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Abstract
In certain healthcare settings, such as emergency or critical care units, where quick and accurate real-time analysis and 
decision-making are required, the healthcare system can leverage the power of artificial intelligence (AI) models to support 
decision-making and prevent complications. This paper investigates the optimization of healthcare AI models based on time 
complexity, hyper-parameter tuning, and XAI for a classification task. The paper highlights the significance of a lightweight 
convolutional neural network (CNN) for analysing and classifying Magnetic Resonance Imaging (MRI) in real-time and is 
compared with CNN-RandomForest (CNN-RF). The role of hyper-parameter is also examined in finding optimal configura-
tions that enhance the model’s performance while efficiently utilizing the limited computational resources. Finally, the ben-
efits of incorporating the XAI technique (e.g. GradCAM and Layer-wise Relevance Propagation) in providing transparency 
and interpretable explanations of AI model predictions, fostering trust, and error/bias detection are explored. Our inference 
time on a MacBook laptop for 323 test images of size 100x100 is only 2.6 sec, which is merely 8 milliseconds per image 
while providing comparable classification accuracy with the ensemble model of CNN-RF classifiers. Using the proposed 
model, clinicians/cardiologists can achieve accurate and reliable results while ensuring patients’ safety and answering 
questions imposed by the General Data Protection Regulation (GDPR). The proposed investigative study will advance the 
understanding and acceptance of AI systems in connected healthcare settings.
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1  Introduction

According to the World Health Organization1, in 2019, an 
estimated 17.9 million people died from cardiovascular dis-
eases, representing 32% of all global deaths. Statistics pub-
lished by the American Heart Association in 2023 state that 
from 2017-2020, an estimated 20.5 million Americans had 

coronary heart disease (CHD) [1]. Specifically, Coronary 
artery disease (CAD) accounts for approximately 610,000 
deaths annually in the United States and is the third leading 
cause of death worldwide, with 17.8 million deaths annu-
ally [2].

The patient’s symptoms of CAD are neither sensitive nor 
specific, thus making it difficult for clinicians or cardiolo-
gists to rely only on them. The reference standard for CAD 
detection is coronary angiography, which is an invasive diag-
nostic imaging procedure performed using cardiac catheteri-
zation [3]. This method is expensive and carries potential 
risks. Other methods include cardiac imaging techniques, 
which are safe, non-invasive, cheaper and can help doc-
tors in early detection and providing timely interventions to 
treat CAD patients. These techniques include X-rays, Com-
puter Tomography (CT), Echo-cardiogram and Magnetic 
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Resonance Imaging (MRI) or Cardiac Magnetic Resonance 
(CMR) Imaging [4].

X-rays and CT imaging techniques use ionizing radia-
tions, which are considered harmful if a patient is over-
exposed to them [5]. Echocardiograms are limited by cost, 
time, and acoustic window access [6]. MRI or CMR imaging 
uses magnetic waves and is considered a viable alternative 
for non-invasive assessment of CAD [7]. MRI/CMR images 
provide precise measurements of heart structure and func-
tions, as well as myocardial perfusion and parametric quan-
tification. MRI/CMR could be 2D or 3D, but 3D imaging 
has excessive artifacts and has thus not been clinically used 
for the diagnosis of CAD [8]. Manual interpretation of 2D 
scans is also time-consuming and requires experience. Thus, 
artificial intelligence methods are exploited to automate 
the CAD diagnosis to reduce the analysis time with poten-
tially improved accuracy. This plays a critical role in con-
nected healthcare settings (transitioning healthcare services 
remotely, from hospitals to patient side or home-based care).

However, there are several challenges in implementing 
such AI models on computational tools such as Field Pro-
grammable Gate Arrays (FPGAs), Raspberry Pi and central 
processing unit (CPU)/graphics processing unit (GPU) based 
systems. These challenges arise due to the limited process-
ing power, memory, and energy efficiency of these devices. 
It is essential to engage in a multidisciplinary approach that 
involves collaboration between domain experts, data scien-
tists and hardware engineers to overcome these challenges.

Convolutional Neural Network (CNN) models have 
yielded unprecedented achievements in addressing computer 
vision challenges, including but not limited to image clas-
sification, object detection, and tracking. Nonetheless, their 
integration into embedded applications has been impeded 
by the substantial computational and memory requisites, 
thereby giving rise to a novel research domain known as 
model compression including bit reduction, knowledge dis-
tillation, tensor decomposition, network pruning, and micro-
architecture [9]. Interested readers are referred to [10] for 
detailed insights, advantages and limitations of each men-
tioned method. While these strategies have demonstrated 
notable achievements, they are not without their inherent 
constraints.

This paper introduces a lightweight Convolutional Neural 
Network (CNN) model designed specifically for real-time 
implementation as a classifier. In connected healthcare set-
tings, where low latency and efficient processing are crucial, 
this lightweight CNN offers a promising solution. By opti-
mizing the model’s architecture and parameters, we aim to 
strike a balance between computational efficiency and clas-
sification accuracy, enabling real-time CAD detection. This 
approach has great potential to improve the deployment of 
AI systems in resource constrained environments, ultimately 
benefiting the overall healthcare systems.

The remaining paper is organised as; Sect. 2 summa-
ries the available literature on real-time CAD classification 
networks, Sect. 3 highlights the proposed work and dataset 
description, Sect. 4 provides calculations and the experimen-
tal results and the conclusion and future work are presented 
in Sect. 6.

2 � Background

Coronary artery disease (CAD) primarily originates from 
the accumulation of atherosclerotic plaque within the epi-
cardial arteries, leading to an imbalance in the supply and 
demand of oxygen to the myocardium, often resulting in 
ischemia [11]. Chest pain is the predominant symptom, 
typically occurring during physical or emotional stress. Life-
style modifications, pharmacological therapies, and invasive 
interventions are available strategies to modify this disease 
process, with the goal of stabilizing or regression of the dis-
ease [12]. Despite the development of innovative imaging 
methods, such as MRI and/or coronary CT angiography, 
invasive coronary angiography remains the preferred diag-
nostic tool for assessing the severity of complex CAD, as 
endorsed by the 2019 guidelines of the European Society of 
Cardiology [13]. The process of interpreting complex coro-
nary vascular structures is a time-intensive task and presents 
challenges to the clinician [14]. The implementation of real-
time automatic CAD detection and labelling offers promise 
in overcoming these challenges by providing valuable sup-
port in the decision-making process.

Numerous methodologies for the automatic or semi-
automatic assessment of coronary artery diseases have been 
proposed by various research groups [15]. These method-
ologies adhere to a common framework comprising three 
fundamental steps: (1) extraction of the coronary artery tree, 
(2) computation of geometric parameters, and (3) analysis 
of stenotic segments. The pivotal phase significantly influ-
encing the efficiency and precision of these algorithms is 
dependent on the extraction of the coronary artery tree. This 
task is accomplished through diverse techniques, including 
centerline extraction [16], graph-based methods [17], super-
pixel mapping [18], and machine/deep learning [19]. Among 
these, machine and deep learning methods have exhibited 
substantial potential in CAD detection based on their com-
mendable performance, adaptability to tuning, and optimi-
zation capabilities [20]. The overarching objective pursued 
by developers and users of CNNs is to strike an optimal 
equilibrium between accuracy and speed, a concept often 
referred to as the “speed/accuracy trade-off” [21]. This 
trade-off incorporates the endeavour to achieve high levels 
of CAD detection accuracy while simultaneously ensuring 
swift processing and analysis, a critical consideration in 
clinical practice.
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Although several CNN-based approaches have report-
edly achieved optimal accuracy in CAD detection, with Dice 
Similarity Coefficients surpassing 0.75 [22] and Sensitiv-
ity metrics exceeding 0.70 [23], there is notable neglect of 
their processing speed. The time required for image pro-
cessing represents a critical performance indicator for the 
practical application of these methods. In literature, studies 
have reported processing times ranging from 1.1 to 11.87 
seconds [17, 22], 20 seconds [18] and, in some instances, 
even exceeding 60 seconds per frame [16]. However, such 
durations are considered unacceptable for real-time CAD 
detection as the required processing time is 0.13 to 0.07 
seconds per frame [24]. Thus, our study presents a detailed 
analysis of light-weighted neural network architectures along 
with their potential in terms of accuracy and performance to 
classify healthy and CAD images.

3 � Proposed work

In the proposed work, we implemented a light-weight neural 
network, that is, adapted version of LeNET-5 model [25] 
on the CAD Cardiac Magnetic Resonance Imaging dataset2 
(proposed by Khozeimeh et al. [26]) for a comprehensive 
comparison. The results of the CNN-RF model [26] were 
considered as ground truth/reference. The input to the model 

is 2D CMR images. Figure 1 depicts examples of both cat-
egories’ images. Pre-processing steps included resizing the 
images to 100x100 pixels and normalization between 0 and 
1. The main contribution in the proposed work is 3-fold and 
is as follows: 

1.	 Time Complexity: We propose a lightweight deep net-
work model for CAD classification in MRI by carefully 
selecting network architecture and optimizing model 
parameters to reduce inference time while maintaining 
accuracy and enabling real-time or near-real-time CAD 
diagnosis.

2.	 Hyper-parameter Tuning: We optimized the deep model 
by exploring different hyper-parameter settings as well 
as used various activation functions, optimizers, and 
architectural changes, to identify configurations that 
maximize the model’s performance.

3.	 eXplainable Artificial Intelligence (XAI): We integrated 
GradCam [27] and Layer-Wise Relevance Propagation 
(LRP) [28], XAI techniques to provide interpretable 
insights into the model’s decision-making process, 
generating heatmaps that highlight the regions of MRI/
CMR images that govern CAD classification.

3.1 � Dataset description

The dataset consists of 63,151 multiparametric CMR 
Images including 37,290 healthy and 25,861 CAD patients 
images. CAD diagnosis was confirmed by invasive coronary 

Fig. 1   Example of 2D MRI/
CMR images from CAD 
patients (a–c) and healthy 
subjects (d–f). The yellow circle 
highlights the region indicative 
of CAD in sub-images (a–c). 
Figure reproduced with permis-
sion from [26]

2  https://​www.​kaggle.​com/​dania​lshar​ifrazi/​cad-​cardi​ac-​mri-​datas​et.

https://www.kaggle.com/danialsharifrazi/cad-cardiac-mri-dataset
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angiography. Four MRI / CMR sequences (that is, Late Gad-
olinium Enhancement (LGE), Perfusion, T2 weighted, and 
Steady-State Free Precession (SSFP)) were used, capturing 
short and long axes plains of the heart. A total of 13 slices 
per patient were collected in four types of sequences.

During the pre-processing stage, a manual inspection was 
conducted on images from both subsets, and any images 
with poor MRI/CMR quality were excluded from further 
analysis. Following the pre-processing stage, the dataset 
consisted of 34,216 images from healthy patients and 17,438 
images from patients with CAD.

3.2 � Performance assessment matrices

The performance of the classifier is assessed using Positive 
Predictive Value (PPV), Recall (Sensitivity or True Posi-
tive Rate), Specificity (True Negative Rate), F1-Score, Area 
Under the Curve (AUC), Accuracy and Balanced Accuracy. 
Mathematically, each matrix is presented as:

(1)PPV =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)Specificity =
TN

TN + FP

(4)F1-score = 2 ⋅
Precision ⋅ Recall

Precision + Recall

(5)AUC = ∫
1

0

ROC-curve dFPR

(6)Accuracy =
TP + TN

TP + TN + FP + FN

Where TP: True Positives, TN: True Negatives, FP: False 
Positives, FN: False Negatives, ROC: Receiver Operating 
Characteristic and FPR: False Positive Rate.

4 � Results

Figure 2 illustrates the implemented model architecture3. All 
experiments were implemented in Python using the Karas 
library. The models were trained on Apple M2 Pro with 16 
GB RAM. The following subsections discuss the time com-
plexity calculations, the effect of hyper-parameter tuning, 
and feature explanations using XAI results.

4.1 � Time complexity calculation and comparison

The time complexity of a model is determined by the num-
ber of layers and the operations performed in each layer. 
The proposed model architecture comprises seven layers, 
excluding the input layer, as shown in Fig. 2. These layers 
consist of C1 (convolutional), S2 (subsampling), C3 (con-
volutional), S4 (subsampling), FC5 (fully connected), FC6 
(fully connected) and the output layer. The time complexity 
of each layer is as follows: 

1.	 C1 (convolutional layer): The time complexity of this 
layer depends on the filter size, the shape of the input 
image, and the number of filters applied. Assuming the 
input shape is (H, W, C), where H is the height, W is the 
width, and C is the number of channels, and the filter 
size is (FH, FW), the time complexity is approximately 
O(H * W * C * FH * FW * F * S2 ), where F is the num-
ber of filters and S is stride value.

2.	 S2 (subsampling layer/ average pooling layer): The time 
complexity of this layer depends on the pool size and 

(7)Balanced Accuracy =
Sensitivity + Specificity

2

Fig. 2   Implemented model architecture

3  https://​d2l.​ai/​chapt​er_​convo​lutio​nal-​neural-​netwo​rks/​lenet.​html.

https://d2l.ai/chapter_convolutional-neural-networks/lenet.html
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strides. Assuming that the pool size is (PH, PW) and the 
strides are (SH, SW), the time complexity is approxi-
mately O((H/PH) * (W/PW) * C).

3.	 C3 (convolutional layer): Similar to C1, the time com-
plexity of this layer is approximately O(H * W * C * FH 
* FW * F * S2).

4.	 S4 (subsampling layer/ average pooling layer): Similar 
to S2, the time complexity of this layer is approximately 
O((H/PH) * (W/PW) * C).

5.	 FC5 (fully connected layer): The time complexity of a 
fully connected layer with units U is O(U * F), where F 
is the size of the input features.

6.	 FC6 (fully connected layer): The time complexity of this 
layer is similar to the previous one, that is, O(U * F).

7.	 Output layer: The time complexity of the output layer is 
O(U), where U is the number of output units.

Adding all the time complexities of each layer, the overall 
time complexity of the proposed model could be approxi-
mated to be: O

(

2 ∗ (H ∗ W ∗ C ∗ FH ∗ FW ∗ F ∗ S2)

+ H
PH ∗ W

PW ∗ C) + (ep ∗ ts ∗ tf ∗ C ∗ fs ∗ fs) + 2 ∗ (U ∗ F) + U
)

.

In our case, the input image shape is (100,100,1), filter 
size is varied between (C1 = 6, C3 = 6) and (C1 = 12, C3 
= 6), kernel size = (5,5), pooling size = (2,2), strides = 
(2,2), units in fully connected layer 1 and layer 2 = 128, 84 
respectively, while the output layer had only 1 unit, as the 
model is performing binary classification.

As the results are to be compared with CNN-
RF models proposed by [26],  the t ime com-
plexi ty  of  their  model  is  calculated to  be: 
O
(

ne log(ne)nfns log(ns) + 2
(

O(ns) + O(ncnnnepntsntfntcfsfs)
+ O(ntsncnn) + O(ntsncnn log(ncnn)) + O(nvsncnn)

)

.

In both the time complexity equations, e is estimators, f 
is features, s is samples, ep is epochs, ts is train samples, tf 
is train features, tc is train channels, fs is filter size, and vs 
is validation samples.

A comparison of the time complexities between the pro-
posed model and the CNN-RF model reveals that our model 
entails significantly lower computational overhead in com-
parison to the CNN-RF model. Our inference time on a Mac-
Book laptop for 323 test images of size 100x100 is only 2.6 
sec, which is only 8 milliseconds per image. Additionally, 
it provides better or equal classification accuracy. Our mod-
el’s lower computational complexity enables faster image 
analysis and diagnosis, improving efficiency, and facilitat-
ing deployment on resource-constrained systems such as 
Raspberry Pi, FPGA or any other edge device for real-time 
classification and diagnosis in connected healthcare settings.

4.2 � Hyper‑parameter tuning and classification 
results

Various hyperparameter configurations were utilized to 
attain optimal model performance for CAD image classifi-
cation. Table 1, 2, 3 and 4 present the diverse performance 
of the models obtained with different settings.

The Parametric Rectified Linear Unit (PReLU) activation 
function combined with the Root Mean Squared propaga-
tion (RMSprop) optimizer resulted in the highest classifi-
cation accuracy, achieving a general accuracy of 99.35% 
and a balanced precision of 99.13%. This surpasses the 
previously achieved highest accuracy of 99.18% obtained 
by the reference CNN-RF model. To test the generalizabil-
ity of our model, a stratified cross-validation (CV) analysis 
was performed using 10-folds. The model showed similar 

Table 1   Model parameters 
settings: model with filter size 
C
1
 and C

3
 = 6,6; Batch Size = 

32; epochs = 20; loss function 
= binary cross-entropy; final 
layer activation function = 
sigmoid; dropout = 0.5

Activation Optimizer PPV Recall Specificity F1-Score AUC​ Accuracy Balanced Acc

PReLU Adam 99.33 97.83 99.66 98.57 99.90 99.04 98.75
RMSprop 98.60 98.77 99.28 98.67 99.76 99.11 99.03

ReLU Adam 99.21 96.85 99.61 98.02 99.84 98.67 98.23
RMSprop 98.12 97.31 99.05 97.72 99.63 98.46 98.18

LeakyReLU Adam 97.99 97.40 99.00 97.69 99.83 98.44 98.20
RMSprop 98.48 98.05 99.22 98.27 99.75 98.83 98.64

Table 2   Model parameters 
settings: model with filter size 
C
1
 and C

3
 = 12,6; Batch Size = 

32; epochs = 20; loss function 
= binary cross-entropy; final 
layer activation function = 
sigmoid; dropout = 0.5

Activation Optimizer PPV Recall Specificity F1-Score AUC​ Accuracy Balanced Acc

PReLU Adam 99.65 97.45 99.82 98.54 99.86 99.02 98.64
RMSprop 99.47 97.34 99.74 98.39 99.82 98.93 98.54

ReLU Adam 99.10 98.17 99.55 98.63 99.87 99.08 98.86
RMSprop 98.87 97.48 99.43 98.17 99.57 98.77 98.46

LeakyReLU Adam 98.12 98.40 99.03 98.26 99.87 98.82 98.72
RMSprop 98.61 97.14 99.30 97.87 99.74 98.57 98.22
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performance as without CV, achieving classification accu-
racy of 99.22% (while the balance accuracy of 99.10%), as 
depicted in Table 5.   

The sub-optimal performance of the proposed classifiers 
can be attributed to their reliance on the frame-based analy-
sis. MRI sequences often produce a multitude of frames, 
some of which lack noticeable regions of interest (ROIs), as 
depicted in Figure 3 (all three view angles of MRI scan). The 
figure illustrates the frames with no ROIs (no visible coro-
nary artery in the frame). The proposed model considers all 
the frames uniformly, irrespective of their diagnostic value. 
Thus, frames without ROIs introduce noise into the analy-
sis, impairing the classifier ability to differentiate between 
images of patients with CAD (illness) and those of healthy 
individuals. This limitation underscores the need for more 
sophisticated methodologies that account for the inherent 
variability in MRI frames, enabling classifiers to consider 
frames based on the presence or absence of ROIs.

5 � eXplainable AI

Explainable Artificial Intelligence (XAI) is a field in machine 
learning and artificial intelligence that focuses on developing 
models that can provide transparent and interpretable explana-
tions for their decisions or predictions. In the context of con-
nected healthcare settings, XAI not only helps ensure the qual-
ity and safety of care but also fosters trust among patients and 
healthcare providers. Several notable XAI techniques include: 
SHAP (SHapley Additive exPlanations) values provide a uni-
fied framework for explaining the output of any machine learn-
ing model by attributing contributions of each input feature to 
the model’s prediction [29, 30]. LIME (Local Interpretable 

Model-Agnostic Explanations) generates local explanations by 
approximating complex model behaviour with simpler, inter-
pretable models on a subset of data points [31]. Saliency Maps 
highlight regions in input data (e.g., medical images) that are 
most influential in a model’s prediction, aiding clinicians in 
understanding what the model is focusing on [32]. Accumu-
lated Local Effects (ALE) helps visualize how the relationship 
between a single feature and the model’s prediction changes 
across different feature values [33]. Contrastive Explanation 
Method (CEM) generates contrastive explanations, highlight-
ing the minimal changes needed in input features to alter a 
model’s prediction, which can be invaluable in understanding 
model behaviour [34]. Global Interpretation via Recursive 
Partitioning (GIRP) uses recursive partitioning techniques 
to create a global interpretable model that approximates the 
original complex model [35]. CAM (Class Activation Maps) 
highlights important regions in images that contribute to a 
specific class prediction, making it useful for image classifi-
cation tasks [36]. GradCAM (Gradient-weighted Class Acti-
vation Mapping) combines gradient information with CAM 
to provide more precise visualizations of feature importance 
in convolutional neural networks [37]. LRP (Layer-wise Rel-
evance Propagation) is a method that assigns relevance scores 
to each input feature, explaining how each feature contributes 
to the model’s output [38]. In this paper, we choose GradCAM 
and LRP due to their ability to provide precise, visual, and 
deep-level explanations, their compatibility with CNN-based 
models, and their established utility in the medical imaging 
domain. These methods collectively offer a comprehensive 
solution for improving the interpretability of AI models in a 
clinical context, ultimately leading to more informed and con-
fident clinical decision-making. The results of each technique 
are explained as follows:

Table 3   Model parameters 
settings: model with filter size 
C
1
 and C

3
 = 6,6; Batch Size = 

32; epochs = 20; loss function 
= binary cross-entropy; final 
layer activation function = 
sigmoid; No dropout

Activation Optimizer PPV Recall Specificity F1-Score AUC​ Accuracy Balanced Acc

PReLU Adam 99.19 98.03 99.59 98.60 99.88 99.06 98.81
RMSprop 99.62 98.45 99.81 99.04 99.92 99.35 99.13

ReLU Adam 99.33 97.28 99.66 98.29 99.90 98.86 98.47
RMSprop 96.18 98.94 98.00 97.55 99.65 98.32 98.47

LeakyReLU Adam 99.01 97.14 99.50 98.06 99.85 98.70 98.32
RMSprop 98.58 97.57 99.28 98.07 99.79 98.70 98.43

Table 4   Model parameters 
settings: model with filter size 
C
1
 and C

3
 = 12,6; batch size = 

32; epochs = 20; loss function 
= binary cross-entropy; final 
layer activation function = 
sigmoid; No dropout

Activation Optimizer PPV Recall Specificity F1-Score AUC​ Accuracy Balanced Acc

PReLU Adam 99.08 98.08 99.53 98.58 99.88 99.04 98.81
RMSprop 99.10 98.03 99.55 98.56 99.80 99.03 98.79

ReLU Adam 99.31 98.17 99.65 98.73 99.92 99.15 98.91
RMSprop 97.91 99.03 98.92 98.46 99.76 98.95 98.97

LeakyReLU Adam 98.64 97.65 99.31 98.15 99.79 98.75 98.48
RMSprop 98.98 97.25 99.49 98.11 99.81 98.73 98.37
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5.1 � GradCAM heatmaps

Gradient-weighted Class Activation Mapping (Grad-CAM) 
is a computer vision technique used to generate a heatmap 
of the important regions in an image that significantly con-
tributes to the prediction of the deep learning model [39]. 
Figure 4 illustrates some examples of generated GradCAM 
heatmaps that highlight the focused regions (regions of 
interest) for the prediction of CAD in the test images. In 
the GradCAM visualization, the intensity of the heatmap 
represents the importance of each pixel in the input image. 
Higher intensity (e.g. brighter colours) and high-contrast 
colour with the background are indicative of a more signifi-
cant region that contributed to the model’s prediction.

5.2 � Layer‑wise relevance propagation (LRP)

Layer-wise Relevance Propagation (LRP) is an XAI tech-
nique used to understand the predictions made by deep 
learning models. The primary objective of LRP is to ascribe 
the model’s predictions to specific regions or features within 
the input image [40]. This helps explain why a particular 
classification decision was made, which is crucial in medi-
cal applications for trust and accountability. The core prin-
ciple shared among various versions of the LRP algorithm 
is the conservation of the activation strength of an output 
node for a specific class, as it is propagated back through 
each layer of the neural network. This ensures that the total 

relevance associated with a particular class remains con-
stant as it traverses the network layers during the explanation 
process [41]. This study investigated two versions of the 
LRP algorithms i.e., LRP0 and LRP_epsilon. The LRP0 is a 
straightforward version that conserves relevance strictly but 
can lead to issues with non-differentiable activation func-
tions. LRP_epsilon addresses these issues by introducing a 
small smoothing factor (epsilon) to improve the stability and 
interpretability of relevant heatmaps.

Figure 5 displays the heatmaps produced by both algo-
rithms along with the original images. The significance of 
features is visually represented using colours, with red indi-
cating more critical features contributing to the classification 
of an image into a specific category.

5.3 � Failure cases

The lack of contrast in the region of interest (ROI) or overly 
bright regions where there is no relevant information (ROI) 
presents a significant challenge. While the model appro-
priately emphasizes brighter regions, it struggles when the 
input image does not have enough contrast. Thus, the perfor-
mance of the proposed model significantly depends on the 
quality of the input image. To address this issue, a potential 
solution is to implement a preprocessing step focused on 
enhancing image contrast. Furthermore, an iterative refine-
ment process and parameter tuning may be employed to 
optimize the preprocessing step, ensuring adaptability to 
varying degrees of contrast in input images. However, it is 

Table 5   Model’s best 
performances achieved with 
different settings: comparison

Note: ∗are model’s results with 10-fold Stratified Cross-Validation

Model Act function Optimizer PPV Recall Specificity F1-Score AUC​ Accuracy

Our Model PReLU Adam 99.19 98.03 99.59 98.60 99.88 99.06
Our Model PReLU RMSprop 99.62 98.45 99.81 99.04 99.92 99.35
OurModel

∗ PReLU RMSprop 99.11 98.59 99.55 98.85 99.86 99.23
Our Model ReLU Adam 99.31 98.17 99.65 98.73 99.92 99.15
CNN-RF ReLU Adam 100 98.88 99.66 99.70 99.00 99.18

Fig. 3   Original images from the 
sick dataset. a is Axial-view b 
is Sagittal-view while c shows 
a Coronal view of a chest MRI 
scan (one frame)
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crucial to acknowledge that these approaches incur compu-
tational expenses due to the additional processing require-
ments. Therefore, a trade-off balance between computational 
resources and enhanced model performance needs to be met.

6 � Conclusion

In conclusion, this research study aimed to propose a light-
weighted Convolutional Neural Network (CNN) model 
tailored for real-time CAD image classification tasks in 
connected healthcare environments. The study placed a 

strong emphasis on optimizing hyperparameter configura-
tions to enhance the efficiency and accuracy of AI models 
in healthcare-related classifications. Moreover, to provide 
the interpretability of the model’s predictions, we incorpo-
rated the GradCam and LRP algorithms, that highlighted 
the significant features within input images that influence 
classification decisions.

The achieved results are compared with the state-of-the-
art algorithm present in the literature (an ensemble of 10 
CNN-RF networks). The CNN-RF model is more computa-
tionally expensive as it extracts classification features using 

Fig. 4   Heatmaps generated 
by GradCAM on test images. 
The most important features of 
the images that contribute to 
the classification of the image 
into certain classes are shown 
in darker colours. The three 
images are original, heatmap, 
and superimposed image
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CNN and then feeds them to Random Forest (RF) classifier 
for classification. In addition, majority voting is performed 
to predict the final class (normal or sick patient image). On 
the other hand, the proposed model is a single seven-layered 
CNN model which outperforms the CNN-RF in terms of 
classification as well as time complexity making it more 
suitable to be implemented on edge devices and in connected 
healthcare settings.

The classification model performance (for both the mod-
els i.e., baseline and proposed) was measured using PPV, 
recall, specificity, F1-Score, AUC, and accuracy matri-
ces. As the dataset has a class imbalance, an additional 
performance metric i.e., Balance Accuracy was also cal-
culated during the analysis. The combination of different 

hyperparameters revealed different classification accuracies, 
as tabulated in Table 1 to 5. Among all the settings, the pro-
posed model achieved the highest test accuracy of 99.35% 
(with balanced accuracy = 99.13%) with interlayer activa-
tion function to be PReLU, RMSprop optimizer, batch size 
of 32 and binary-cross-entropy loss-function.

The proposed model is also compared with a relatively 
more complex AlexNet in terms of classification accuracy, 
model complexity, and run-time complexity. With AlexNet 
achieving an accuracy of 98.89%, the proposed model dem-
onstrates superior performance, as shown in Table 6. In addi-
tion to accuracy, the proposed model exhibits substantially 
reduced training and inference times (556.4 seconds and 2.6 
seconds, respectively) compared to AlexNet. Moreover, the 
architecture of the proposed model has significantly fewer 
trainable parameters (507,299) as well as a smaller model 
size (1.94 MB), demonstrating its enhanced practicality and 
resource efficiency.

The achievement of such a high classification accuracy 
on the CAD test dataset with downsized images (100x100 
pixels) using the proposed light-weighted model can be 
attributed to two main factors. Firstly, the representational 
efficiency of the model architecture is a key contributor. The 
proposed model demonstrates the capacity to learn the cru-
cial features even in low-resolution images, enabling accu-
rate predictions. Secondly, the downsampling of images 
does not severely compromise the model’s proficiency in 
recognizing spatial hierarchies and patterns.

This research highlights the critical role of optimizing 
time complexity and hyperparameters in the development 
of sustainable healthcare AI models. By doing so, we can 
ensure the resource efficiency and real-time applicability 
of these models, while concurrently upholding their reli-
ability. Furthermore, the incorporation of eXplainable AI 
(XAI) techniques provides essential interpretability, aligning 
AI-generated recommendations with the interpretations of 
clinical experts and safeguarding patient safety.

Future directions: The proposed investigative work 
aimed to provide insight into the optimization of health-
care AI models, ensuring accurate and reliable results while 
prioritizing patient safety, resource efficacy, and advanc-
ing the acceptance and understanding of AI in connected 
healthcare settings. While the results on the 2D CMR 
images are promising, in future 3D-CNN based models will 
be explored on other healthcare images such as Computer 
Tomography (CT), X-rays and/or Echocardiogram (Echos) 

Fig. 5   Heatmaps generated by LRP on test images. The left column 
has original images, the middle column is the output heatmaps of 
LRP0 while the right column is the output heatmaps of LRP_Epsilon 
Technique

Table 6   Comparison of the 
proposed model with AlexNet 
in terms of classification 
accuracy, model complexity and 
run-time complexity on 323 test 
images

Model Accuracy Balance accuracy Inference 
time (sec)

Trainable parameters Model size (MB)

AlexNet 98.89% 98.85% 5.10 24708481 94.26
Our 99.35% 99.13% 2.6 507299 1.94
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images to determine the model’s comprehensive diagnostic 
capabilities, cross-domain scalability, and performance on 
Multi-model data. Moreover, we propose the integration of 
two techniques to further improve the designed classifica-
tion models’ performances: majority voting for frame-based 
analysis and the implementation of a video-based classifier. 
Combining these techniques offers a promising path towards 
a more accurate and reliable classification model to distin-
guish between patient and healthy images in MRI scans.
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