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Abstract
Detecting and repairing road defects is crucial for road safety, vehicle maintenance, and enhancing tourism on well-main-
tained roads. However, monitoring all roads by vehicle incurs high costs. With the widespread use of remote sensing tech-
nologies, high-resolution satellite images offer a cost-effective alternative. This study proposes a new technique, SDPH, for 
automated detection of damaged roads from vast, high-resolution satellite images. In the SDPH technique, satellite images 
are organized in a pyramid grid file system, allowing deep learning methods to efficiently process them. The images, gener-
ated as 256 × 256 dimensions, are stored in a directory with explicit location information. The SDPH technique employs a 
two-stage object detection models, utilizing classical and modified RCNNv3, YOLOv5, and YOLOv8. Classical RCNNv3, 
YOLOv5, and YOLOv8 and modified RCNNv3, YOLOv5, and YOLOv8 in the first stage for identifying roads, achieving f1 
scores of 0.743, 0.716, 0.710, 0.955, 0.958, and 0.954, respectively. When the YOLOv5, with the highest f1 score, was fed 
to the second stage; modified RCNNv3, YOLOv5, and YOLOv8 detected road defects, achieving f1 scores of 0.957,0.971 
and 0.964 in the second process. When the same CNN model was used for road and road defect detection in the proposed 
SDPH model, classical RCNNv3, improved RCNNv3, classical YOLOv5, improved YOLOv5, classical YOLOv8, improved 
RCNNv8 achieved micro f1 scores of 0.752, 0.956, 0.726, 0.969, 0.720 and 0.965, respectively. In addition, these models 
processed 11, 10, 33, 31, 37, and 36 FPS images by performing both stage operations, respectively. Evaluations on geotiff 
satellite images from Kayseri Metropolitan Municipality, ranging between 20 and 40 gigabytes, demonstrated the efficiency 
of the SDPH technique. Notably, the modified YOLOv5 outperformed, detecting paths and defects in 0.032 s with the micro 
f1 score of 0.969. Fine-tuning on TileCache enhanced f1 scores and reduced computational costs across all models.
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1 Introduction

Damaged paths cause traffic accidents and injuries [1, 2]. 
Imperfections such as potholes, cracks, or trapezoids can 
make vehicles difficult to control, distract drivers, and cause 
them to make sudden maneuvers. Detecting damaged roads 
improves driver safety and helps prevent accidents  [3]. 
However, it is very costly to constantly check all roads by 
assigning personnel to detect broken roads. On the other 
hand, with the widespread use of remote sensing technology 
in recent years, huge volume and high-resolution images 
are obtained [4–6]. High-resolution satellite images are 

images obtained from space or the air that show the details 
of the Earth in high resolution. These images usually have 
sufficient pixel density to distinguish very small objects or 
details [7]. However, these images take up a large amount 
of space on computer systems [8]. Large volumes of data 
are challenging to handle by classical data processing meth-
ods [9, 10].

Technology giants such as ArcGIS and Google Earth cut 
huge volumes of images into small pieces, allowing users to 
access these images at high speed [11–13]. Large-volume 
images are divided into small pieces in the form of small 
grids and accessed in pyramid grid file format [14]. This 
operation is called tile [15]. In the tiling process, huge vol-
umes of satellite images are recorded on computer disks 
as z/x/y.mime type [16]. Z denotes the recording level of 
the image, x signifies the image’s position along the X-axis, 
the y-value represents its position along the Y-axis, and the 
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mime type specifies the format in which the image is to be 
stored. These images are produced and saved in 256 × 256 
dimensions. When the user wants to access the image in a 
region, it takes a very long time to take the huge volume 
image and present the relevant region. Instead, the pyra-
mid grid file system provides high-speed access to users 
because small-size images in the appropriate location are 
presented [17, 18].

In recent times, the advanced deep learning technique, 
a cutting-edge computer technology, has found widespread 
application in diverse domains such as image classifica-
tion [19], object tracking [20], and pose estimation [21]. 
Numerous deep learning methodologies have gained wide-
spread acceptance in this domain. Notably, among these 
techniques, convolutional neural networks (CNNs) have 
demonstrated remarkable efficacy, particularly in the realm 
of image classification [22].

Detection of road disturbances is a classification problem 
in computer vision. Within the literature, research on the 
identification of road disturbances through onboard cameras 
often employs CNN-based methods [23–25]. In this investi-
gation, we propose a new method, referred to as SDPH, for 
identifying road disturbances along with their spatial coor-
dinates within huge volumes and high-resolution satellite 
imagery. CNN models could not process satellite images 
ranging in size from 20 to 40 gigabits. In the suggested 
SDPH methodology, the conversion of these images into a 
pyramid grid file format is facilitated through the GeoServer-
TileCache software, employing an open-source strategy. 
This format ensures compatibility for processing the images 
through CNN models. In the satellite images, there are dis-
turbances in the soil. In the recommended SDPH technique, 
a two-stage deep learning technique has been developed to 
detect only road disturbances. As a deep learning method, 
RCNNv3 [25, 26], YOLOv5 [24, 27], and YOLOv8 [28, 29] 
were used.

1.1  Contributions

– A new technique, SDPH, is recommended to detect road 
disturbances and their corresponding spatial locations 
within vast volumes of high-resolution satellite imagery.

– The achievement of the recommended technique has been 
tested on real satellite image data with sizes between 20 
and 40 gigabytes.

– A pyramid grid file system using GeoServer-TileCache 
has been recommended so that CNN models can process 
huge volume satellite images.

– Thanks to the recommended pyramid grid technique, 
a huge volume satellite image that occupies at least 20 
gigabytes of space and, therefore cannot be processed 
has been converted into small and processable images, 
the largest of which is 23 kilobytes.

– A fine-tuning technique has been developed to improve 
the object detection achievement of the recommended 
SDPH technique. Thanks to the modified process, the 
micro f1 score achievement of the RCNNv3 model was 
increased by 0.204, while the micro f1 score achievement 
of the YOLOv5 and YOLOv8 were improved by 0.243 
and 0.245, respectively.

– Thanks to the fine-tuning process performed in the Pyra-
mid grid technique, the roads are visible as a whole at the 
22nd zoom level.

– A two-stage technique is recommended to detect dam-
aged roads, first road detection and then damaged road 
detection. In this way, the disturbances in the soil are 
eliminated.

– In the recommended SDPH technique, the modified 
YOLOv5 model outperformed by detecting damaged 
roads with a 0.969 micro f1 score on approximately 
0.032 s.

1.2  Scope and outline

– In the context of this study, it is aimed to determine the 
location of the roads as points while determining their 
location. Determining the roads as polygons is out of the 
scope of this study.

The following organization is maintained in the rest of this 
paper: Sect. 2 provides an overview of the related researches. 
Sect. 3 explains the basic concepts. Section 4 introduces the 
technique put forth in this study. In Sect. 5, we delve into the 
evaluations carried out during experiments. Lastly, Sect. 6 
outlines the conclusions drawn from the study and highlights 
avenues for future research.

2  Related work

Detection of damaged roads using CNN-based methods 
from satellite images has been examined in three categories. 
First, CNN models were presented, then studies on detect-
ing damaged roads with CNN models were discussed, and 
finally, studies on object detection from satellite imagery 
were examined.

When exploring the evolution of CNN models; The 
CNN technique [30], a notable deep learning technique, 
has seen extensive application across diverse domains 
including computer networks [31], image detection [32], 
and disease classification  [33] in recent times. Koller 
et al. [34] introduced CNN-based deep sing for continuous 
sign language recognition. Ciocca et al. [35] investigated 
the use of CNN-based features for the purpose of food 
recognition and retrieval. Achour et al. [36] used CNN to 
detect the dairy cow presence in the feeder zone. Bermejo 
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et al. [37] used ensemble of deep convolutional neural 
networks for classification of interstitial lung abnormal-
ity patterns. Rao et al. [38] used CNN to detect the signs 
on the road in real-time and provide alerts to the driver 
to perform the action corresponding to the sign. Yang 
et al. [39] recommended a lenet-based low-computation 
neural assistance system for traffic sign recognition. Cao 
et al. [40] improved on the basis of the classical LeNet-5 
convolutional neural network model for real-time traffic 
sign recognition. Lenet-5 is a 7-level convolutional net-
work developed by LeCun et al [41]. Nevertheless, the 
capacity of the convolutional network falls short when 
attempting to analyze high-resolution images using the 
LeNet-5 model [42]. CNN models used are continuously 
improved to get higher accuracy and results faster [43]. 
For instance, AlexNet, developed in 2012, showed better 
results than previous CNN methods [44]. VggNet, devel-
oped in 2014, showed a very successful achievement in 
the ImageNet competition with an error rate of 7.3% [45]. 
GoogleNet, developed in 2014 and has a low error rate of 
5.7%, was the winner of the ILSVRC competition [46]. 
Resnet was developed in 2015 and had a shallow error rate 
of 3.6% [47, 48]. The CNN technique has demonstrated 
success in feature extraction and classification for ana-
lyzing single-object images. Nevertheless, its efficacy in 
the context of multi-object image analysis has proven to 
be constrained. To tackle this issue, Girshick et al. intro-
duced the RCNN method [49]. RCNN partitions the image 
into around 2000 regions, employing CNN within each 
region to address the challenge of multi-object analysis. 
However, the RCNN method incurs a high computational 
cost, primarily in terms of time. To address this con-
straint, Girshick introduced Fast RCNN (RCNNv2) [50], 
which alleviates the slow execution problem associated 
with RCNN. RCNN algorithms utilize regions to localize 
objects within an image. In addition to RCNN, another 
CNN-based method called YOLO was introduced by Red-
mon and others [51]. YOLO takes a different technique 
by directly examining parts of the image that are likely to 
contain the object, instead of dividing it into regions like 
RCNN. This strategy helps to mitigate the computational 
overhead associated with region-based methods.

When the studies on detecting damaged roads with CNN-
based methods are examined, Maeda et al.  [23] recom-
mended a method using deep learning methods for detecting 
and classifying road defects from images captured with a 
mobile phone. In their recommended method, they achieved 
0.95 accuracy with SSD MobileNet. Rath [24] studied the 
detection of road defects using images obtained from the 
camera mounted on the vehicle. With the YOLOv7 tiny, it 
achieved 35% mAP while it achieved 51% mAP with the 
classic YOLOv7. Parvathavarthini et al. [25] conducted a 
study on detecting damaged roads with CNN-based deep 

learning networks. They compared the achievements of 
classical CNN and RCNN models. Classic CNN achieved 
88.43% accuracy, while RCNN achieved 97% accuracy.

When the studies on object detection from satellite 
imagery are examined, Kawauchi et al. [52] recommended 
a SHAP-based interpretable object detection technique for 
object detection from satellite images. In their recommended 
technique, they present a feature association technique that 
calculates to describe an approximate model and attributing 
input features to the output of a deep learning method. With 
the recommended technique, they achieved a f1 score of 
0.85. Wu et al. [53] recommended a two-step technique to 
detect objects around airports and ports, together with their 
surrounding objects, from high-resolution satellite images. 
In their recommended technique, they first identify airports 
and ports at the lower scale. Then they move to the upper 
scale and detect small objects around these objects. They 
achieved a 0.92 f1 score achievement in the DC-FRCNN 
technique they suggested. Song et al. [54] recommended an 
technique using salience detection and CNN models for hier-
archical object detection from huge volume satellite images. 
In their recommended method, they detected airports with 
0.949 precision from satellite images and detected ships with 
0.915 precision. Gong et al. [55] suggested an technique 
they named SPH-YOLOv5 for detecting objects with smaller 
dimensions from satellite images. In their recommended 
technique, they replaced the original convolutional predic-
tion heads of the YOLOv5 model with swin transformer 
prediction heads. They obtained 0.806 precision with their 
recommended technique. Khan et al. [56] proposed a con-
solidated deep learning framework comprising multi-scale 
detectors for multi-class object detection in high-resolution 
satellite imagery. This suggested methodology involves a 
two-stage process. In the initial stage, multi-scale object 
proposals are generated, and subsequently, each proposal 
undergoes classification into distinct classes in the second 
phase. They achieved 0.97 precision success with their rec-
ommended technique.

Although there are studies in the literature on detect-
ing damaged roads with a camera or mobile phone images 
mounted on the vehicle, obtaining photographs by traveling 
all roads with cars is costly. On the other hand, to the best 
of our knowledge, there has been no study related to detect-
ing road disturbances along with their spatial coordinates 
using huge volume satellite image datasets. In the scope of 
this research, a new hybrid method, including a two-stage 
deep learning method, is recommended for detecting road 
disturbances together with their spatial locations from a huge 
volume and high-resolution satellite images. In the recom-
mended hybrid method, the fine-tuning technique has been 
developed to improve the object detection achievement of 
deep learning methods. Free GeoServer and TileCache soft-
ware are used, which allow access as pyramid grid files to 
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process huge volume and high-resolution satellite images 
without sacrificing resolution quality and similar features. 
In the literature, YOLO and RCNN models outperform CNN 
models in studies for detecting road defects [24, 25]. There-
fore, In the scope of this research, Faster-RCNN, which 
shows superior success in region-based object detection, and 
YOLO models (v5, v8), which achieves high achievement in 
real-time object detection, were preferred.

3  Basic concept

In the scope of this research, a new hybrid technique is rec-
ommended to detect road disturbances from huge volume 
and high-resolution satellite images. The recommended 
hybrid technique consists of large-scale imagery, pyramid 
grid access, and object detection with deep learning. For this 
reason, in this section, huge volume satellite images, pyra-
mid grid access, and object detection methods are explained, 
respectively.

3.1  Large scale high resolution satellite images

Large volumes of data are datasets that cannot be processed 
effectively by traditional data processing methods and are 
difficult to store, manage, analyze, and interpret [57]. On 
the other hand, high-resolution satellite images are the 
images taken by satellite systems or drones. These high-
resolution images enable detailed observation and analysis 
of the Earth’s surface features [58]. High-resolution satellite 
images consist of pixels that show objects on the ground 
down to fine detail. Each pixel represents the light intensity 
in a specific area. The smaller the pixel size of high-resolu-
tion satellite images, the more detailed an image is obtained. 
However, processing huge volume and high-resolution satel-
lite images is difficult because it requires computer systems 
with high-end features. In the scope of this research, high-
resolution satellite images taken from Kayseri Metropolitan 
Municipality were used. The dataset consists of images in 
geotiff format with sizes ranging from 20 to 40 gigabytes. 
An image with a minimum of 20 gigabytes is challenging to 
process using conventional data processing methods. On the 
other hand, Google Earth and ArcGIS publish huge volumes 
of data via pyramid grid file system [12, 13]. There are three 
variables in the Pyramid grid system, z, x, and y. The Z value 
shows the scale (zoom level) information. The Pyramid grid 
system is presented in the Fig. 1.

As depicted in Fig. 1, the Pyramid grid system exhib-
its a single image at the initial zoom level, with this count 
quadrupling at each subsequent level. x and y represent the 
data coordinates at the same zoom level. The Pyramid grid 
system transforms huge volume satellite images into small 
images recorded with location information. Since these 

images are 256 × 256 by default, they are easy to process 
and publish.

3.2  Object detection

The process of detecting the position and class of certain 
objects in digital images or videos is called object detec-
tion. Object detection is an artificial intelligence technique 
widely used in computer vision. This research leveraged 
deep learning techniques rooted in CNN, a subset of artifi-
cial intelligence. Specifically, YOLO and RCNNv3 models 
were employed as instances of CNN-based deep learning 
methods within this study. Therefore, in this section, YOLO 
and RCNNv3 models are presented respectively.

3.2.1  YOLO

The YOLO methodology derives its name from the acronym 
’You Only Look Once,’ signifying a single comprehensive 
examination [51]. This technique enables swift and holistic 
predictions regarding the identity and spatial localization 
of objects within an image. Object detection is a computer 
vision problem that falls specifically into discovering what 
objects are in a given image and where they are in the image. 
Object detection is a more complex and challenging problem 
than image classification problems since it also finds where 
the object is in the image.

The YOLO technique has seen continuous development 
over time. The initial version, YOLO V1, was introduced 
by Redmon et al. [59]. YOLO V2 offered improved accu-
racy and speed and expanded its object recognition capa-
bilities to 9000 objects. Redmon and others advanced the 
YOLO series with YOLO V3 [60]. YOLO V3 featured a 

Fig. 1  Pyramid grid file system
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more complex architecture compared to its predecessors. 
One notable feature was the ability to adjust the model’s 
structure size, enabling flexibility in balancing speed and 
accuracy. Then, in 2020, Bochkovskiy et al. introduced 
YOLO V4 as an object detection method optimized for 
speed and accuracy [61]. Throughout its evolution, the 
YOLO series has consistently pursued practical and pow-
erful object detection models, culminating in the YOLO 
V4 release. YOLOv5 model was introduced by Jocher in 
2020 [62]. In contrast to the V4 model, the YOLOv5 model 
is instantiated using PyTorch. Previous research [63, 64] 
has illustrated that the YOLOv5 model provides more pre-
cise estimations at a reduced computational cost compared 
to the V4 model. Unlike its predecessors implemented in 
C, YOLOv5 was developed using Python, and it consti-
tutes the chosen model for this study.

Moreover, YOLOv8 [65] improves on the features of 
previous versions, providing a balance of speed and accu-
racy. YOLOv8 is designed specifically for use in real-time 
applications and is optimized for high-speed object detec-
tion. For that reason, this study also used the YOLOv8 
model.

3.2.2  RCNNv3

Faster RCNN [66] (RCNNv3) is an object detection library 
built on deep convolutional networks, including the Region 
Proposal Network (RPN) and the object detection network. 
The RCNNv3 model is the most widely used and advanced 
version of the RCNN models. The most significant dif-
ference between RCNN methods has been computational 
efficiency, reduction of experiment time, and performance 
improvement. RCNN was designed by Girshick and oth-
ers to overcome the multi-object detection [49]. Address-
ing the issue of slow performance in RCNN, Ross Girshick 
introduced the Fast RCNN (RCNNv2), designed to operate 
more efficiently [50]. The RCNN architecture is designed for 
object detection in images, aiming to identify object classes 
along with their corresponding bounding regions. RCNNv3, 
recommended by Ren et al. in 2015 [66], introduced a signif-
icant improvement over the RCNNv2. In RCNNv2, the uti-
lization of the selective search method for region proposals 
presented a bottleneck for the entire architecture. To address 
this limitation, the RCNNv3 model replaced the selective 
search method with a region proposal network (RPN). The 
RCNNv3 model follows a two-stage process. Compared to 
both the RCNN and Fast RCNN models, the RCNNv3 model 
offers improved computational efficiency, making it faster in 
terms of computational cost [66]. Additionally, the RCNNv3 
model demonstrates superior performance metrics compared 
to RCNNv1 and RCNNv2, specifically in terms of mAP. 
Consequently, this study employed the RCNNv3 model.

4  Proposed technique

Various problems affecting the roads’ physical condition 
are expressed as road disorders. These disturbances can 
cause roads to deviate from providing a smooth and safe 
driving surface. For this reason, it is important to detect 
the defects on the roads with their locations. However, it is 
not possible in terms of personnel and fuel costs to control 
all roads instantly with the vehicle to detect road defects. 
On the other hand, in recent years, remote sensing tech-
nologies have obtained earth images with advanced cen-
timeter precision. Since these acquired images are in high 
resolution, the detection of damaged roads can be fulfilled 
on these images. However, these large images are difficult 
to process and analyze by classical data processing meth-
ods. Therefore, in the context of this study, a new method, 
SDPH (spatial detection of path hole), is recommended to 
detect the disturbances of paths with their real locations 
on Earth from huge volume and high-resolution satellite 
images. The architecture of the recommended method is 
presented in Fig. 2.

As presented in Fig. 2, a huge volume and high-resolu-
tion satellite image are given as input to the recommended 
system. The images used within the scope of the study 
occupy the smallest 20 gigabytes. It is very difficult to 
detect an object by processing such a large amount of data 
with a computer with standard features. For this reason, it 
has been recommended to use the pyramid grid file system, 
which is used for accessing huge volume images with high 
performance.

The Pyramid grid file system was created using the 
open-source strategy Geoserver and TileCache system 
in the recommended technique. GeoServer [67] is free 
software that stores geographic data in many different 
formats and publishes it as a web map service (WMS). 
TileCache [68] is a tile system that improves performance 
in geodata services. TileCache saves data published as 
WMS to computer disks as z/x/y.jpg. In the Geoserver-
TileCache system, the data published by the GeoServer 
as WMS is saved to the disks by TileCache. After this 
process is finished, accessing the images is done via Tile-
Cache. The TileCache process performs well because it 
presents small images in response to requests and does not 
take any action. The recommended GeoServer-Tilecache-
based pyramid-grid file system creates 256 × 256 images. 
The largest of these images created takes up 23 kilobytes 
of space on the disk. Thanks to this recommended tech-
nique, the image has been converted into small images 
that take up at least 20 gigabytes, the largest of which is 
23 kilobytes.

In the scope of this research, RCNNv3, YOLOv5 and 
YOLOv8 models, widely used in recent years, were used 
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Fig. 2  System architect for 
spatial detection of path hole
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as a CNN-based model for road defect detection. Road 
disturbances are the regions of broken or contrary objects 
on the roads. RCNNv3 was preferred because it is an area-
based model that searches for regions in the image. The 
YOLOv5 and YOLOv8, on the other hand, were chosen 
because of their high performance in real-time object 
detection.

In the scope of this research, road defect detection 
was tried by using the data produced by the GeoServer-
TileCache system. However, the RCNNv3, YOLOv5 and 
YOLOv8 detect the disturbances in the fields as road 
disturbances. For this reason, a two-stage deep learning 
technique was used to detect the path disorder. First, mod-
els are trained separately for road and road disturbance 
detection. Then, as presented in the system design, the 
256 × 256 image taken from the pyramid grid system is 
checked to see if it is a road. Upon successful detection of 
a path in the image by the trained deep learning methods 
for path detection, the subsequent step involves path defect 
detection.

Images at 22 levels ( z = 22 ) were examined to stage 
high performance for road detection and defect detection 
on the road. However, deep learning methods have not 
been successful enough because a path at this level is in 
more than a small image. To overcome these issues and 
enhance the performance of deep learning methods, the 
adoption of fine-tuning techniques has been suggested. 
The default size parameter of the TileCache system 
is 256, 256. It allows the TileCache system to produce 
small images with a size of 256 × 256 . Within the fine-
tuning technique’s scope, this parameter’s value is set as 
1024,1024. After this process, the TileCache system pro-
duces 1024 × 1024 images. The achievement of the recom-
mended fine-tuning technique is examined in detail in the 
experimental sections.

If the image recorded in z, x, y format, presented as 
input in the recommended technique, is detected as a path 
by the first deep learning method, the same input image 
is given as input to the second deep learning method. If a 
path disorder is detected in the input image by the second 
deep learning method, the spatial location of this image 
is recorded in the database system. Spatial location refers 
to the geographic or physical location of an object or an 
event on earth  [69, 70]. Spatial location can be deter-
mined using latitude and longitude coordinates. Latitude 
expresses the distance of a point from the equator, while 
longitude expresses the distance of a point from Green-
wich. Combining these two coordinates can determine the 
spatial position of any point. Since the z, x, and y values of 
the image presented as input to the deep learning method 
are known, its position on the world is calculated as shown 
in the Algorithm 1 [71].

Algorithm 1  Get Latitude and Longitude from z, x, y

1: function GetLatitudeLongitude(z, x, y)
2: lon = (x/Math.pow(2, z) ∗ 360− 180);
3: lat = (180/Math.PI∗Math.atan(0.5∗(Math.exp(n)−

Math.exp(−n))));
4: return lon, lat
5: end function

The z, x, and y values presented as input in the Algo-
rithm  1 is the registered address of the input image. Because 
the image is saved in the directory as z/x/y.jpg by TileCache. 
The Algorithm  1 returns latitude and longitude information. 
At these values, it ensures that the broken road is shown as 
a point in the world.

The achievement of the recommended SDPH technique 
is examined in detail in the experiments section.

5  Experimental evaluation

In this section, the achievement of recommended SDPH 
techniques for the detection of road disturbances from huge 
volume and high-resolution satellite images, along with their 
locations, is examined. The recommended SDPH technique 
consists of two stages: road detection and road disturbance 
detection. In the recommended SDPH technique, first of all, it 
is determined whether an image is a road or not; if this image 
is a road, it is determined whether there is a disorder. In order 
to evaluate the achievement of the recommended technique, 
answers to the following questions were sought respectively.

– What is the spatial location of paths detected by SDPH 
techniques?

– What is the path detection achievement of SDPH tech-
niques?

– What is the damaged path detection achievement of the 
SDPH techniques?

– What is the run time of the SDPH techniques?
– What is the individual performance of deep learning-

based object detectors in the SDPH technique?

The experiments in this study were carried out on a desktop 
computer with Intel i9 12,900 3.19 GHz, 64 GB Ram, 12 GB 
QUADRO graphics card, 2 TB SSD, and Windows 10 Pro 
operating system installed. Python 3.9 and Open-CV library 
were used for plate detection with deep learning.

5.1  Dataset, model setting and metrcis

In the scope of this research, huge volume and high-res-
olution satellite images taken from Kayseri Metropolitan 
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Municipality were used. There are 11 satellite images taken 
at different times in the dataset. The smallest of the images 
in geotiff format takes up 21 gigabytes, and the largest takes 
up 39 gigabytes. GeoServer software with open source 
strategy, this data has been published as WMS. Creating a 
layer group in GeoServer presents the data as a whole. The 
data presented as WMS by GeoServer were created with the 
TileCache system in small sizes. In the classical TileCache 
system, a total of 312,352 images with a size of 256 × 256 
at 22 levels were analyzed as test images. In the modified 
TileCache system, 19,522 test images with dimensions of 
256 × 256 at 22 levels were used as test images.

In the scope of this research, RCNNv3, YOLOv5 and 
YOLOv8 models were used as CNN models. The labe-
ling process was done with the LabelImg program. Files 
in.txt format are used for the YOLO models. For RCNNv3.
xml files in Pascal VOC format were used. Labeling was 
done once. The data in YOLO format was converted to the 
RCNNv3 model with a script written in the Python envi-
ronment. In this way, it is ensured that the models work 
under equal conditions. Classic TileCache system produces 
256 × 256 images. The modified TileCache recommended in 
the context of this study produces 1024 × 1024 images. CNN 
models using the dataset produced by the classic TileCache 
are called classical. CNN models using the modified data 
set are called modified. Models are trained separately for 
road detection and damaged road detection. The loss value 
produced by the CNN models in the path detection process 
is presented in Fig. 3.

The loss value of deep learning methods measures how 
far the model’s predictions are from the actual values. A 
reduction in the Loss value, techniqueing zero, signifies 
the successful training of the deep learning method. As 
presented in Fig. 3, the loss value has decreased and tech-
niqueed zero. This reveals that the models were trained 
successfully. The loss value of modified models is lower 
than classical models. This indicates that the prediction and 
real values of modified models are closer in the validation 
process.

The achievements of machine learning methods are evalu-
ated with metrics. To obtain the metrics, TP (true positive), 
TN (true negative), FP (false positive), FN (false negative) 
values must be calculated. The meanings of the terms TP, 
TN, FP, and FN are explained below:

– TP indicates that there is an object, there is a detection, 
a box is drawn where the object is.

– TN is expressed as there is no object, and there is no 
detection.

– FP means that there is no object, there is a detection, a 
box has been drawn anywhere other than the object.

– FN denotes object present, no detection, no box drawn 
even though the object is present.

F1 score, which is called the expression of the accuracy of 
a deep learning method on a specific data set, is calculated 
using TP, TN, FP, and FN values. The F1 score value con-
sists of the harmonic mean of the calculated Precision and 
Recall values of the model. The F1 score, Precision and 
Recall are calculated as presented in Eq. 1.

5.2  Experiments

In this section, recommended SDPH techniques for spatial 
path hole detection from the huge volume and high-resolu-
tion satellite images, are discussed. First, the techniques’ 
spatial path detection was examined, then the deep learn-
ing metrics and path detection achievement were compared. 
Next, the path hole detection achievement was presented, 
and then, the working time of the techniques was examined, 
and finally, the individual performance of CNN models in 
the SDPH technique was illustrated.

5.2.1  Geolocation of paths detected by SDPH techniques

Within the scope of this experiment, the locations of the 
roads in the world, which were determined by the SDPH 
technique from huge volume and high-resolution satellite 
images, were examined. The recommended SDPH tech-
nique makes large-scale satellite image accessible in pyra-
mid grid file format with GeoServer-TileCache software. 
This way, huge volume images were converted into small 
images addressed with location information. While classical 
TileCache produced 256 × 256 images, the modified Tile-
Cache recommended in the context of this study produced 
1024 × 1024 images. In the recommended SDPH technique, 
RCNNv3, YOLOv5 and YOLOv8 models were run sepa-
rately for both classical TileCache and modified TileCache 
for path detection. The open-source leaflet library  [72] 
and the OpenStreetMap, serving as the map base [73], are 
employed to visually represent the global positions of roads 
identified through the proposed SDPH methodologies. The 
location of the roads detected by the recommended SDPH 
techniques is presented in Fig. 4.

(1)

Accuracy =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F
1
− score =

2 × Precision × Recall

Precision + Recall
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Fig. 3  Training loss of CNN models
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The position of the roads presented in Fig. 4 was calcu-
lated using Algorithm  1. In Fig.  4a, the RCNNv3 model 
using 256 × 256 tile images detects 233,747 road locations, 
while the RCNNv3 model, using 1024 × 1024 tile images, 
has been determined 19,683 road location in Fig.  4d. On 
the other hand, the YOLOv5 model, which takes 256 × 256 
images as input, detects 190,626 road locations, while 
the YOLOv5 model, which takes 1024 × 1024 images, 
detects 18,497 road locations. The locations detected 
by the YOLOv5 model, which processes 256 × 256 and 
1024 × 1024 images, are shown in Fig.  4b and e, respec-
tively. In addition, YOLOv8 models detected 192,987 and 
18,549 road locations, as shown in Fig. 4c and f, respec-
tively. An image produced by modified TileCache in 
1024 × 1024 size includes 16 images created by classical 
TileCache with a dimension of 256 × 256 . For this rea-
son, CNN models that process 256 × 256 images detect 
more positions than CNN models that process 1024 × 1024 
images. RCNNv3 model, which processes 256 × 256 
images, determined road location 11.88 times compared to 
the RCNNv3 model, which processes 1024 × 1024 images. 
Similarly, the YOLOv5 model, which processes 256 × 256 
images, detected the road position at 10.31 times that of the 
YOLOv5 model, which processes 1024 × 1024 images. In 
addition, the YOLOv8 model, which processes images with 
dimensions of 256 × 256 , detects the road location 10.42 

times that of the YOLOv8 model, which processes images 
with dimensions of 1024 × 1024 . However, when the loca-
tion of the roads detected in Fig. 4 is examined, it is seen 
that the RCNNv3,YOLOv5 and YOLOv8 models, which 
process 256 × 256 images, also detect non-road points as 
roads. The detection achievement of road locations depends 
on the detection achievement of roads. The path detection 
achievement of the recommended SDPH techniques was 
examined as a separate experiment and presented in detail 
in the following experiment.

5.2.2  Path detection achievement of SDPH techniques

In this experiment, the path detection achievement of SDPH 
techniques from huge volume and high-resolution satellite 
images was investigated. SDPH techniques were run sepa-
rately for classic TileCache, which produces 256 × 256 
images, and modified TileCache, which has 1024 × 1024 
images. The CNN model using images created by classic 
TileCache is called classic, while the CNN model using 
images produced by modified TileCache is expressed as 
modified. The path detection achievement of the recom-
mended SDPH techniques is calculated with deep learning 
metrics and presented in Table  1.

In Table 1, classical RCNNv3, YOLOv5 and YOLOv8 
models were tested on 312,352 images, while modified 

Fig. 4  Spatial location of detected roads by SDPH techniques
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RCNNv3,YOLOv5 and YOLOv8 models were tested on 
19,522 images. Superior metrics are marked in bold in the 
Table 1. Since the input image numbers of the classical and 
modified models are different, it is necessary to evaluate 
the models according to the metrics that show the ratios 
of these metrics instead of the TP, TN, FP, and FN num-
bers. The classic RCNNv3, YOLOv5 and YOLOv8 mod-
els scored 0.743, 0.716 and 0.710 f1, respectively, while 
the modified RCNNv3, YOLOv5 and YOLOv8 models 
scored 0.955, 0.958 and and 0.954 f1, respectively. In other 
words, thanks to the recommended modified technique, the 
f1 score achievement of the RCNNv3 model was increased 
by 0.211, while the f1 score achievement of the YOLOv5 
and YOLOv8 models were improved by 0.242 and 0.244, 
respectively. CNN models using the recommended modified 
TileCache show much better achievement than CNN mod-
els using classical TileCache. To better describe the object 
detection achievement resulting from the classical TileCache 
and modified TileCache model, 256 × 256 and 1024 × 1024 
images corresponding to the exact location were examined, 
and their results are shown in Figs.  5 and  6, respectively.

256 × 256 tile images presented in Fig. 5a–d as inputs 
to the classic CNN model presented. The image presented 
in Fig. 5a contains no path, while the image presented in 
Fig.  5b–d contains path. As shown in the images presented 
in Fig. 5e–h, classical RCNNv3 classifies all images as 
’path’. However, when detecting TP in RCNNv3 Fig. 5f–h, 
while detecting the official path detected as FP in Fig. 5e. 
That is, the classical RCNNv3 model detected the image 
as an official road that does not fall into the road class 
type. Similarly, the classic YOLOv5 model detects as TP 
in Fig.  5j–l, while Fig. 5i’ also detected as FP. Moreover, 
the classic YOLOv8 model made the same classifications as 
the classic RCNNv3 and YOLOv5 model. Classic RCNNv3, 
YOLOv5 and YOLOv8 models, which process 256 × 256 
images, have high FP values as presented in Table  1 due 
to such false detections. Due to the high FP value of these 
models, they were not successful enough in path detection. 
To overcome these issues and improve the object detection 
performance of deep learning models, a fine-tuning process 
has been developed on TileCache. Sample results showing 
the performance of deep learning methods on images pro-
duced by fine-tuned TileCache are presented in Fig. 6.

The tile images of 1024 × 1024 presented in Fig. 6a are 
given as input to the Fine-Tuned CNN model. The detec-
tion results of Modified RCNNv3, YOLOv5 and YOLOv8 
models are presented in Fig. 6b–d, respectively. Fined-tuned 
RCNNv3,YOLOv5 and YOLOv8 models detected TP as 
seen in Fig. 6. Due to such successful detections, modified 
CNN models outperform CNN models using classical Tile-
Cache, as seen in Table  1. CNN models are unsuccessful 
because the paths are divided in classic TileCache 256 × 256 
images. The modified TileCache generates 1024 × 1024 
images. The area covered by the modified TileCache image 
is 16 times that of a classical TileCache-generated image. In 
the images produced by the proposed TileCache, CNN mod-
els show superior performance in road detection because it 
is more clearly evident whether the image is a road or not.

5.2.3  Path hole detection achievement of SDPH techniques

Within the scope of this experiment, the damaged path 
detection achievement of SDPH techniques from huge vol-
ume and high-resolution satellite images was investigated. 
The proposed SDPH approach uses a two-stage deep learn-
ing methods to detect defects on the roads. In the images pro-
duced by Geoserver-TileCache, it is first determined whether 
there is a path or not. As shown in Fig. 2, if a path is detected 
in the image, it is checked with the second deep learning 
method to see any corruption in the path. In the experiments 
in Sect.  5.2.2, CNN models using modified TileCache out-
performed classical CNN models. For this reason, modified 
CNN models were examined in this experiment. In the rec-
ommended SDPH technique, the input images to enter the 
second deep learning method should be detected as TP by 
the first deep learning method. As presented in Table 1, since 
the modified YOLOv5 model has the highest F1 score value 
in the first deep learning method, 18,213 images detected as 
TP by the modified YOLOv5 model are presented as input to 
the second deep learning method. The second deep learning 
technique trained for damaged roads is modified because it 
uses modified TileCache data. CNN models, which are the 
second deep learning technique and trained to detect broken 
paths, were tested on 18,213 images presented by the first 
deep learning method, and the achievement metrics are listed 
in Table  2.

Table 1  Metric results of all 
techniques for path detection

Technique TP TN FP FN Acc. Pre. Rec. F1 S.

Classic RCNNv3 202,932 3900 30,815 109,420 0.596 0.868 0.650 0.743
Classic YOLOv5 179,990 4200 10,636 132,362 0.563 0.944 0.576 0.716
Classic YOLOv8 179,451 4200 13,536 132,901 0.556 0.930 0.575 0.710
Modified RCNNv3 18,712 300 971 810 0.914 0.951 0.959 0.955
Modified YOLOv5 18,213 300 284 1309 0.921 0.985 0.933 0.958
Modified YOLOv8 18,165 300 384 1357 0.914 0.979 0.930 0.954
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When analyzing the metrics provided in Table  2, modi-
fied RCNNv3 and YOLOv8 achieved 0.998 accuracies, while 
modified YOLOv5 obtained 0.999 accuracies. The accuracy 
values are so high due to the low number of damaged roads 
in the data set. In other words, there is no damaged path 
object in 17,713 data in 18,213 data sets. Therefore, the TN 
value of deep learning methods is high. Modified RCNNv3, 

YOLOv5 and YOLOv8 models detected 463, 417 and 438 
damaged paths as TP, respectively. In other words, these 
methods found the defects on the roads that were broken. 
The Fined-tuned RCNNv3 model catches the damage on 
the roads better than the modified YOLOv5 and YOLOv8 
models. However, the FP of the modified RCNNv3 model is 
higher than that of the modified YOLOv5 and YOLOv8. The 

Fig. 5  Detection result of paths in size 256 × 256
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RCNNv3 also detects some points on non-damaged roads as 
damaged. In order to better demonstrate the path hole detec-
tion achievement of the techniques, results on two different 
input images are presented in Fig. 7.

As seen in Fig. 7, a 1024 × 1024 input image produced 
by modified TileCache was presented to CNN models. The 

modified RCNNv3 model captured the defects found in 
Fig. 7c and  d. However, because RCNNv3 is region-based 
and searches for the region within the image, it has deter-
mined the non-distorted region as a disorder with a confi-
dence score of 1.0, as it is similar to a path disorder, as seen 
in Fig. 7c. Due to such determinations, the FP value of the 

Fig. 6  Detection result of paths in size 1024 × 1024

Table 2  Metric results of 
all techniques for path hole 
detection

Bold text indicates that the relevant data are statistically superior

Technique TP TN FP FN Acc. Pre. Rec. F1 S.

Modified RCNNv3 463 17,676 37 5 0.998 0.926 0.989 0.957
Modified YOLOv5 417 17,701 12 13 0.999 0.972 0.970 0.971
Modified YOLOv8 438 17,688 25 8 0.998 0.946 0.982 0.964

Fig. 7  Detection result of path holes in size 1024 × 1024
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modified RCNNv3 model is high. On the other hand, the 
Fined-tuned YOLOv5 model caught path corruption in both 
images as seen in Fig. 7e and  f. However, the FP value is 
low since the YOLOv5 model does not catch a point other 
than the disorder. The modified YOLOv8 model captured the 
defects found in images as seen in Fig. 7g and  h. But, The 
modified YOLOv8 has determined the non-distorted region 
as a defect in disorder 7h. Due to such determinations, the 
FP value of the modified YOLOv8 model is high.

The recommended SDPH technique for detecting road 
disturbances with their positions from huge volume and 
high-resolution satellite images includes a two-stage pro-
cess. First, with the CNN model recommended for path 
detection, it is determined whether the image has a road. 
Then, if the image is the path, it is determined whether there 
is a disorder. If the recommended SDPH technique is single-
stage rather than two-stage, in other words, if the corrupted 
path is directly detected on the image produced by Geo-
Server-TileCache, the results as presented in Fig. 8 appear.

There are stones in the image shown in Fig.  8a and pre-
sented as input to the deep learning method. As shown in 
Fig. 8b–d, modified RCNNv3, YOLOv5 and YOLOv8 mod-
els detect these disturbances in the field as road disturbances. 
However, this disorder is not a road disorder. It can be 
expressed as the land disorder on the land plot. To overcome 
such problems, the SDPH technique has been built in two 
stages. The first CNN-based deep learning method checks 
for paths in the image. Then it is determined whether there 
is a disorder or not. The image presented in Fig. 8a does 
not pass through the second stage because it is detected that 
there is no path by the first deep learning method. From this 
perspective, the proposed SDPH technique performs better 
in detecting road disturbances along with the spatial posi-
tions of huge volume and high-resolution satellite images.

5.2.4  Runtimes of techniques

One of the important criteria in analysis studies on huge vol-
umes of data is the computational cost. For this reason, the 

computational cost of path detection and path disturbance 
detection of the SDPH techniques recommended within 
the scope of this experiment has been examined. Two deep 
learning methods are used in the recommended SDPH tech-
nique. The first deep learning method determines whether 
there is a path in the input image. If the input image contains 
the path, it is determined whether there is a disorder with the 
second deep learning method. On the other hand, TilaCache 
was modified to improve the path detection and path distur-
bance detection achievement of the recommended SDPH 
technique. This process produces images as 1024 × 1024 
with modified TilCache. When the images produced by 
classic TileCache are presented as input to the deep learn-
ing method, a total of 312,352 images are analyzed by deep 
learning methods. But, modified TileCache produces images 
of the same region; there are 19,522 images. In other words, 
the number of images produced by modified TileCache is 
1 in 16 of the number of images produced by classic Tile-
Cache. This is because the 1024 × 1024 image contains 16 
images of 256 × 256 images. In the recommended SDPH 
technique, CNN models are run separately on classical Tile-
Cache and modified TileCache. Run time cost in seconds of 
deep learning methods is presented in Table 3.

As can be inferred from Table 3, classic RCNNv3 detects 
whether the TileCache-generated images are paths in a total 
of 14,368 s, while the recommended modified RCNNv3 
technique is 957 detects seconds. The recommended modi-
fied RCNNv3 technique makes path detection 15 times 
faster from huge volume satellite images than the classi-
cal RCNNv3 technique. On the other hand, the classical 
YOLOv5 model analyzes for 4685 s whether the images in 
the dataset are paths, while the modified YOLOv5 technique 
analyzes for only 312 s. Moreover, the classical YOLOv8 
model analyzes for 4169 s whether the images in the dataset 
are paths, while the modified YOLOv8 technique analyzes 
for only 271 s. Thanks to the modified process, the path 
detection times of the modified YOLOv5 and YOLOv8 
are also 15 times faster than their classical models. When 
the path detection times of CNN models are examined in 

Fig. 8  Detection result of path holes in images that do not contain path
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seconds, the classic RCNNv3, classic YOLOv5, classic 
YOLOv8, modified RCNNv3, modified YOLOv5 and modi-
fied YOLOv8 techniques can analyze whether there is a path 
in an image of approximately 0.046, 0.015, 0.013, 0.049, 
0.016 and 0.014 seconds, respectively. Modified CNN meth-
ods take a little longer to analyze an image than classical 
CNN methods. This is due to the large size of the image 
processed by modified models. However, when the whole 
working time is examined, modified models perform much 
faster analysis than classical models. This is because the 
number of images in the dataset is less.

Since modified models outperform classical methods 
in object detection and computational cost, only modified 
models were used to detect road defects. While the modified 
RCNNv3 model detects the disorder on the roads in 899 s, 
the modified YOLOv5 model detects it in 296 s and the 
modified YOLOv8 model detects it in 256 s. The modified 
YOLOv8 model detects road and road defects approximately 
3.5 times faster than the modified RCNNv3 model.

5.2.5  The individual performance of deep learning‑based 
object detectors in the proposed technique

Within the scope of this experiment, the individual per-
formance of CNN models used for object detection in the 
SDPH approach, which is recommended for detecting road 
irregularities from large-volume satellite images, was exam-
ined. In the proposed SDPH approach, path detection is first 
performed. Later, if a road is detected in the image, it is 
determined whether there is any damage on the road. In the 
experimental investigations made in Sects. 5.2.3 and  5.2.4, 
the SDPH approach uses two different CNN models. In 
other words, while road detection is performed with the 
YOLOv5 model, road defect detection can be detected with 
the YOLOv8 model. However, in real-time systems, a single 
CNN model is usually used. For this reason, within the scope 
of this experiment, the performance of RCNNv3, YOLOv5, 
and YOLOv8 models in their singular use case was exam-
ined in the proposed SDPH approach. In other words, while 

road detection was done with the RNNv3 model, road defect 
detection was examined with the RCNNv3 model.

Deep learning models for road and road defect detec-
tion were trained with two different data sets. As shown in 
detail in Sect. 5.2.3, to successfully detect road defects from 
large volumes of satellite images, the input image must first 
be of road class. On the other hand, metrics such as micro 
average, macro average, and weighted average are used in 
the literature to determine the performance of the proposed 
method in deep learning-based techniques that perform dif-
ferent and multi-class detection [74, 75]. A micro average 
f1 score is preferred when each class cannot be ignored. The 
micro average f1 score may be a more appropriate measure 
of performance, especially if there is an uneven distribution 
between classes or some classes are less represented than 
others [76]. In the data set examined within the scope of this 
study, there is an unbalanced distribution because there are 
different numbers of road and road defects classes. In addi-
tion, classes cannot be ignored since road detection must 
be done first to detect road defects. For these reasons, the 
micro average f1 score was used to examine the individual 
performance of CNN models used as object detectors in the 
proposed SDPH approach. The micro average f1 score is 
calculated as shown in Eq. 2.

While calculating the Micro Precision and Micro Recall val-
ues presented in Eq. 2, the total TP, TN, FP, and FN values 
in all classes are determined using Eq. 1.

In the proposed SDPH approach, the performance of the 
classical and modified RCNNv3, YOLOv5, and YOLOv8 
models when used individually was examined in terms 
of micro f1-score and computational cost. The results 
obtained are presented in Table 4. In the proposed SDPH 
approach, in the first stage, it is examined whether the 
input image is in road class or not. If the first object detec-
tion model detects a road in the image (TP or FP), the 

(2)

MicroF
1
− score =

2 ×Micro Precision ×Micro Recall

Micro Precision +Micro Recall

Table 3  Run times of all 
techniques

Bold text indicates that the relevant data are statistically superior

Method Data set Size Image count Run times (second)

Classic RCNNv3 Path 256 × 256 312,352 14368.19
Modified RCNNv3 Path 1024 × 1024 19,522 956.58
Classic YOLOv5 Path 256 × 256 312,352 4685.28
Modified YOLOv5 Path 1024 × 1024 19,522 312.352
Classic YOLOv8 Path 256 × 256 312,352 4169.90
Modified YOLOv8 Path 1024 × 1024 19,522 271.75
Modified RCNNv3 Path hole 1024 × 1024 18,213 899.45
Modified YOLOv5 Path hole 1024 × 1024 18,213 296.41
Modified YOLOv8 Path hole 1024 × 1024 18,213 256.39
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object detection model in the second stage tries to detect 
whether there is any defect in the road. The number of 
images examined by the object detection method in the 
second stage is the total number of images detected as TP 
or FP in the first stage. As presented in Table 1, the num-
ber of images examined in Table 4 is different from each 
other because the models in the first stage of deep learning 
have different numbers of TP and FP values. On the other 
hand, frame per second (FPS), the term expressed as the 
number of frames that can be processed in one second, is 
an important metric used to evaluate the computational 
cost in real-time systems [77]. FPS affects response times, 
security, and quality of simulations in real-time systems 
and is therefore important.

As seen in the Table  4, the improved RCNNv3, 
YOLOv5, and YOLOv8 models showed a clear superiority 
in terms of the micro f1 score metric compared to the clas-
sic RCNNv3, YOLOv5, and YOLOv8 models. Improved 
RCNNv3, YOLOv5, and YOLOv8 models achieved micro 
f1 scores of 0.956, 0.969 and 0.965, respectively. Thanks 
to the improvements made on TileCache, deep learning 
models have achieved these high f1 scores. On the other 
hand, when models are examined according to compu-
tational cost, classical deep learning models have higher 
FPS values than improved models. Because, while the 
classical object detection method processes images in the 
size of 256 × 256 , the improved object detection model 
processes images in the size of 1024 × 1024 . However, 
when the overall computational cost is examined, the com-
putational costs are very high for classical models because 
classical deep learning models process approximately 13 
times more images than improved deep learning models. 
When the deep learning models are examined individually 
in the proposed SDPH approach, the improved RCNNv3, 
YOLOv5, and YOLOv8 models have a much superior f1 
score metric and much lower computational cost than the 
classical models.

6  Conclusion

In this study or research, a hybrid method called SDPH is 
proposed to detect the corrupted paths of huge volume satel-
lite images together with their geographical location. In the 
recommended method, the huge volume satellite image is 
first accessed as a pyramid grid file system using GeoServer 
and TileCache. Then, the images produced by TileCache are 
presented to the two-stage object detection model. The first 
deep learning technique detects whether there is a path in the 
image. The second deep learning technique detects whether 
there is a disorder if the image is a path. In the recommended 
SDPH technique, to increase the object detection achieve-
ment of the deep learning method, TileCache is modified to 
produce 1024 × 1024 images. Classic TileCache produces 
256 × 256 images. Path detection achievement of RCNNv3, 
YOLOv5 and YOLOv8 deep learning methods on images 
produced by classical TileCache and modified TileCache 
were investigated. Classic RCNNv3, classic YOLOv5, 
classic YOLOv8, modified RCNNv3, modified YOLOv5 
and modified YOLOv8 models scored 0.743, 0.716, 0.710, 
0.955, 0.958 and 0.954 f1 in path detection, respectively. 
Since the modified YOLOv5 model has the highest f1 score 
value in path detection, the images detected by this model 
as a path are presented to the second deep learning method. 
In the second deep learning process, modified RCNNv3, 
modified YOLOv5, and modified YOLOv8 models were 
used to examine any distortion in the images detected as 
paths. In damaged road detection, the modified RCNN v3 
scored a 0.957 f1 score, while the modified YOLOv5 and 
YOLOv8 were 0.971 and 0.964 f1 scores. Improved deep 
learning models show much superior performance than 
the classics. If the proposed SDPH approach uses the same 
CNN models for the first and second stages, the modified 
RCNNv3, YOLOv5, and YOLOv8 models obtain a micro 
f1 score of 0.9, 0.95, and 0.92, respectively. In the SDPH 
technique recommended to detect road disturbances from 
huge volume and high-resolution satellite images with their 
positions, the modified YOLOv5 model outperformed by 
detecting damaged roads with a 0.969 micro f1 score on 
approximately 0.032 s.

In the future, it is planned to carry out studies on detect-
ing roads as polygons from huge volume and high-resolution 
satellite images.
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