms and
discuss the results. Finally, Sect. 5 presents our conclusions. * Philipp Härtinger

 haertinger@mvtec.com

 Carsten Steger
 steger@mvtec.com

1 MVTec Software GmbH, Arnulfstr. 205, 80634 Munich,
Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-024-01465-1&domain=pdf

 Journal of Real-Time Image Processing (2024) 21:93 93 Page 2 of 9

2 Related work

In the past, many improvements for AHE and CLAHE have
been proposed. Pizer et al. [12] suggest an approximative
approach in which the HE transfer function is computed
only for a subset of all pixels and interpolated between
these points. This method is also referred to as Interpolated
Adaptive Histogram Equalization (IAHE). It is a popular
choice in many computer vision libraries due to its low
execution time. However, the interpolation can lead to
artifacts, as shown in Fig. 1. In practice, filtering an image
translated by several pixels can lead to a significantly
different result than filtering the original image, meaning
that the interpolation-based approach is not shift-equivariant.
This poses a problem, e.g., in industrial inspection, where the
artifacts might be interpreted as defects, leading to falsely
rejected parts. Our work differs fundamentally from IAHE in
that we compute the exact transfer function for each pixel and
thus avoid the interpolation artifacts shown in Fig. 1b. Kim
et al. [7] propose Block-Overlapped Histogram Equalization
(BOHE), which applies Huang’s O(n) sliding-window
histogram method [3] to AHE. The core idea in [3] is that
when the window slides one pixel to the right, one can simply
update the histogram computed for the previous pixel instead
of fully recomputing it. Sund et al. [15, 16] propose Sliding-
Window Adaptive Histogram Equalization (SWAHE), which
applies the O(n) algorithm from [3] to CLAHE. Wang and
Tao [17] also apply [3] to AHE and propose several small

improvements to speed up the computation of the HE transfer
function. Kong and Ibrahim [8] propose Multiple Layers
Block-Overlapped Histogram Equalization (MLBOHE),
which also applies Huang’s O(n) algorithm [3] to AHE.
Furthermore, they employ an optimized zig-zag sliding
order to avoid recomputation of the window histogram at
the beginning of each row. Kim et al. [6] propose Partially
Overlapped Sub-Block Histogram Equalization (POSHE),
where HE is applied to overlapping sub-blocks of the image
and the results are accumulated. Due to the large stride of
half the window size, the result must be filtered to reduce
blocking artifacts. Fu et al. [1] propose POSHE-based
Optimum Clip-Limit Contrast Enhancement (POSHEOC),
which combines POSHE [6] with CLAHE.

Our work mainly follows [7] and [15–17] in that we
improve the computational complexity of the AHE and
CLAHE algorithms. In contrast to the existing linear-time
methods, our proposed method has a constant per-pixel
runtime that is independent of the filter window size. Con-
trary to [1, 6, 12], we do not use approximative algorithms.
This means that our method reproduces the exact same
results as the original algorithms for AHE and CLAHE
and does not introduce visual artifacts.

3 Efficient adaptive histogram equalization

In this section, we describe the main building blocks for
efficient AHE: First, we show how the gray value histogram
of a sliding window can be maintained with O(1) complexity.
Second, given the histogram for a window, we compute the
HE transfer function for the center pixel of the window in
an efficient manner. Third, we describe how the CLAHE
transfer function can be implemented efficiently. Fourth, we
describe how multilevel histograms can be applied to AHE
and CLAHE, respectively. A high-level overview on the
complete AHE and CLAHE process is given in Algorithm 1.
Algorithm 1 High-level overview on AHE and CLAHE

(a) Input

(b) IAHE

(c) CLAHE

Fig. 1 Interpolation artifacts of IAHE. (a) shows the original input
image with a linear gray value ramp. (b) shows the result of IAHE,
with banding artifacts due to the interpolation. (c) shows the smooth
result of exact CLAHE. The artifacts on the left and right are due to
border treatment and thus inevitable

Journal of Real-Time Image Processing (2024) 21:93 Page 3 of 9 93

3.1 Notation

We consider an image I ∈ {0,… , 255}M×N with rows
i ∈ {0,… ,M − 1} and columns j ∈ {0,… ,N − 1} . Note that
we use 8-bit images in this description, but the underlying
methods are not restricted to this case. Without loss of
generality, we consider a square filter window with radius
r ∈ ℕ , hence the window size is (2r + 1) × (2r + 1) . We
denote the gray value histogram of the window centered
at pixel (i, j) as the kernel histogram Hi,j ∈ ℕ

L , where the
number of bins L ∈ ℕ is typically 256 for 8-bit images. The
histogram bin Hi,j(g) counts how often a gray value g occurs
in the filter window

where
[

Ii,j = g
]

 is the indicator function that evaluates to
1 if Ii,j = g and 0 otherwise. The cumulative histogram is
defined as

It counts the number of pixels that have a gray value less
than or equal to g.

3.2 Sliding‑window histogram computation

For each pixel position (i, j) in the image, AHE requires the
computation of a histogram Hi,j for the filter window centered
at the pixel (i, j). This is implemented using a sliding window
approach where the filter window moves pixel-wise from left
to right for each row. Histograms of sliding windows have been
used for a long time in the filtering literature, e.g., to compute
the median filter [3]. Thus, there exist efficient algorithms
that avoid redundant computations in the overlap regions
of neighboring windows. The choice of a suitable sliding
window histogram method is crucial, because the runtime of
existing AHE and CLAHE implementations is dominated by
the computation of histograms. In the following, we describe
the sliding-window histogram algorithms commonly used in
the literature.

A naive but straightforward implementation of a sliding
window histogram algorithm simply computes the full
histogram at each spatial position in the image. To compute the
histogram for a window, all (2r + 1)2 pixels within the window
need to be assessed and the corresponding histogram bins are
increased. This operation requires (2r + 1)2 bin increments;
hence, its computational complexity is O(r2).

Huang et al. [3] noticed that most of the computation in
the naive algorithm is redundant and can be avoided by only
updating the parts of the histogram that actually changed. Their

(1)Hi,j(g) =

i+r
∑

x=i−r

j+r
∑

y=j−r

[

Ix,y = g
]

,

(2)Ci,j(g) =

g
∑

k=0

Hi,j(k).

improved algorithm starts with initializing a full histogram of
the window centered at the first pixel (i, 0) in row i. When
the window moves one column to the right, the histogram is
updated by removing the values of the leftmost column j − r
from the histogram and adding the new rightmost column
j + r + 1 . Although the initialization of the first window of
each row still requires (2r + 1)2 bin increments, each further
update only requires 2r + 1 subtractions and 2r + 1 additions.
Thus, for large image sizes, the amortized computational
complexity becomes O(r) . A slight modification of Huang’s
algorithm was proposed by Kong and Ibrahim [8]. They
propose a “zig-zag” sliding order where the window first
slides from left to right, then down by one row, and then slides
backwards from right to left. Using this sliding order, the full
histogram needs to be initialized only once instead of at the
beginning of each row. However, since each update of the
sliding-window histogram still requires 2r + 1 bin decrements
and 2r + 1 bin increments, the overall computational
complexity remains O(r).

Perreault and Hébert [10] noticed that in Huang’s
algorithm, each pixel is still added to and removed from
2r + 1 histograms, since no information is retained when the
window slides down by one row. Their improved algorithm
makes use of the distributivity of histograms, i.e., the property
that the kernel histogram can be expressed as the sum of the
histograms of the filter window’s columns. For the current row
i, column histograms hc ∈ ℕ

L are defined as

Using this to rearrange Eq. (1), the kernel histogram can be
expressed as

Note that this implies that, in addition to the kernel
histogram, N additional column histograms hc are
maintained, where c ∈ {0,… ,N − 1} . Starting at the top-
left pixel of the image, the kernel histogram is initialized by
summing over its column histograms as in Eq. (4). Moving
the window one column to the right, the kernel histogram
is updated by subtracting the leftmost column histogram
hj−r and adding the new rightmost column histogram hj+r+1 .
When moving the window down to the next row, the column
histograms are updated by subtracting the gray values of the
top row i − r and adding the gray values of the new bottom
row i + r + 1 . For a single window, each update consists
of one addition and one subtraction for updating the new
rightmost column histogram, as well as L additions and L
subtractions for updating the kernel histogram. Since the
update step for the kernel histogram is now independent of

(3)hc(g) =

i+r
∑

x=i−r

[

Ix,c = g
]

.

(4)Hi,j(g) =

j+r
∑

c=j−r

hc(g).

 Journal of Real-Time Image Processing (2024) 21:93 93 Page 4 of 9

the filter mask radius r, the amortized per-pixel complexity
becomes O(1) . In practice, the addition of histograms
with L = 256 bins is naturally vectorizable using SIMD
instructions, which leads to a relatively low constant cost of
the update step. Furthermore, when moving to the next row,
all column histograms can be updated at once, which leads
to a more advantageous memory access pattern.

AHE and CLAHE can be implemented based on the
sliding window histogram methods described above. The
histogram obtained for each window is then used to compute
the output gray value in the center of the window. This
mapping, called histogram equalization, is described in
detail in the next section.

3.3 Histogram equalization

HE improves the contrast of an image by mapping the gray
values proportional to their rank. As a consequence, the
histogram of the resulting image has a uniform distribution
over the whole gray value range. The HE transfer function
f(g) for the gray value g is given by the cumulative histogram

where n is the number of pixels under consideration, i.e.,
all pixels in the image for classical HE or n = (2r + 1)2 for
window-based approaches.

AHE computes the transfer function for pixel (i, j) using
the histogram of the filter window centered at pixel (i, j).
Thus, the transfer function is not the same for the whole
image, but depends on the local neighborhood of each pixel.
This has the advantage that local variations in the image can
be considered for the mapping, but it comes with increased
computational cost. In the following, we describe how the
per-pixel cost can be reduced.

The HE transfer function f(g) given in Eq. (5) requires
the computation of the cumulative histogram C(g). In a
straightforward implementation, one could simply compute
∑g

k=0
H(k) , which requires g + 1 additions. In the worst case,

when the window contains only the gray value g = L − 1 ,
this leads to L additions. As Wang and Tao [17] point out,
the amount of computation required for C(g) can be reduced
by utilizing the fact that the number of values n within a
window is constant

Using this, the summation can be split such that at most half
of the bins need to be added

(5)f (g) =
L − 1

n
C(g) =

L − 1

n

g
∑

k=0

H(k),

(6)n =

L−1
∑

k=0

H(k) =

g
∑

k=0

H(k) +

L−1
∑

k=g+1

H(k).

Using Eq. (7), the computation of f(g) requires at most L
2

additions and one subtraction, as well as one multiplication
with a constant factor L−1

n
 . Note that the number of

operations depends only on the number of histogram bins
L and is therefore in O(1) with respect to the filter window
size.

3.4 Histogram clipping

In homogeneous image regions, the dominant gray values
typically produce high peaks in the respective histogram
bins. After the equalization, an originally narrow range of
input values will be mapped to a wide range of output values,
which can lead to an undesired over-amplification of noise.
CLAHE [12] reduces the amount of contrast enhancement
by limiting the histogram bins to a clip limit C ∈ ℕ before
computing the HE transfer function f(g). The clipped
values nC ∈ ℕ are redistributed evenly over all histogram
bins. Algorithm 2 shows how the clipped and redistributed
histogram Ĥ is computed.
Algorithm 2 Compute clipped histogram Ĥ , based on the
description in [12]

Analogous to Eq. (5), the CLAHE transfer function is
defined as

where Ĥ is the clipped and redistributed histogram as
described in Algorithm 2. Note that, for a sliding-window
implementation of CLAHE, we need to evaluate the transfer
function only for the gray value in the center of the window.
Hence, it is unnecessary to compute the entire clipped
histogram explicitly. Instead, we introduce a more efficient
algorithm to compute the clipped cumulative histogram
Ĉ(g) as follows. We split the sum in Eq. (8) into the sum of

(7)C(g) =

�

∑g

k=0
H(k) if g <

L

2

n −
∑L−1

k=g+1
H(k) otherwise.

(8)f̂ (g) =
L − 1

n

g
∑

k=0

Ĥ(k),

Journal of Real-Time Image Processing (2024) 21:93 Page 5 of 9 93

the clipped histogram up to g and the sum of redistributed
values up to g

Using a similar approach as in Eq. (6), we can express nC as
the difference between the total number of gray values and
the sum of the clipped, but not yet redistributed histogram
bins

Combining the rearrangements made in Eqs. (9) and (10),
we end up with Algorithm 3, where we compute Ĉ(g) in
a single pass over the histogram. Note that the number of
operations depends only on the number of histogram bins
L and is therefore in O(1) with respect to the filter window
size.
Algorithm 3 Efficient evaluation of Ĉ(g)

3.5 Multilevel histograms

Perreault and Hébert [10] propose using multilevel
histograms and conditional updating of the kernel for the
median filter. In the following, we investigate how these
optimizations can be applied to AHE and CLAHE.

The idea of multilevel histograms is as follows: Instead of
a single histogram, two histograms with different granularity
are maintained. The “fine” histogram counts the frequency
of each gray value, whereas a bin in the “coarse” histogram
accumulates a segment of multiple gray values. Typically,
the fine histogram consists of 256 bins, while the coarse
histogram only consists of 16 bins, each containing the sum
of 16 corresponding fine bins. In our experiments, we also

(9)

g
∑

k=0

Ĥ(k) =

g
∑

k=0

(

min{H(k), C} +
nC

L

)

= (g + 1)
nC

L
+

g
∑

k=0

min{H(k), C}

(10)

nC =

L−1
∑

k=0

max{0,H(k) − C}

= n −

L−1
∑

k=0

min{H(k), C}.

evaluate a configuration with 8 coarse bins, where each bin
contains the sum of 32 corresponding fine bins.

Keeping two histograms in parallel introduces a slight
computational overhead, but allows two interesting
optimizations. First, the cumulative sum up to a certain
bin can be computed with fewer additions by summing
over the coarse histogram. Second, segments of the fine
histogram can be computed on demand, as the sum of the
segments is already stored in the corresponding bins of the
coarse histogram. This is particularly beneficial when the
image is smooth, such that the histograms of neighboring
filter windows differ only slightly. Then, most bins of the
histogram stay unchanged and only a few fine segments
need to be updated. On the contrary, high-frequency images
can lead to significantly slower processing times due to the
increased overhead. Note that the coarse and fine column
histograms as well as the coarse kernel histogram are always
updated. The segments of the fine kernel histogram are
updated only on demand.

Extending AHE with multilevel histograms is
straightforward. We compute the HE transfer function
Eq. (5) by first summing over the coarse histogram, followed
a single fine histogram segment up to the gray value g. The
extension of CLAHE with multilevel histograms is more
complicated, because the naive implementation described
in Algorithm 2 requires computing the full histogram on
the fine level. This would render multilevel histograms
useless, as the increased overhead of computing them is not
compensated. Using our method proposed in Algorithm 3,
however, we can skip segments of the fine histogram
conditionally based on the value of the corresponding coarse
bin. In our experiments, we only update the fine segment
when the value of the coarse bin is above the clip limit. This
simple criterion ensures that none of the corresponding fine
histogram bins exceeds the clip limit. Thus, there is no need
to clip them.

4 Experiments

In this section, we benchmark our method against previous
algorithms and discuss the results. To measure the effect of
the proposed improvements independently from each other,
we separately evaluate the sliding-window methods and the
transfer function implementations for AHE and CLAHE,
respectively.

We measure the runtimes of the algorithms using a data-
set of 25 grayscale images taken from the MVTec HALCON
machine vision library.1 The images cover different scenes
with varying contrast and are scaled to a size of 1000 × 1000

1 https:// www. mvtec. com/ produ cts/ halcon.

https://www.mvtec.com/products/halcon

 Journal of Real-Time Image Processing (2024) 21:93 93 Page 6 of 9

pixels. Figure 2 shows an overview of the dataset. For each
image, we first perform 3 warm-up runs and then measure
the average time over 10 runs. The reported values are the
mean over the average times of all 25 images. Timing was
conducted on an Intel Core i9-10900X CPU using a sin-
gle thread. Note that, in general, all described methods can
be further accelerated using parallelization with multiple
threads. We implemented all algorithms in C for the best
performance. Furthermore, we ensure that all analyzed
implementations of AHE and CLAHE produce the exact
same result images by computing the sum of absolute differ-
ences (SAD) with respect to the results of a baseline imple-
mentation. The SAD is 0 for all analyzed variants of AHE
and CLAHE, respectively.

4.1 Sliding‑window methods

We compare the runtime of our O(1) algorithm for AHE
against the sliding-window methods described in Sect. 3.2.
For this, we implemented AHE using the naive O(r2)

method, the O(r) method based on Huang’s algorithm [3,
7, 15–17], and the O(r) method with zig-zag sliding order
proposed in [8]. Figure 3 shows the timings as a function of

Fig. 2 The dataset of 25 images
used for our experiments

0 50 100 150 200 250 300
0

200

400

600

800

1,000

Filter Radius (pixels)

P
ro
ce
ss
in
g
T
im

e
(m

ill
is
ec
on

ds
)

naive – O(r2)
Huang – O(r)
zig-zag – O(r)

ours – O(1)

Fig. 3 Runtime comparison of AHE implementations using different
sliding-window methods on images of size 1000 × 1000 pixels

Journal of Real-Time Image Processing (2024) 21:93 Page 7 of 9 93

the filter radius r ∈ {1,… , 300} . The naive O(r2) method
exhibits very high execution times, even for small filter sizes.
It already takes about 1 s for a filter radius of r = 22 , which
makes the method impracticable for real-world applications.
The runtimes of the O(r) methods grow linearly with the
filter size. It can be observed that the zig-zag sliding order
[8] has a slight runtime advantage, particularly for large fil-
ter sizes. For instance, at r = 300 , it is about 8% faster than
Huang’s algorithm. Our proposed O(1) method achieves
constant processing times of around 45ms for arbitrary fil-
ter sizes. Note that the O(r) methods are slightly faster for
very small filter sizes due to the higher constant cost of our
method. For r = 9 , our O(1) method is on par with the O(r)
methods, and for larger filter sizes, it is significantly faster.
For instance, at r = 300 , it is about 94% faster than the O(r)
methods.

Note that we do not provide extensive benchmark data
for sliding window implementations of CLAHE, since the
results for AHE are transferable. The only difference is a
slightly higher constant cost. See Sect. 4.2 for details.

4.2 Transfer function computation

We provide benchmarks for the efficient implementations
of the AHE and CLAHE transfer functions described in

Sect. 3.3 and Sect. 3.4, as well as the multilevel histogram
approach described in Sect. 3.5. Tables 1 and 2 show the
runtimes of AHE and CLAHE, respectively, with different
implementations of the transfer functions. Although the
runtime of our sliding-window approach is basically inde-
pendent of the filter mask size, we report the runtimes for
r = 25 , r = 150 , and r = 300 . Our experiments show that the
runtime increases slightly with increasing filter radius due
to the increased overhead for managing large filter windows.

The AHE baseline achieves runtimes between 40.4ms
and 47.8ms , depending on the filter radius. Splitting
the histogram range as described in Eq. (7) improves the
runtime only slightly by 0.6 − 1.5% . Even though one might
theoretically expect a higher speedup based on Eq. (7), the
additional branching and the diverse gray value distributions
of real images diminish the advantage of this optimization.
Using multilevel histograms with 16 coarse bins, the runtime
improves significantly by 16.7 − 30.2% . Using multilevel
histograms with only 8 coarse bins improves the runtime
further by 26.4 − 32.2% compared to the baseline. Note
that the histogram splitting optimization does not decrease
the runtime any further when using multilevel histograms.
Furthermore, note that both optimizations make assumptions
on the gray value distributions in the image and thus make
the runtime dependent on the image content.

Table 1 Timing of the
proposed AHE algorithm using
different implementations for
computing the transfer function.
‘Multilevel’ refers to the usage
of multilevel histograms and the
number of coarse bins. ‘Split’
denotes whether the transfer
function is computed using
Eq. (7)

Multilevel Split r = 25 r = 150 r = 300

Time (ms) Speedup (%) Time (ms) Speedup (%) Time (ms) Speedup (%)

40.4 46.4 47.8
✓ 39.8 1.5 46.0 0.9 47.5 0.6

✓ (16 bins) 28.2 30.2 37.1 20.0 39.8 16.7
✓ (16 bins) ✓ 28.3 30.0 37.1 20.0 39.8 16.7
✓ (8 bins) 27.4 32.2 33.5 27.8 35.2 26.4
✓ (8 bins) ✓ 27.4 32.2 33.6 27.6 35.3 26.2

Table 2 Timing of the proposed CLAHE algorithm using different
implementations for computing the transfer function. ‘Multilevel’
refers to the usage of multilevel histograms and the number of coarse

bins. ‘Implicit’ denotes whether the transfer function is computed
using Algorithm 3

r = 25 r = 150 r = 300

Clip Limit Multilevel Implicit Time (ms) Speedup (%) Time (ms) Speedup (%) Time (ms) Speedup (%)

C = 0.1n 68.5 73.5 75.4
✓ 58.7 14.3 63.2 14.0 64.5 14.5

✓ (16 bins) ✓ 55.0 19.7 65.7 10.6 69.5 7.8
✓ (8 bins) ✓ 44.1 35.6 52.9 28.0 55.7 26.1

C = 0.01n 71.5 79.9 81.8
✓ 64.9 9.2 72.9 8.8 74.8 8.6

✓ (16 bins) ✓ 77.7 −8.7 108.0 −35.2 120.2 −46.9
✓ (8 bins) ✓ 60.0 16.1 83.3 −4.3 91.8 −12.2

 Journal of Real-Time Image Processing (2024) 21:93 93 Page 8 of 9

The CLAHE baseline described in Algorithm 2 achieves
runtimes of 68.5 ms to 75.4 ms for C = 0.1n and 71.5 ms to
81.8 ms for C = 0.01n . Note that a lower clip threshold C
leads to clipping more bins and thus to an increased com-
putation time. Computing the transfer function implicitly,
as described in Algorithm 3, improves the runtime signifi-
cantly by 8.6–14.5%. It can be observed that the optimiza-
tion is particularly beneficial for low clip thresholds as well
as small mask radii. The benefits of multilevel histograms
for CLAHE are mixed. For a high clip limit of C = 0.1n ,
the runtime improves by 7.8–19.7% using 16 coarse bins
and by 26.1–35.6% using 8 coarse bins. For a low clip limit
of C = 0.01n , the runtime worsens by 8.7–46.9% using 16
coarse bins. Using 8 coarse bins, the runtime improves by
16.1% for r = 25 , but worsens by 4.3–12.2% for larger mask
radii.

In general, multilevel histograms turn out to be more
beneficial for small mask sizes and for high clip thresholds,
where AHE can be seen as a special case of CLAHE with
C = 1 , i.e., no clipping occurs. Small mask sizes lead to
sparse changes in the histogram, meaning that many fine
segments of the histogram do not need to be updated. High
clip thresholds lead to a high probability that the values in
a segment do not need to be clipped, which allows skipping
whole segments when computing the CLAHE transfer
function. Low clip thresholds lead to a high probability that a
segment of the histogram must be clipped. Then, it becomes
necessary to compute the respective fine histogram segment
for the evaluation of the transfer function. Unfortunately, our
decision criterion causes too many fine histogram updates
for low clip thresholds and thus diminishes the advantages
of the multilevel histogram optimization.

5 Conclusion

In this work, we presented an efficient O(1) algorithm for
AHE and CLAHE. Our method reduces the processing time
by at least an order of magnitude to just a few milliseconds,
even when using very large filter sizes. This allows using
contrast enhancement methods, such as AHE and CLAHE,
to be used in practical applications. Contrary to commonly
used approximative approaches like IAHE, our method
computes the exact HE transfer function for each pixel
without interpolation artifacts. Future work might address
the constant cost of computing the HE transfer function
for each window. If f(g) could be computed incrementally
[18], it could be updated in the next window instead of
being recomputed from scratch. Furthermore, multilevel
histograms have proven very effective for AHE, but not for
CLAHE. We encourage researchers to find a better suiting

implementation of multilevel histograms for CLAHE,
because the potential speedup is promising.

Author Contributions P.H. performed most of the research, including
the implementation, the experimental part, and the writing of the
manuscript. C.S. contributed the research idea, provided initial source
code, and reviewed the manuscript thoroughly.

Data Availability No datasets were generated or analyzed during the
current study.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Fu, Q., Zhang, Z., Celenk, M., Wu, A.: A POSHE-based optimum
clip-limit contrast enhancement method for ultrasonic logging
images. Sensors 18(11), 3954 (2018). https:// doi. org/ 10. 3390/
s1811 3954

 2. Hayati, M., Muchtar, K., Roslidar, Maulina, N., Syamsuddin,
I., Elwirehardja, G.N., Pardamean, B: Impact of CLAHE-based
image enhancement for diabetic retinopathy classification through
deep learning. Proc. Comput. Sci. 216, 57–66 (2023). https:// doi.
org/ 10. 1016/j. procs. 2022. 12. 111

 3. Huang, T., Yang, G., Tang, G.: A fast two-dimensional median
filtering algorithm. IEEE Trans. Acoust. Speech Signal Process.
27(1), 13–18 (1979). https:// doi. org/ 10. 1109/ TASSP. 1979. 11631
88

 4. Hummel, R.: Image enhancement by histogram transformation.
Comput. Graphics Image Process. 6(2), 184–195 (1977)

 5. Ketcham, D.J., Lowe, R.W., Weber, J.W.: Real-time image
enhancement techniques. Semin. Image Process. (1976). https://
doi. org/ 10. 1117/ 12. 954708

 6. Kim, J.Y., Kim, L.S., Hwang, S.H.: An advanced contrast
enhancement using partially overlapped sub-block histogram
equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4),
475–484 (2001). https:// doi. org/ 10. 1109/ 76. 915354

 7. Kim, T.K., Paik, J.K., Kang, B.S.: Contrast enhancement system
using spatially adaptive histogram equalization with temporal
filtering. IEEE Trans. Consum. Electron. 44(1), 82–87 (1998).
https:// doi. org/ 10. 1109/ 30. 663733

 8. Kong, N.S.P., Ibrahim, H.: Multiple layers block overlapped his-
togram equalization for local content emphasis. Comput. Electr.
Eng. 37(5), 631–643 (2011). https:// doi. org/ 10. 1016/j. compe
leceng. 2010. 12. 001

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s18113954
https://doi.org/10.3390/s18113954
https://doi.org/10.1016/j.procs.2022.12.111
https://doi.org/10.1016/j.procs.2022.12.111
https://doi.org/10.1109/TASSP.1979.1163188
https://doi.org/10.1109/TASSP.1979.1163188
https://doi.org/10.1117/12.954708
https://doi.org/10.1117/12.954708
https://doi.org/10.1109/76.915354
https://doi.org/10.1109/30.663733
https://doi.org/10.1016/j.compeleceng.2010.12.001
https://doi.org/10.1016/j.compeleceng.2010.12.001

Journal of Real-Time Image Processing (2024) 21:93 Page 9 of 9 93

 9. Musa, P., Rafi, F.A., Lamsani, M.: A review: Contrast-limited
adaptive histogram equalization (CLAHE) methods to help the
application of face recognition. In: 2018 Third International Con-
ference on Informatics and Computing (ICIC), pp. 1–6 (2018).
https:// doi. org/ 10. 1109/ IAC. 2018. 87804 92

 10. Perreault, S., Hébert, P.: Median filtering in constant time. IEEE
Trans. Image Process. 16(9), 2389–2394 (2007). https:// doi. org/
10. 1109/ TIP. 2007. 902329

 11. Pizer, S.M.: Intensity mappings for the display of medical images.
Functional Mapping of Organ Systems and Other Computer Top-
ics pp. 205–217 (1981)

 12. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselow-
itz, A., Greer, T., ter Haar Romeny, B.M., Zimmerman, J.B.,
Zuiderveld, K.: Adaptive histogram equalization and its varia-
tions. Comput. Vis. Gr. Image Process. 39(3), 355–368 (1987).
https:// doi. org/ 10. 1016/ S0734- 189X(87) 80186-X

 13. Sanagavarapu, S., Sridhar, S., Gopal, T.: COVID-19 identifica-
tion in CLAHE enhanced ct scans with class imbalance using
ensembled ResNets. In: 2021 IEEE International IOT, Electronics
and Mechatronics Conference (IEMTRONICS), pp. 1–7 (2021).
https:// doi. org/ 10. 1109/ IEMTR ONICS 52119. 2021. 94225 56

 14. Sonali, Sahu S., Singh, A.K., Ghrera, S., Elhoseny, M.: An
approach for de-noising and contrast enhancement of retinal

fundus image using CLAHE. Opt. Laser Technol. 110, 87–98
(2019). https:// doi. org/ 10. 1016/j. optla stec. 2018. 06. 061

 15. Sund, T., Eilertsen, K.: An algorithm for fast adaptive image bina-
rization with applications in radiotherapy imaging. IEEE Trans.
Med. Imaging 22(1), 22–28 (2003). https:// doi. org/ 10. 1109/ TMI.
2002. 806431

 16. Sund, T., Møystad, A.: Sliding window adaptive histogram
equalization of intraoral radiographs: effect on image quality.
Dentomaxillofac. Radiol. 35(3), 133–138 (2006). https:// doi. org/
10. 1259/ dmfr/ 21936 923

 17. Wang, Z., Tao, J.: A fast implementation of adaptive histogram
equalization. In: 8th international Conference on Signal Process-
ing, vol. 2 (2006). https:// doi. org/ 10. 1109/ ICOSP. 2006. 345602

 18. Wei, Y., Tao, L.: Efficient histogram-based sliding window. In:
2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 3003–3010 (2010). https:// doi. org/
10. 1109/ CVPR. 2010. 55400 49

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/IAC.2018.8780492
https://doi.org/10.1109/TIP.2007.902329
https://doi.org/10.1109/TIP.2007.902329
https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/10.1109/IEMTRONICS52119.2021.9422556
https://doi.org/10.1016/j.optlastec.2018.06.061
https://doi.org/10.1109/TMI.2002.806431
https://doi.org/10.1109/TMI.2002.806431
https://doi.org/10.1259/dmfr/21936923
https://doi.org/10.1259/dmfr/21936923
https://doi.org/10.1109/ICOSP.2006.345602
https://doi.org/10.1109/CVPR.2010.5540049
https://doi.org/10.1109/CVPR.2010.5540049

	Adaptive histogram equalization in constant time
	Abstract
	1 Introduction
	2 Related work
	3 Efficient adaptive histogram equalization
	3.1 Notation
	3.2 Sliding-window histogram computation
	3.3 Histogram equalization
	3.4 Histogram clipping
	3.5 Multilevel histograms

	4 Experiments
	4.1 Sliding-window methods
	4.2 Transfer function computation

	5 Conclusion
	References

