
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:34
https://doi.org/10.1007/s11554-023-01410-8

RESEARCH

Implementation of JPEG XS entropy encoding and decoding on FPGA

Shuang Tian1 · Qinghua Song1 · Jialin He1 · Yihan Wang1 · Kai Nie1 · Gang Du1 · Ling Bu1

Received: 1 September 2023 / Accepted: 28 December 2023 / Published online: 19 February 2024
© The Author(s) 2024

Abstract
JPEG XS is the latest international standard for shallow compression fields launched by the International Organization for
Standardization (ISO). The coding standard was officially released in 2019. The JPEG XS standard can be encoded and
decoded on different devices, but there is no research on the implementation of JPEG XS entropy codec on FPGAs. This paper
briefly introduces JPEG XS encoding, proposes a modular design scheme of encoder and decoder on FPGA for the entropy
encoding and decoding part, and parallelizes the algorithm in JPEG XS coding standard according to the characteristics of
FPGA parallelization processing, mainly including low-latency optimization design, storage space optimization design. The
optimized scheme in this paper scheme enables encoding speeds of up to 4 coefficients/clock and decoding speeds of up to
2 coefficients/clock, with a 75% reduction in encoding and decoding time. The maximum clock frequency of the entropy
encoder is about 222.6 MHz, and the maximum clock frequency of the entropy decoder is about 127 MHz. The design and
implementation of the FPGA-based JPEG XS entropy encoding and decoding algorithm is of great significance and provides
ideas for the subsequent implementation and optimization of the entire JPEG XS standard on FPGAs. This work is the first
in the world to propose the design and implementation of an algorithm that can implement the JPEG XS entropy encoding
and decoding process on FPGA. It creates the possibility for the effective application of JPEG XS standard in more media.

Keywords  DWT · Entropy codec · FPGA · JPEG XS · Shallow compression

1  Introduction

In 2016, the Joint Photographic Experts Group (JPEG),
jointly established by the International Organization
for Standardization and the International Telegraph and

Telephone Advisory Committee (CCITT) under the Inter-
national Telecommunication Union (ITU), launched a pro-
ject for low-complexity, low-latency image compression
codecs [1], the JPEG XS international standard, to support
fields requiring low latency and high quality, such as autono-
mous driving, virtual reality (VR), and broadcast television.
JPEG XS is the latest international standard in the shallow
compression domain, called ISO/IEC 21122: JPEG XS low-
latency lightweight image coding system [2, 3], the coding
standard was officially released in 2019.

In 1991, the Joint Photographic Experts Group released
the still image compression standard JPEG, which has been
around for a long time. But is still widely used which is one
of the most widely used digital image compression stand-
ards in the world. Moreover, the Joint Photographic Experts
Group has been promoting the development of image com-
pression standards for nearly 30 years. The group has contin-
uously introduced JPEG-LS, JPEG 2000 [4], JPEG XR [5],
and other better codec standards, but JPEG still dominates
the market, which shows that the performance of JPEG can
meet the demand compared to other more complex codec
standards. Low complexity and easy implementation are

 *	 Gang Du
	 dugang@cugb.edu.cn

 *	 Ling Bu
	 lingbu@cugb.edu.cn

	 Shuang Tian
	 tshuang2002@126.com

	 Qinghua Song
	 song@cugb.edu.cn

	 Jialin He
	 745442763@qq.com

	 Yihan Wang
	 1286711270@qq.com

	 Kai Nie
	 954631557@qq.com

1	 School of Information Engineering, China University
of Geosciences, Beijing 100083, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-023-01410-8&domain=pdf

	 Journal of Real-Time Image Processing (2024) 21:3434  Page 2 of 17

more important [6, 7]. With the development of technol-
ogy, in some scenarios, in addition to low complexity, strict
bandwidth, and latency requirements need to be met, but
low-complexity codecs such as JPEG [8, 9] and JPEG-LS
[10, 11] cannot ensure compression to a given target bitrate
while keeping latency below a single frame. As a result,
new standards need to be developed to meet low-complexity,
low-latency coding at high bit rates. JPEG XS is formu-
lated to meet the above requirements, with visually lossless
quality, multi-generation robustness, multi-platform oper-
ability (CPU, GPU, ASIC, FPGA), low complexity, and low
latency [12]. The JPEG XS standard was developed with the
possibility of running on a variety of platforms, including
FPGA platforms. There have been studies of decoding on
GPU [13]. There has also been a lot of research on imple-
menting JPEG2000 on FPGA [14, 15]. A. Legrand et al. also
discussed the deployment of JPEG XS in lossless packet
networks and proposed an unequal error protection scheme
with optimal rate distortion [16].

However, there is currently no research into FPGA imple-
mentations of JPEG XS entropy codecs. FPGA is becoming
particularly popular as hardware accelerators and is known
for their programmability, reconfigurability, and massive
parallelism through large numbers of configurable logic
blocks (CLBS) [17]. In this paper, the JPEG XS algorithm
is implemented on the FPGA, and its encoding and decoding
process is optimized in parallel. Four encoding types can
be completed when the data is read once, and the encoding
speed can reach 4 coefficients/clock, reducing the encod-
ing time by 75%. In the entropy decoding process, parallel
decoding optimization is carried out for unary decoding,
and the decoding speed reaches 8 bits per clock. Then, the
memory structure of the decoding is optimized. The decod-
ing of the magnitude with uncertain delay is fixed to 1 clock
cycle and the 4 clock cycles of symbol decoding are reduced
to 1 clock cycle, reducing the decoding time by 75%. Finally,
by adjusting the decoding timing, the memory space multi-
plexing optimization is completed, which can be synchro-
nously decoded, so that a large amount of intermediate data
does not need to be stored, and part of the storage space can
be multiplexed, and finally, the decoding speed reaches 2
coefficients/clock.

2 � JPEG XS standard

The encoding and decoding process of JPEG XS is shown
in Fig. 1, The main steps of the encoder are image preproc-
essing, 5/3 DWT(Discrete Wavelet Transform) [18], quan-
tization, entropy coding, and output code stream. The main
steps of the decoder are code stream decomposition, entropy

decoding, inverse quantization, discrete inverse wavelet
transformation, and output image.

2.1 � Image preprocess

To obtain more accurate intermediate results in subsequent
transformations, after receiving the input image, the bit pre-
cision is first extended and the bit depth of the image data
is expanded to 20 bits. The subsequent operation is an inter-
integer calculation to avoid the loss of information during
the calculation process.

Then perform a DC level shift, changing the sample value
I(x, y) from 0 ≤ I(x, y) ≤ 2B to a symmetric distribution of
zero within (−2B − 1, 2B − 1).

Since the input image is generally in RGB format, the
human eye is more sensitive to the luminance information of
the color than the chromaticity information. It is necessary
to convert the RGB format into the YCbCr format so that the
brightness information which the human eye is more sensi-
tive to is concentrated on the Y component, and the insensi-
tive chromaticity information is placed on the CbCr compo-
nent. Then some of the CbCr components are removed by
downsampling to improve the coding efficiency of JPEG XS.

2.2 � Asymmetrical 5/3 DWT

The picture is divided into multiple bands by two-dimen-
sional DWT, each band corresponds to different filter types,

Fig. 1   The figure shows the JPEG XS encoding and decoding step.
The image is converted into a code stream after processing and
restored to an image after decoding

Fig. 2   The image structure after DWT, 3840 × 2160 image was used
in the experiment, 1 vertical and 5 horizontal decomposition level
DWT)

Journal of Real-Time Image Processing (2024) 21:34	 Page 3 of 17  34

and the calculation method and results are described in the
ISO-IEC 21122–1-2019 standard. The divided bands are
shown in Fig. 2, the general vertical decomposition level is
1, 2, 3, horizontal decomposition level is 5.

2.3 � Quantization

The quantization process is to approximate the input value to
the boundary of the quantization interval, mapping an input
interval to an integer, converting some signals with similar
amplitude into the same value, and reducing the amount of
data by losing part of the accuracy to achieve compression.
The quantization process that loses information is irrevers-
ible, and the information loss in the JPEG XS encoding pro-
cess mainly comes from this. The quantification methods
mentioned in the standard are deadzone quantization [19]
and uniform quantization [20].

Deadzone quantization: enter the wavelet coefficients, the
amplitude of the wavelet coefficients is shifted right by T bits
(the parameter T is the truncation position, which needs to
meet the specified constant bit rate, calculated according to
the limit of the code rate, using a deadzone quantizer) The
wavelet coefficient will be truncated from the lowest bit of
the precision of T bits, and the wavelet coefficient in the
zero value interval will be quantized to zero for subsequent
coding.

2.4 � Bitrate control DWT

Bitrate Control [21] is to control the size of the codestream
after image compression and allocate bits to each coding
unit. The JPEG XS standard allocates the appropriate num-
ber of bits to each coding unit according to the set bitrate
limit. Then according to all possible quantization param-
eters, temporary coding, counting the budget bits of each
coding unit, and obtaining a comprehensive budget table.
In this process, only the budget value size of each coding
unit needs to be calculated, without the actual coding pro-
cess. Finally, the appropriate truncation position is selected
through the lookup table so that the encoded bits are closest
to, but not larger than the allocated bits.

To ensure the PSRN performance of the encoder and
improve the visual quality of the image. The JPEG XS stand-
ard adopts different quantization parameters for each DWT
subband, which are quantization Q and Precinct refinement
R defined in the precinct_header for each precinct. The
parameters Gain defined for each band in the two weights_
table G and Priority P decide. The truncation position T
calculation formula is shown in (1):

(1)Tp,b = Qp − Gb + r

When Pb < Rp, r is 1, otherwise r is 0. Gb is band gains,
and Rp is band priorities, these two parameters are fixed
values only related to each sub-band after DWT, which is
used to select different quantization parameters for different
sub-bands obtained by discrete wavelet transformation.

2.5 � Image structure

The image structure is shown in Fig. 3a. After image pre-
processing, the image is divided into three components,
storing Y, Cb, and C21r information. After 5/3 DWT, each
component is divided into eight bands, a total of 24 bands.
The ith line of each band is taken out and combined in order
as precinct because the image is 3840 × 2160 . So the image
is divided into 1080 precincts each precinct has 2 lines, each
line, every 4-pixel value is organized into 1 code group.
Every 8 code groups are organized into 1 significance group,
for the significance encoding in entropy coding. Output sig-
nificance subpackets to the code stream. In-stream transfer,
every eight precincts are grouped into one slice, as shown
in Fig. 3b. and each precinct is divided into four packets.
Packet 0 contains bands (0, 1, 2), (3, 4, 5), and (6, 7, 8).
Packet 1 contains bands (9, 10, 11). Packet 2 contains bands
(18, 19, 20). Packet 3 contains bands (21, 22, 23). A packet
is the basic unit of transport in a code stream.

2.6 � Entropy coding

In JPEG standard, there are two kinds of entropy coding
Huffman coding [22] and arithmetic coding [23, 24]. The
basic JPEG system provides for Huffman coding.

The following depicts the main steps of entropy coding
in JPEG XS, including significance coding, bitplane count
coding, magnitude coding, and sign coding.

2.6.1 � Significance coding

Generate significance subpackets for significance groups
encoding. The significance coding in the JPEG XS stand-
ard is similar to the Run Length Code and it is suitable for
use in places with a large number of repeated data. For
the wavelet transformed data, the coefficient in the high-
frequency region will appear with a large number of zero
values is very suitable for using Run Length Code, which
can be encoded by recording data and the number of data
repeats. However, since the number of repeats of the data
is uncertain, the encoding length of the run code cannot be
determined, resulting in increased coding complexity and
uncertain delay.

The significance coding of JPEG XS is improved for
these shortcomings. The number of repetitions is fixed, and
the input coding group is divided into a significance coding

	 Journal of Real-Time Image Processing (2024) 21:3434  Page 4 of 17

group every 8. Meanwhile, the significance coding group is
marked with a 1-bit significance sign to determine whether
the predicted residuals of the number of bit planes are all
zero. If all is zero, the significance code is 1, the significance
code is written to the significance subpacket, and the entire
significance coding group is skipped in the subsequent bit
plane number coding. If it is not all zeros, the significance
code is 0, the significance code is written to the significance
subpacket, and subsequent encoding is performed.

Significance encoding is an optional encoding method
that is used only when the use of distinctive encoding can
make the encoding shorter in length. Whether the signifi-
cance encoding is used is recorded in the header informa-
tion. If no significance encoding is used, there is no signifi-
cance subpacket in the bitstream.

2.6.2 � Bitplane count encoding

The bit-plane count is encoded to generate a bit-plane count
subpackage. There are three ways to encode bitplanes: Raw
coding mode, No prediction coding mode, and Vertical pre-
diction coding mode.

Raw coding mode: relatively simple, does not do too
much processing. The number of four-bit binary numbers is

the plane number of each code group, directly transmitting
the raw data of the number of planes. The original mode can
ensure that the encoding length has an upper limit when the
other two encoding modes get the encoding length exceeds
the encoding length of the original mode. The raw mode
must be used to encode, facilitate bitrate control, and deter-
mine the size of the decoding buffer. If the original mode
encoding is used, you need to flag position 1 in the pre-
cinct_header, otherwise set 0.

No prediction coding mode: the bitplane count M and
the truncation position T of the code group are encoded
which is calculated in the bitrate control, and the coef-
ficients of the code group will be quantified with T as the
quantization parameter before entropy coding. The quan-
tization result is that the T bit accuracy of the code group
from the lowest will be truncated. When encoding with No
Prediction Coding Mode, only the residual δ of bitplane
count M and the truncation position T need to be encoded.
Predictive residuals δ calculated as follows

When T > M , it means that the bitplane of the current
code group is all truncated and quantized to zero. Residual
δ at this time is zero. No prediction mode can be regarded

(2)� = M − T

Fig. 3   The image structure of 3840 × 2160 is used as an example
to describe the image structure. a The image was divided into 1080
precincts, each precinct containing 24 bands, and each precinct was

divided into four packets. b The structure of the slice, each precinct is
grouped into a slice. The experimental image of 3840 × 2160 contains
a total of 135 slice

Journal of Real-Time Image Processing (2024) 21:34	 Page 5 of 17  34

as a predictive code with truncated position T as the pre-
diction base. Equation (2) is reversible and can be restored
losslessly in decoding.

After calculating the residuals, the unary code [25]
is performed. The residuals obtained with no prediction
mode are all positive, and the residual values δ can be
directly unvaried and encoded. The code table is shown
in Table 1.

Vertical prediction coding mode: predicts the current
code group using a code group vertically at the same loca-
tion as the previous precinct, and then encodes the predic-
tion residuals. The calculation of the predicted residual δ is
shown in Eq. (3):

where Mg is the number of bit planes of the current cod-
ing group, Tp,b is its corresponding truncation positions,
Mg′ is the bitplane count, Tp′ and b of the code group at the
same position as the previous precinct are the corresponding
truncation positions. This formula is also reversible, when
Mg > Tp,b, Mg is mapped to δ according to the formula. When
Mg < Tp,b, the bitplanes of the code group are all truncated
and quantized to zero. The vertical differential prediction
mode is a prediction code with max(M�

g
,T �

p
, b),Tp, b) as the

prediction base.

(3)� = max
(

Mg, Tp,b
)

−max
(

max
(

Mg�, Tp�,b
)

, Tp,b
)

The code table is shown in Table 2.

2.6.3 � Magnitude encoding

The quantized wavelet coefficient is generated as a data sub-
packet, and the magnitude plane of the quantized coefficient
value is encoded in the magnitude encoding. Magnitude
encoding is shown in Fig. 4 after the wavelet coefficient
of the coding group is quantized by the truncation position
T, T bit accuracy starting from the least significant bit will
be truncated, so that the T bitplane of the code group is
all zero. Therefore, it is only necessary to encode the bit
plane between the bitplane count M of the code group and
the truncation position T, starting from the highest non-zero
plane with the sign bit removed. The bitplane is written to
the code stream in order from high to low. If the coefficients
in the code group are all quantized to zero, this code group
is not encoded.

2.6.4 � Sign encoding

The code stream structure is shown in Fig. 5, first SOC_
marker, capabilities_marker, picture_header, component_
table, weights_table, extension_marker (optional) mainly
contains encoding and decoding configuration options such
as Ng: Number of the coefficients per code group, Ss: Num-
ber of the code groups per significance group, etc. This is
followed by the packet_header and packet_body of all pack-
ets in each precinct, which contains four subpackets encoded
by entropy in packet_body.

3 � FPGA optimization design for JPEG XS
entropy encoding

3.1 � JPEG XS entropy encoding architecture

The overall architecture of entropy coding is shown in Fig. 6.
The top module of the entropy encoder is pack_precinct,
which entropically encodes the wavelet coefficient after
quantizing each region in the image and outputs the com-
pressed code stream. The entropy coding top module con-
sists of six sub-modules, which are the prec_header module
(The zone header writing module, which writes the area
header information to the code stream), the sigf_encoding
module (The significance coding module, which encodes the
prediction residuals of the bitplane count), the raw_mode
module (The raw encoding module, which encodes the
biplane count using the raw mode), the prediction_encod-
ing module (The predictive Coding Module that encodes
the bitplane count using vertical prediction coding mode or
no prediction mode), data_encoding module (data coding

Table 1   No prediction mode residual coding code table

� Code

15 1111 1111 1111 1110
…… ……
5 1111 10
4 1111 0
3 1110
2 110
1 10
0 0

Table 2   No prediction mode residual coding code table

� Code

15 1111 1111 1111 1110
``` ```
5 1111 10
4 1111 0
3 1110
2 110
1 10
0 0



	 Journal of Real-Time Image Processing (2024) 21:3434  Page 6 of 17

module, magnitude encoding and sign encoding of wavelet 
coefficients after quantization), packet_codestream mod-
ule (code stream splicing module, code stream splicing of 
the four received data subpackets, and finally output code 
stream).

For the image data of a precinct, the entropy coding top 
module first receives the header information of a precinct. 
When encoding each packet in the precinct, it needs to 
receive the header information and encode each sub-band in 
the order of the sub-bands in the package. Entropy encoding 
is a parallel encoding for four encoding types. Finally, the 

output results of each encoding type are spliced with code 
streams, and 8-bit compressed code streams are output in the 
order of codestream.

3.2 � JPEG XS entropy decoding architecture

The overall architecture of entropy decoding is shown 
in Fig. 7. The entropy decoding top module decomposes 
the received code stream. Firstly the module decomposes 
the header information according to the fixed number of 
bytes in the precinct header and the packet header, and 

Fig. 4   The structure of code group and encoding methods. The four columns of each band's line form a code group. Each line of four binary 
numbers is a bitplane and encodes the bitplane information

Fig. 5   The structure of codestream, sequence output header Settings file, and image information encoding



Journal of Real-Time Image Processing (2024) 21:34	 Page 7 of 17  34

then divides the decoding stream according to the sub-
packet information stored in the packet header to obtain 
significance subpackets, bitplane count subpackets, mag-
nitude subpackets, and sign subpackets, and stores them 
in FIFO (First In First Out) respectively. Then, in the 

decode_packet module, the encoding mode and truncation 
position of each sub-band are restored according to the 
information stored in the precinct header. Then decoded 
in the order of the number of bit planes, amplitude, and 
symbols. Finally, obtain the quantized wavelet coefficient.

Fig. 6   The architecture of the entropy encoding module, which mainly includes precinct header module, raw coding module, significance coding 
module, sign coding module, data coding module, and packet codestream module

Fig. 7   The architecture of the entropy decoding module, which mainly includes the unpack codestream module, vlc decode module and decode 
packet module. Sequence output gtli_decode data, gcli_decode data, and Data_decode data



	 Journal of Real-Time Image Processing (2024) 21:3434  Page 8 of 17

3.3 � Low latency optimized design

3.3.1 � Low latency optimized design

Pipeline operations can be used in significance coding and 
bitplane count coding if significance subpackets need to be 
added. The bitplane count of code groups first performs sig-
nificance coding, receives the bitplane count, outputs the 
significance flag and the filtered prediction residuals, and 
there will be no situation where 8 consecutive prediction 
residuals are zero in the filtered prediction residuals. If there 
is no significance coding, the prediction residuals are output 
directly. The module responsible for bitplane count encoding 
receives the transmitted prediction residuals and encodes the 
bitplane count. The pipeline structure is shown in Fig. 8a.

Magnitude coding and sign coding are optimized in paral-
lel. Magnitude coding encodes a code group at a time, and 
sign coding is a coefficient encoding in a code group, so 
the symbol encoding can judge the magnitude of each coef-
ficient separately after receiving the coefficient of a code 
group, and then splice the valid sign bits together and output 
them together into the code stream. Magnitude encoding and 
sign coding parallelization are shown in Fig. 8b.

After parallelization of the four encoding types in entropy 
coding, you only need to enter the code group in the pack-
age once to get the significance subpacket, bitplane count 
subpacket, magnitude subpacket, and sign subpacket. But 
the codestream has a fixed structure, for the encoded sub-
packets need to wait for the output of the previous subpacket 
before output, when encoding, only the encoding length of 
each output of the significance encoding is fixed to 1 bit, 
and the length of the remaining coding types are not fixed 

to ensure the validity of the codestream structure. It is also 
necessary to splice the output results of each encoding type 
to the codestream, which can ensure byte alignment after 
splicing, then store the storage space, and finally output each 
subpacket.

3.3.2 � Univariate decoding parallel optimization

If there is a vertical prediction coding mode or no predic-
tion coding mode in the encoding method, then the bitplane 
count subpacket of the codestream stores the univariate code 
of the prediction residuals. So the unary decoding needs to 
be performed first to obtain the prediction residuals. When 
unary encoding, for the encoded value n, 1 of n bits needs 
to be output, and then end with 0 of one bit as an interval, 
when decoding, it is necessary to calculate the number of 
1 bits in the received stream, and output the decoded value 
when identifying 0 bits, and then clear the zero counter by 
counting the stream, the unary decoding process is shown 
in Fig. 9a.

JPEG XS compressed code stream has the characteristics 
of byte alignment, so when reading the codestream, you can 
read a byte (8 bits) of the codestream each time. If only one 
bit at a time is received for judgment when decoding, the 
limitation of decoding speed greatly increases latency and 
wastes storage space to store univariate encoding. So it is 
necessary to optimize the decoding method of unary decod-
ing, each time the code stream inputs one byte to decode.

First of all, it is judged that several values can be decoded 
in the input byte, and it can be judged according to the num-
ber of 0 bits in the byte, and a maximum of 8 numbers can 
be decoded for one byte, that is, 8 zero values. The minimum 
number of zeros is solved, that is, 8 bits are 1, so a register 
that can store 8 values is used for buffering, and every 8 
values decoded are stored in the storage space, otherwise, 
wait for the next byte to be decoded until all bitplane count 
subpackets are entered. The remaining values in the register 
are stored in the storage space. In the input bytes, the judg-
ment order of unary decoding starts from the highest bit in 
the byte, each clock cycle recognizes one bit, each time 1 
bit is recognized, the counter is added by one, and when 0 
bits are recognized, the value of the counter is stored in the 
register, and the counter is cleared to zero. The univariate 
decoding parallelization process is shown in Fig. 9b, and the 
counter cache structure is shown in Fig. 10.

3.3.3 � Storage fabric optimization

The four encoding types in JPEG XS entropy encoding are 
significance encoding, bitplane count encoding, magnitude 
encoding, and sign encoding, the encoding length of each 
encoding type output is different, and the corresponding 
encoding length that needs to be read when decoding each 

Fig. 8   The structure of the module with low latency optimized 
designed. a The Entropy decoding module. b The magnitude and sign 
parallel coding module



Journal of Real-Time Image Processing (2024) 21:34	 Page 9 of 17  34

subpackage is also different. So the clock cycle required 
for each part of decoding will be different. Different clock 
cycles will cause the timing of each part of the decoding to 
be not aligned, and a part of the delay will be generated in 
the process of waiting for decoding.

The code stream will be read into the storage space of 
the corresponding subpacket in the module by bytes, and 
then taken out of the storage space according to the decod-
ing requirements. When restoring the bitplane count, if sig-
nificance coding is used, it is necessary to restore together 
according to the significance flag and the bitplane count, and 

the significance flag is 1, indicating that there are 8 consecu-
tive prediction residuals of zero. So it takes 8 clock cycles to 
decode a significance code group when decoding and then 
predict and decode to obtain bitplane count after obtaining 
the prediction residuals. The significance of decoding timing 
is shown in Fig. 11.

When restoring the magnitude of the coding group, it is 
necessary to take out the data in the magnitude subpacket 
and arrange them in the order of the bitplane. The data taken 
out first is the highly significant bit arranged in the code 
group, until all the data between the most significant bit 
plane M (bitplane count) and the lowest significant bit plane 

Fig. 9   The univariate decoding 
flowchart. a Original decoding 
step in JPEG XS, the encoding 
method is mainly performed 
sequentially. b The decoding 
module is optimized in parallel

Fig. 10   The cache structure diagram in univariate decoding flowchart 
parallel optimization algorithm

Fig. 11   Significance decoding timing diagrams in the standard. It 
needs 8 clock cycles to decode a significance code group



	 Journal of Real-Time Image Processing (2024) 21:3434  Page 10 of 17

T (truncation position) are taken out, a total of 4 (M-T) bits, 
and then complete the T full zero planes to complete the 
magnitude restoration. After obtaining the magnitude of the 
code group, decide whether to take out the sign bits from the 
sign subpacket according to whether the magnitude of each 
coefficient is zero, and up to 4 bits need to be taken out of 
each code group.

When reading data, if the data is obtained from the 
magnitude subpacket in bitplane units, 4 bits will be read 
each time. It takes M-T clock cycles to complete the mag-
nitude restoration of the code group, and then the sign bits 
are restored one by one according to the magnitude of each 
coefficient. The magnitude of a coding group takes 4 clock 
cycles to restore all the coefficients. The coefficient reduc-
tion timing diagram is shown in Fig. 13a, and the schematic 
diagram of reading data from the subpacket is shown in 
Fig. 12a.

However, reading data from the magnitude subpacket by 
bitplane for restoration results in an uncertain delay. Since 
the effective plane (M-T) of each code group may be dif-
ferent, the clock cycles used to restore the magnitude are 
different. At the same time, the result of each restoration of 
the amplitude is based on the code group, if the coefficients 
in the code group are filled one by one when decoding the 
sign subpacket, it is necessary to wait for another 4 cycles 
for a coded group to be fully output the decoding efficiency 
is low at this time.

Therefore, it is necessary to optimize the storage structure 
of magnitude subpackets and sign subpackets, so that the 
delay in decoding the data is reduced each time the data is 
read from the subpacket. Since the bit depth of each coding 
group is the same, there is a maximum value of the encoded 
encoding length. When storing the subpacket data, the stor-
age space can be set according to the maximum length of the 
encoding as the bit width, so that the maximum encoding 

Fig. 12   The schematic diagram of decoding. a Reading magnitude and sign subpackets in JPEG XS, data is mainly read using a sequential struc-
ture. b Storage structure optimization for parallel processing



Journal of Real-Time Image Processing (2024) 21:34	 Page 11 of 17  34

length bit width data is read from the storage space every 
time. The data read from the storage space is put into the 
cache register when decoding, and then the corresponding 
bit width data is obtained from the register according to the 
required number of bits. Taking magnitude decoding as an 
example, the required encoding length is calculated accord-
ing to the bitplane count M and the truncation position T, 
that is, 4 (M-T) bits in the cache are obtained for magnitude 

decoding, and the storage structure optimization is shown 
in Fig. 12b.

The magnitude decoding process reads data from the 
magnitude subpacket with the maximum encoding length 
and stores it in the cache register first. The bit depth of the 
encoding group in this article is set to 15 bits, which is not 
less than the maximum encoding length so that the output 
bit width of the memory space is 64, which reduces the time 
delay caused by a single bitplane reduction eliminating the 
uncertainty of the magnitude decoding delay. Reorder the 
required encoding into the magnitude bitplane in one clock 
cycle to complete the magnitude decoding of the code group. 
Similarly, for 4-bit symbols in the code group, set the output 
bit width of the storage space to 4, and the sign decoding 
takes the sign from the corresponding cache register as a 
plane according to the number of non-zero values in the 
magnitude, which also only takes one cycle to complete the 
decoding, reducing the decoding time by 75% compared to 
the decoding of a single sign bit. The optimized coefficient 
reduction timing is shown in Fig. 13b.

3.4 � Optimized design for storage space reuse

According to the JPEG XS standard, a large number of 
intermediate variables will be generated in the decoding 
process. First of all, four subpackets need to be stored after 
the codestream decomposition, significance subpackets, bit-
plane number subpackets, magnitude subpackets, and sign 
subpackets. The storage space size of each subpackage has 
been determined in the standard, where the bitplane count 
subpackets can be decoded in real-time after using parallel-
ized unary decoding and directly decoded into prediction 
residuals without storage. So there is no need to store bit-
plane subpackets, but storage space is required to store the 
predicted residuals of a packet. When decoding the predicted 

Fig. 13   The coefficient reduction timing diagram. a In JPEG XS, it 
needs M-T clock cycles to restore the magnitude of the code group, 
4 clk to restore the sign bitplane, and some delay between the two 
parts of the date. b The optimized method only needs 1 clock cycle to 
restore the data of the code group, 1 clk to restore the sign, and some 
delay between the two parts of data

Fig. 14   Schematic diagram of 
entropy decoding storage space 
in the JPEG XS standard



	 Journal of Real-Time Image Processing (2024) 21:3434  Page 12 of 17

residuals, the bitplane count of each code group in the previ-
ous region is required, and the bitplane count of the current 
region needs to be stored after decoding. Then the magni-
tude data of a packet will be generated when the magnitude 
is decoded. Finally, the coefficient is sent out by sign decod-
ing. The entropy decoding storage space is shown in Fig. 14.

If the entropy decoding step in the JPEG XS standard 
is carried out step by step, multiple storage spaces will be 
required to store intermediate variables. Wait for the code 
stream of a package to be decomposed before synchronous 
decoding, and read data from the storage space according 
to the decoding needs. Read data from the significance sub-
packet FIFO, the predicted residuals FIFO, and the previ-
ous bitplane count FIFO, use the logic circuit to obtain the 
bitplane count of the current region, read the data from the 
magnitude subpacket FIFO according to the bitplane count 
in the current area, obtain the magnitude of the code group 
in one clock cycle. Finally, read the data from the sign sub-
packet FIFO according to whether the magnitude is zero 
and send the data after reducing the complete coding group 
coefficient in the same clock cycle, thereby reducing the 
magnitude storage space. At the same time, because of syn-
chronous decoding, the storage of the current bitplane count 
can be reduced. After completing the magnitude decoding 
of a code group, the current bitplane count can be directly 
written to the previous area bitplane count FIFO, which is 
convenient for decoding the bitplane count of the next area, 
to realize the reuse of storage space. Figure 15a shows the 
optimized storage space multiplexing, and the decoding 
sequence of storage space multiplexing is shown in Fig. 15b.

4 � Simulation verification

4.1 � Entropy encoding

This section mainly simulates the significance coding mod-
ule, prediction coding module, data coding module, and 
code stream splicing module.

4.1.1 � Significance coding module

Part of the data simulation diagram of the significance 
coding module is shown in Fig. 16, when there is a sig-
nificance code, that is, the sigf_flag is 1, the module stores 
the received predicted residual GCLI in the gcli_fliter_buff 
register, and counts at the same time as received. When the 
counter sigf_group_cnt is 8, the coding sigf_encode is output 
in the next cycle. If the registers are all zero, sigf_encode 
output 1 as shown in Fig. 16 circle A does not output the 
value in the register. When the data in Fig. 16 circle B is not 
completely zero, sigf_encode output 0 and output the data 
in the register one by one. As shown in Fig. 16 circle C, if 

there is no significance coding, the values in the registers 
are output one by one. After verification, the results of the 
module are correct, indicating that the module is functional.

Fig. 15   The schematic diagram of entropy decoding after storage 
space reused design. a The optimized storage space after entropy 
decoding storage space multiplexing. b Optimized storage space 
multiplexing decoding timing diagram, The decoding of predictive 
residuals, bitplane count, magnitude, and sign only requires two clock 
cycles

Fig. 16   Significance coding module simulation diagram. In circle A, 
gcli_fliter_buff are all zero, sigf_encode output 1. In circle B, the data 
is not completely zero, sigf_encode output 0 and output the data in 
the registers one by one. In circle C, there is no significance coding, 
the values in the registers are output one by one



Journal of Real-Time Image Processing (2024) 21:34	 Page 13 of 17  34

4.1.2 � Predictive coding module

Part of the data simulation diagram of the predictive cod-
ing module is shown in Fig. 17, the code mode = 1'h0 
in the circle in the figure, that is, there is no prediction 
coding mode. The prediction residual = 5'h05, the pre-
diction base value is predictor = 4'h0, and the gcli_
encode = 32'h0000003e after code table encoding is 
obtained. The effective coding length gcli_len = 5'h06. 
After verification, the results of the module are correct, 
indicating that the module is functional and the module 
encoding can be completed in one clock cycle.

4.1.3 � Data coding module

Part of the data simulation diagram of the data coding 
module is shown in Fig. 18, taking the value shown in 
the figure as an example. The input coding group coeffi-
cient value is data = 60'h800e003e004400d, where every 
15 bits represents a coefficient value. Firstly, separate the 
magnitude bitplane of the code group, obtain 14 magni-
tude bitplanes, re-splice in the order of bitplanes from 
high to low, according to gtli = 4'h0, gcli = 4'h4, intercept 
the lower four-bit plane and store it in the data_encode 
register to complete the magnitude encoding as shown in 
circle A in the figure, and the effective encoding length is 
obtained data_len = 6'h10. The sign encoding is judged 

bit by bit in the sign_code according to the magnitude, as 
shown in circle B in the figure. The final sign code is sign_
encode = 4'hb. After verification, the results of the module 
are correct, indicating that the module is functional and 
the module encoding can be completed in one clock cycle.

4.1.4 � Codestream splicing module

Part of the data simulation diagram of the code stream splic-
ing module is shown in Fig. 19, taking the magnitude cod-
ing as an example to carry out the code stream splicing. 
For the input magnitude coding data_encode in the figure 
and its effective coding length data_len, respectively stored 
in the register data_temp_w and data_temp_w_len. When 
the next magnitude code arrives, determine whether the 
data_len + data_temp_w_len is longer than 64 bits, if it is 
longer than it, use the high significance bit of data_encode 
to complete the register data_temp_w and write it to the 
data_temp_w, that is, the FIFO, and the remaining code is 
written to the data_temp_w. The remaining effective code 
length is recorded; If it is not greater, only the encoding is 
written to the data_temp_w. The effective encoding length 
is updated, and the remaining subpackets are spliced in the 
same way. After verification, the results of the module are 
correct, indicating that the module is functional.

4.1.5 � JPEG XS entropy encoder

To determine the accuracy of the JPEG XS entropy encoder 
results, the JPEG XS reference software provided in Part 5 
of the JPEG XS standard is used to write the data required 
for entropy encoding and the entropy encoding compres-
sion results to the txt file. The text file of the input data 
and compression results pass the vivado's system function $ 
readmemh reads into vivado. The required data is input into 
the JPEG XS entropy coding top module of the test platform, 
and the code stream output of the JPEG XS entropy cod-
ing top module is compared with the compression result of 
the reference software. If the output code stream is different 
from the result, the simulation stops, otherwise the simula-
tion continues, to ensure that the function of the JPEG XS 
entropy encoder designed in this paper is correct. The com-
parison chart of entropy encoding results is shown in Fig. 20, 

Fig. 17   Prediction code module data simulation diagram, in which 
the code mode = 1'h0, prediction residual = 5'h05, predictor = 4'h0, 
gcli_encode = 32'h0000003e, gcli_len = 5'h06

Fig. 18   Data encoding module simulation diagram. In circle A, 
because of the gtli = 4'h0, gcli = 4'h4, intercept the lower four-bit 
plane and store it in the data_encode. In circle B, the final sign code 
is sign_encode = 4'hb

Fig. 19   Code flow splicing module simulation diagram, taking the 
magnitude coding as an example to carry out the code stream splicing



	 Journal of Real-Time Image Processing (2024) 21:3434  Page 14 of 17

where bit write is the codestream output by the JPEG XS 
entropy encoding top module, and bytes is the codestream 
output by the reference software. The comparison results 
are correct, so the JPEG XS entropy encoder designed in 
this paper functions normally and meets the requirements.

4.2 � Entropy decoding

In this section, the code stream decomposition module, uni-
variate decoding module, and packet decoding module are 
mainly simulated and tested. Finally, the quantized wavelet 
coefficients of the final output are guaranteed to be correct.

4.2.1 � Codestream decomposition module

Part of the data simulation diagram of the code stream 
decomposition module is shown in Fig. 21, which decom-
poses the codestream continuously input from the port pki_i 
and controls the enable signal to write the codestream into 
the FIFO in the sub-module according to the number of sub-
packet bytes in the precinct header information. Wherein 
sigf_en is the code stream for writing important subpackets, 
vlc_send_en is the code stream for writing bit-plane count 
subpackets, data_en is the code stream for writing ampli-
tude subpackets, and sign_en is the code stream for writing 
symbol subpackets.

4.2.2 � Univariate decoding module

Part of the data simulation diagram of the unary decod-
ing module is shown in Fig. 22. The input data where the 
cursor is located is unary decoded, the input byte is vlc_
byte = 8'b01111110. The number of data that can be solved 

is calculated vlc_len = 2, and then judging bit by bit from 
the highest bit, whenever there is 0, the accumulated value 
will be written to the vlc_wr, the highest bit is 0 then output 
the value in the counter rem_cnt, and the lowest bit in the 
vlc_wr will be written to the register vlc_temp_buf according 
to the number of vlc_len. The registers are recorded in the 
vlc_temp_len to store the number of data, and the value in 
the register is written to the FIFO when vlc_temp_len = 8. 
A correct decoding result indicates that the module is func-
tioning properly.

4.2.3 � Packet decoding module

The data simulation diagram of the packet decoding module 
is shown in Fig. 23. Circle A in the figure is decoded to the 
bitplane count residual of the bitplane count to obtain the 
bitplane gcli of the code group. The result is obtained in 
one cycle through the combination logic circuit. When the 
magnitude is decoded, it will be taken out of the RAM in 
units of 64 bits and stored in data_temp_buf registers. The 
required number of bits will be obtained from the register 
and restored to the magnitude bitplane in the data_bitplane_
buf, which can avoid the time delay caused by the single 
bit plane to restore the magnitude bitplane. As shown in 

Fig. 20   Entropy encoding results comparison diagram, Can see that 
the value of the codestream output by the JPEG XS entropy encoding 
top module is the same as the value of the codestream output by the 
reference software

Fig. 21   The code stream decomposition module data simulation dia-
gram, decomposes the codestream continuously input from the port 
pki_i and controls the enabled signal to write the codestream into the 
FIFO

Fig. 22   Univariate decoding module data simulation diagram, in 
which the vlc_byte = 8'b01111110, the vlc_temp_len in the register is 
written to the FIFO when vlc_temp_len = 8

Fig. 23   Packet decoding module data simulation diagram. In Circle 
A, decode the bitplane count residual of the bitplane count to obtain 
the bitplane gcli of the code group. In circle B the bitplane count gcli 
is 11, and the truncated position gtli is 0



Journal of Real-Time Image Processing (2024) 21:34	 Page 15 of 17  34

Fig. 23 circle B, the bitplane count gcli is 11, and the trun-
cated position gtli is 0 if a single bit plane is restored one 
by one it takes 11 clock cycles. By increasing the register 
cache, the required 44 bits are taken from the register and 
restored to the magnitude bitplane in one clock cycle. Circle 
C in Fig. 23 is the symbol decoding, the same data firstly 
stored in the register sign_temp_buf. According to whether 
the magnitude of the coefficient is zero, restore the symbol 
bitplane in the sign_bitplane_buf, avoiding the delay caused 
by the decoding of a single sign bit. The result is obtained 
in one clock cycle, and finally, the symbol bit plane and 
the amplitude bit plane are concatenated in data_decode to 
output the coefficient values of the code set. After verifica-
tion, the results of the module are correct, indicating that the 
module is functional.

4.2.4 � JPEG XS entropy decoding module

To determine the accuracy of the JPEG XS entropy encoder 
results, the same JPEG-SX reference software is used to get 
the codestream and entropy decoding to decoding result 
into the txt file, read the txt file into vivado and input the 
codestream into the JPEG XS entropy decoding top module 
in the test platform. The wavelet coefficient output quan-
tized by the JPEG XS entropy decoding top-level mod-
ule is compared with the entropy decoding results of the 

reference software to ensure the functionality of the JPEG 
XS entropy decoder designed in this paper is correct. The 
comparison chart of entropy encoding results is shown in 
Fig. 24, where data is the code stream output by the JPEG 
XS entropy decoding top module, and the data_comp is the 
entropy decoding result output by the reference software. 
The comparison results are correct, so the JPEG XS entropy 
decoder designed in this paper functions normally and meets 
the requirements.

4.3 � FPGA timing verification

Timing simulation is conducted based on the module func-
tion to fulfill the requirements of layout and routing. This 
simulation encompasses crucial information such as device 
delay and line delay, mimicking the operational process of a 
real device and reflecting its actual working state. To ensure 
that the JPEG XS entropy encoder and entropy decoder 
designed in this paper meet the timing requirements, static 
timing analysis was performed on the xczu7egg-ffvc1156-2-i 
device using a clock frequency of 100 MHz.

4.3.1 � Entropy encoding

Table 3 shows the timing report of the JPEG XS entropy 
encoder, where the worst negative timing margin (WNS) 
in the setup time (Setup) and the worst hold time margin 
(WHS) in the hold time (Hold) are both positive, indicat-
ing that the entropy encoder meets the timing requirements 
at 100 MHz. The maximum operating frequency of the 
clock can be calculated according to the formula Fmax = 1/
(T-WNS), which is about 222.6 MHz.

Table  4 shows the resource occupation of JPEG XS 
entropy encoders, and it can be seen that the occupancy 
rate of logical resources is low, with LUT, FF, and BRAM 
accounting for only 0.84%, 0.23%, and 3.53%, respectively.

4.3.2 � Entropy decoding

Table 5 shows the timing report of the JPEG XS entropy 
decoder, where WNS in set-up time and WNS in hold time 
are both positive, indicating that the entropy decoder meets 
the timing requirements at 100 MHz. The maximum operat-
ing frequency of the clock can be calculated according to the 
formula to be about 127 MHz.

Table 6 shows the resource usage of JPEG XS entropy 
decoders, in which the utilization rate of logical resources is 
low, with LUT, FF, and BRAM accounting for only 1.36%, 
0.25%, and 3.53%, respectively.

Fig. 24   The entropy decoding results comparison diagram. Can see 
that the value of the data_comp is the same as the value of the data

Table 3   JPEG XS entropy decoder timing report

Setup Time

Worst negative slack (WNS) 5.508 ns
Total negative slack (TNS) 0.000 ns
Number of failing endpoints 0
Total number of endpoints 2918

Hold Time

Worst negative slack (WNS) 0.022 ns
Total negative slack (TNS) 0.000 ns
Number of failing endpoints 0
Total number of endpoints 2918

Pulse width Time

Worst negative slack (WNS) 4.458 ns
Total negative slack (TNS) 0.000 ns
Number of failing endpoints 0
Total number of endpoints 1081



	 Journal of Real-Time Image Processing (2024) 21:3434  Page 16 of 17

5 � Conclusion

Entropy encoding and decoding is an important step in 
JPEG XS encoding and decoding, this paper deeply stud-
ies JPEG XS coding standards and the entropy encoding 
process of each part of the modular design. According to 
the FPGA parallelization processing characteristics of the 
codec parallel optimization, storage structure optimization, 
and storage space multiplexing optimization. The parallel 
optimization of the four encoding types is completed for 
the entropy coding process so that the coding speed can 
reach 4 coefficients/clock, which reduces the encoding 
time by 75% compared to the serial 1 coefficients/clock. 
In the entropy decoding process, parallel decoding optimi-
zation is carried out for unary decoding, and the decoding 
speed reaches 8 bits/clock, which exceeds the 1 bit/clock 
of serial decoding. The memory structure of decoding is 
optimized, and the decoding of the amplitude value with 
uncertain delay is fixed to 1 clock cycle, and the 4 clock 
cycles of symbol decoding are reduced to 1 clock cycle, 
reducing the decoding time by 75%. By adjusting the 
decoding timing to complete the optimization of storage 

space multiplexing, synchronous decoding can be carried 
out, so that a large amount of intermediate data does not 
need to be stored and part of the storage space can be 
multiplexed. To reduce latency and resource occupation. 
Finally, the results show that the decoding speed reaches 2 
coefficients/clock, and the optimization reduces the delay 
and resource consumption, making it more suitable for 
running on FPGA.

Acknowledgements  This work is supported by the Beijing Col-
lege Students Innovation and Entrepreneurship Training Program 
(S202211415069), the National Innovation and Entrepreneurship Train-
ing Program for College Students (202211415086, 202211415031).

Author contributions  Shuang Tian, Jialin He, Kai Nie and Yihan Wang 
wrote the main manuscript text.   Shuang Tian prepared figures 1-7.  
Yihan Wang prepared figures 8-15.  Jianlin He prepared figures 16-24.  
All authors reviewed the manuscript.

Data availability  Due to the data confidentiality agreement of the labo-
ratory and institution where the author of this paper works, the data in 
this paper cannot be disclosed for the time being.

Declarations 

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Richter, T., Keinert, J., Foessel, S., Descampe, A., Rouvroy, G., 
Lorent, J.B.: JPEG XS—A high-quality mezzanine image codec 
for video over IP. SMPTE Motion Imag. J. 127(9), 39–49 (2018). 
https://​doi.​org/​10.​5594/​JMI.​2018.​28620​98

	 2.	 Peng, W.H., Walls, F.G., Cohen, R.A., Xu, J., Ostermann, J., 
MacInnis, A., Lin, T.: Overview of screen content video coding: 

Table 4   JPEG XS entropy encoder resource usage

Resource Utilization Available Utilization %

LUT 1943 230,400 0.84
LUTRAM 4 101,760 0.00
FF 1052 460,800 0.23
BRAM 11 312 3.53
IO 275 360 76.39
BUFG 1 544 0.18

Table 5   JPEG XS entropy decoder timing report

Setup Time

Worst negative slack (WNS) 2.130 ns
Total negative slack (TNS) 0.000 ns
Number of failing endpoints 0
Total number of endpoints 2748

Hold Time

Worst negative slack (WNS) 0.026 ns
Total negative slack (TNS) 0.000 ns
Number of failing endpoints 0
Total number of endpoints 2748

Pulse width Time

Worst negative slack (WNS) 4.458 ns
Total negative slack (TNS) 0.000 ns
Number of failing endpoints 0
Total number of endpoints 1173

Table 6   The JPEG XS entropy decoder resource consumption

Resource Utilization Available Utilization %

LUT 3144 230,400 1.36
LUTRAM 5 101,760 0.00
FF 1141 460,800 0.25
BRAM 11 312 3.53
IO 109 360 30.28
BUFG 1 544 0.18

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5594/JMI.2018.2862098


Journal of Real-Time Image Processing (2024) 21:34	 Page 17 of 17  34

Technologies, standards, and beyond. IEEE J. Emerg. Sel. Top. 
Circuits Syst. 6(4), 393–408 (2016). https://​doi.​org/​10.​1109/​JET-
CAS.​2016.​26089​71

	 3.	 Walls, F.G., MacInnis, A.S.: VESA display stream compression 
for television and cinema applications. IEEE J. Emerg. Sel. Top. 
Circuits Syst. 6(4), 460–470 (2016). https://​doi.​org/​10.​1109/​JET-
CAS.​2016.​26020​09

	 4.	 ISO, I. S., & JTC.: I. Information technology-JPEG 2000 image 
coding system-Part 1: Core coding system. ISO/IEC IS 15444–1. 
(2000)

	 5.	 Jadhav, S.S., Jadhav, S.K.: JPEG XR an image coding standard. 
Int. J. Comput. Electr. Eng. 4(2), 137 (2012)

	 6.	 Ahmad, J., Raza, K., Ebrahim, M., & Talha, U.: FPGA based 
implementation of baseline JPEG decoder. In Proceedings of the 
7th International Conference on Frontiers of Information Technol-
ogy (pp. 1–6). (2009)

	 7.	 Shan, Y., Chen, X., Qiu, C., & Zhang, Y.: Implementation of Fast 
Huffman Encoding Based on FPGA. In Journal of Physics: Con-
ference Series (Vol. 2189, No. 1, p. 012021). IOP Publishing. 
(2022)

	 8.	 ISO, I. S., & JTC.: I. Information technology-digital compres-
sion and coding of continuous-note still images: requirements and 
guidelines. ISO/IEC IS-10918–1. (1994)

	 9.	 Wallace, G.K.: The JPEG still picture compression standard. Com-
mun. ACM 34(4), 30–44 (1991)

	10.	 Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless 
image compression algorithm: principles and standardization into 
JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)

	11.	 ISO, I. S., & JTC.: I. Lossless and near-lossless coding of continu-
ous tone still images (JPEG-LS). FCD 14495. (1997)

	12.	 Descampe, A., Richter, T., Ebrahimi, T., Foessel, S., Keinert, 
J., Bruylants, T.: … & Rouvroy, G: JPEG XS—A new standard 
for visually lossless low-latency lightweight image coding. Proc. 
IEEE 109(9), 1559–1577 (2021). https://​doi.​org/​10.​1109/​JPROC.​
2021.​30809​16

	13.	 Bruns, V., Richter, T., Ahmed, B., Keinert, J., & Fößel, S.: Decod-
ing jpeg xs on a gpu. In 2018 Picture Coding Symposium (PCS) 
(pp. 111–115). IEEE. (2018). https://​doi.​org/​10.​1109/​PCS.​2018.​
84563​10

	14.	 Kumar, N. R., Xiang, W., & Wang, Y.: An FPGA-based fast two-
symbol processing architecture for JPEG 2000 arithmetic coding. 
In 2010 IEEE International Conference on Acoustics, Speech and 
Signal Processing (pp. 1282–1285). IEEE. (2010). https://​doi.​org/​
10.​1109/​ICASSP.​2010.​54954​18

	15.	 Gangadhar, M., Bhatia, D.: FPGA based EBCOT architecture for 
JPEG 2000. Microprocess. Microsyst. 29(8–9), 363–373 (2005). 
https://​doi.​org/​10.​1016/j.​micpro.​2004.​10.​006

	16.	 Legrand, A., Macq, B., & De Vleeschouwer, C.: Forward error 
correction applied to JPEG XS codestreams. In 2022 IEEE Inter-
national Conference on Image Processing (ICIP) (pp. 3723–3727). 
IEEE. (2022). https://​doi.​org/​10.​1109/​ICIP4​6576.​2022.​98972​87

	17.	 Ravi, M., Sewa, A., Shashidhar, T.G., Sanagapati, S.S.S.: FPGA 
as a hardware accelerator for computation intensive maximum 
likelihood expectation maximization medical image reconstruc-
tion algorithm. IEEE Access 7, 111727–111735 (2019). https://​
doi.​org/​10.​1109/​ACCESS.​2019.​29326​47

	18.	 Acharya, T., & Tsai, P. S.: JPEG2000 standard for image compres-
sion: concepts, algorithms and VLSI architectures. (2004)

	19.	 Gish, H., Pierce, J.: Asymptotically efficient quantizing. IEEE 
Trans. Inf. Theory 14(5), 676–683 (1968). https://​doi.​org/​10.​1109/​
TIT.​1968.​10541​93

	20.	 Richter, T.: Spatial constant quantization in JPEG XR is nearly 
optimal. In 2010 Data Compression Conference (pp. 79–88). 
IEEE. (2010). https://​doi.​org/​10.​1109/​DCC.​2010.​14

	21.	 ISO, I. S., & JTC.: I. Information technology-JPEG 2000 image 
coding system-Part 1: Core coding system. ISO/IEC 15444–1. 
(2001)

	22.	 Bailey, D., Cressa, M., Fandrianto, J., Neubauer, D., Rainnie, 
H.K., Wang, C.S.: Programmable vision processor/controller for 
flexible implementation of current and future image compression 
standards. IEEE Micro 12(5), 33–39 (1992). https://​doi.​org/​10.​
1109/​40.​166711

	23.	 Bilgin, A., & Marcellin, M. W.: JPEG2000 for digital cinema. In 
2006 IEEE International Symposium on Circuits and Systems (pp. 
4-pp). IEEE. (2006). https://​doi.​org/​10.​1109/​ISCAS.​2006.​16934​
75

	24.	 Maharshi, A., Tong, L., Swami, A.: Cross-layer designs of mul-
tichannel reservation MAC under Rayleigh fading. IEEE Trans. 
Signal Process. 51(8), 2054–2067 (2003). https://​doi.​org/​10.​1109/​
TSP.​2003.​814465

	25.	 Gonzalez-Perez, C., & Martín-Rodilla, P.: A metamodel and code 
generation approach for symmetric unary associations. In 2017 
11th International Conference on Research Challenges in Informa-
tion Science (RCIS) (pp. 84–94). IEEE. (2017). https://​doi.​org/​10.​
1109/​RCIS.​2017.​79565​22

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/JETCAS.2016.2608971
https://doi.org/10.1109/JETCAS.2016.2608971
https://doi.org/10.1109/JETCAS.2016.2602009
https://doi.org/10.1109/JETCAS.2016.2602009
https://doi.org/10.1109/JPROC.2021.3080916
https://doi.org/10.1109/JPROC.2021.3080916
https://doi.org/10.1109/PCS.2018.8456310
https://doi.org/10.1109/PCS.2018.8456310
https://doi.org/10.1109/ICASSP.2010.5495418
https://doi.org/10.1109/ICASSP.2010.5495418
https://doi.org/10.1016/j.micpro.2004.10.006
https://doi.org/10.1109/ICIP46576.2022.9897287
https://doi.org/10.1109/ACCESS.2019.2932647
https://doi.org/10.1109/ACCESS.2019.2932647
https://doi.org/10.1109/TIT.1968.1054193
https://doi.org/10.1109/TIT.1968.1054193
https://doi.org/10.1109/DCC.2010.14
https://doi.org/10.1109/40.166711
https://doi.org/10.1109/40.166711
https://doi.org/10.1109/ISCAS.2006.1693475
https://doi.org/10.1109/ISCAS.2006.1693475
https://doi.org/10.1109/TSP.2003.814465
https://doi.org/10.1109/TSP.2003.814465
https://doi.org/10.1109/RCIS.2017.7956522
https://doi.org/10.1109/RCIS.2017.7956522

	Implementation of JPEG XS entropy encoding and decoding on FPGA
	Abstract
	1 Introduction
	2 JPEG XS standard
	2.1 Image preprocess
	2.2 Asymmetrical 53 DWT
	2.3 Quantization
	2.4 Bitrate control DWT
	2.5 Image structure
	2.6 Entropy coding
	2.6.1 Significance coding
	2.6.2 Bitplane count encoding
	2.6.3 Magnitude encoding
	2.6.4 Sign encoding


	3 FPGA optimization design for JPEG XS entropy encoding
	3.1 JPEG XS entropy encoding architecture
	3.2 JPEG XS entropy decoding architecture
	3.3 Low latency optimized design
	3.3.1 Low latency optimized design
	3.3.2 Univariate decoding parallel optimization
	3.3.3 Storage fabric optimization

	3.4 Optimized design for storage space reuse

	4 Simulation verification
	4.1 Entropy encoding
	4.1.1 Significance coding module
	4.1.2 Predictive coding module
	4.1.3 Data coding module
	4.1.4 Codestream splicing module
	4.1.5 JPEG XS entropy encoder

	4.2 Entropy decoding
	4.2.1 Codestream decomposition module
	4.2.2 Univariate decoding module
	4.2.3 Packet decoding module
	4.2.4 JPEG XS entropy decoding module

	4.3 FPGA timing verification
	4.3.1 Entropy encoding
	4.3.2 Entropy decoding


	5 Conclusion
	Acknowledgements 
	References




