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Abstract
This paper presents a GPU-based parallelisation of an optimised versatile video decoder (VVC) adaptive loop filter (ALF) 
filter on a resource-constrained heterogeneous platform. The GPU has been comprehensively utilised to maximise the degree 
of parallelism, making the programme capable of exploiting the GPU capabilities. The proposed approach enables to acceler-
ate the ALF computation by an average of two times when compared to an already fully optimised version of the software 
decoder implementation over an embedded platform. Finally, this work presents an analysis of energy consumption, showing 
that the proposed methodology has a negligible impact on this key parameter.
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1 Introduction

The Joint Video Experts Team (JVET), from ISO/IEC JTC1 
and VCEG (Q6/16), released the current state-of-the-art ver-
satile video coding (VVC) standard in July 2020 [1]. Com-
pared to the High-Efficiency Video Coding (HEVC) stand-
ard [2], VVC provides the same visual quality with 50% bit 
rate savings. However, this reduction in bit rate comes at the 
cost of a significant increase in computational complexity: 

×10 more in the encoder and ×2 more in the decoder, with 
respect to HEVC [3]. This increase in complexity is a crucial 
limiting factor for both consumer computers and resource-
constrained embedded systems.

The greater coding efficiency that VVC offers is achieved 
thanks to the introduction of several new functionalities 
compared to HEVC. For instance, the inclusion of an Adap-
tive Loop Filter (ALF) in the filtering loop is responsible 
for reducing the coding artefacts and minimising the mean 
square error between the original and reconstructed samples. 
However, these in-loop filters significantly increase the com-
putational complexity requirements of a decoder, on average 
30% and 40% when decoding on a high-performance gen-
eral purpose processor (HGPP) and an embedded general 
purpose processor (EGPP), respectively [4, 5]. According 
to [5], ALF alone represents an average computational com-
plexity of 5–12% and 12–24% of the total decoding time 
share on an HGPP and an EGPP, respectively. As a result, it 
has become a rather challenging research goal to reduce the 
in-loop filtering time, and more particularly to reduce the 
ALF filtering time through parallelisation to achieve real-
time decoding.

In this scenario, portable embedded systems on chip 
(SoCs) are being equipped with dedicated hardware to han-
dle encoding and decoding operations. For example, the 
NVIDIA Jetson AGX Xavier development kit integrates 
a full-featured HEVC encoder and decoder [6]. However, 
the operational condition of this type of hardware is highly 
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constrained to predefined parameterisations, including 
video resolution or frame rate, and only to a particular video 
standard. To address these limitations, a hybrid approach 
[7] using a central processing unit (CPU) and a graphics 
processing unit (GPU) can be employed for efficient encod-
ing and decoding on heterogeneous platforms. In accord-
ance, the main contribution of the presented research is a 
GPU-based parallelisation of an optimised versatile video 
decoder (VVdeC) ALF filter. The ALF filtering process has 
been chosen to be processed by the GPU due to being a high 
computationally demanding process of VVC and involving a 
high degree of parallelism. The remaining decoding blocks 
are executed on the CPU. The main contributions of this 
article are summarised as follows:

– A detailed methodology is presented to exploit GPU for 
VVdeC ALF. This information is essential not only for 
different VVdeC blocks but also for other video encoding 
and decoding applications.

– The VVdeC ALF source code has been redesigned to 
maximise the degree of parallelism, making the pro-
gramme capable of exploiting GPU capabilities.

– The presented results show real-time decoding of FHD 
sequences using CPU+GPU-based hybrid approach. 
Furthermore, the information from these results is 
related with an analysis of the energy consumption of 
the embedded platforms employed.

– The proposed method does not affect or introduce any 
loss in video quality, and the decoded video output is 
exactly the same as the reference.

The rest of this manuscript is structured as follows. Section 2 
discusses related work on VVC parallelisation. In Sect. 3, 
a brief overview of a simplified block diagram of the VVC 
decoder and the ALF filtering process is presented. Section 4 
discusses the current implementation of ALF in VVdeC. 
In Sect. 5, the proposed methodology is detailed. Section 6 
presents the experimental results obtained. Finally, the con-
clusion of the paper is provided in Sect. 7.

2  Related work

To tackle the complexity issues of the VVC standard, 
several parallel CPU and other implementations based 
on heterogeneous architectures were proposed for VVC 
codecs. An optimised VVC decoder was presented in [8] 
that supports real-time decoding using single instruction 
multiple data (SIMD) intrinsics and multi-core processing 
with an x86 architecture. S. Gudumasu et al. [9] proposed 
a redesign technique of the VVC decoder based on data 
and task parallelisation that achieved real-time decoding 

using multi-core CPU over heterogeneous platforms. In 
[10], the authors used not only data and task parallelisa-
tion but also SIMD instructions to accelerate the VVC 
decoder on x86 CPUs. In [11], an optimised VVC software 
decoder is proposed for ARM-based mobile devices that 
exploit the intrinsic and multi-CPU cores of SIMD based 
on ARM Neon.

Several GPU-based implementations have also been 
reported in the literature for different video encoders and 
decoders, including VVC. In [12], the proposed VVC 
implementation accelerates the VVC reference software 
decoder by 16× using CPU+GPU. Here, VVC motion com-
pensation was accelerated by organising the GPU threads 
and by satisfying data dependencies for re-partitioning the 
coding unit. In [13], a GPU-based implementation of the 
adaptive multiple transform block is presented. This func-
tionality is also included in VVC, but on top of the Open-
HEVC decoder [14]. The study obtained a performance 
improvement of 11× in the transforms. In [15], Wang et al. 
introduced a pipeline structure for parallel in-loop filter-
ing in the HEVC encoder using a GPU, achieving up to 
47% of time savings in filter performance. In [16] and 
[17], the authors accelerated HEVC inverse quantisation, 
inverse transformation, intra-prediction, and in-loop filters 
using GPUs, with the aim of satisfying real-time require-
ments by obtaining more than 40 fps for 4K Ultra High 
Definition (UHD) video sequences. Furthermore, a set of 
parallel algorithms based on CPU + GPU are presented 
in [18], where context adaptive binary arithmetic coding 
(CABAC) is processed on the CPU and inverse quantisa-
tion, inverse DCT, intra- and inter-decoder, and in-loop fil-
ters are processed on the GPU. This solution achieved real-
time decoding for High Definition (HD) sequences with 
a frame rate of up to 67 fps. Zhang et al. designed several 
core-based parallel algorithms for the Sample Adaptive 
Offset (SAO) filter [19]. This implementation achieved a 
22× speedup of the SAO process. Regarding the second 
generation of the Audio Video Coding Standard (AVS2) 
[20], the loop filter, which includes the deblocking filter 
(DBF), SAO, and ALF, was also accelerated by 22× using 
a load balanced implementation of CPU+GPU together 
with several other memory optimisations [7]. The authors 
in [21] and [22] presented a GPU-based implementation 
of intra-decompression and intra-decoding, respectively, 
for the third generation of the Audio Video Coding Stand-
ard (AVS3) [23]. Both implementations obtained real-time 
decoding for 8K video with an average frame rate of more 
than 47 fps.

Taking advantage of the similarity in the implementa-
tion tools, these techniques can also be applied to acceler-
ate VVC encoder and decoder operations. Up until now, 
this approach was not followed and most research work 
focused on optimisations for nonresource-constrained 
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platforms. This work aims to fill this gap using the GPU 
of a resource-constrained heterogeneous platform to accel-
erate the computation of the ALF block of an already opti-
mised VVC decoder.

3  VVC decompression

This section introduces the decoder block diagram with a 
special focus on the optimised ALF module.

3.1  Decoder structure

The simplified block diagram of a standard VVC decoder 
is presented in Fig. 1. The decoding process begins with 
the entropy decoding (ED) of the input bitstream through 
CABAC [24]. The entropy decoding process produces all the 
information required for decompressing the video. Then, the 
inverse quantisation and inverse transformation (TX) process 
produce the residual data from the input coefficients. These 
residuals are then added to the prediction pixels from intra-
prediction (IP) or inter-prediction (EP). Then, four in-loop 
filters are applied: (1) inverse luma mapping with chroma 
scaling [25] helps to improve the coding efficiency by effi-
ciently mapping the range of variation of the input signals, 
(2) DBF is applied at the block boundaries to mitigate the 
block artefacts, (3) SAO is applied after DBF to reduce the 
sample distortion, and (4) ALF is used to minimise the mean 
square error. Finally, after finishing the ALF filtering, the 
decoded video is obtained.

As presented in the introduction, this work is focused on 
the parallelisation of the ALF block in GPU, by aiming at the 
migration of its execution to a GPU kernel. For this reason, 
some details of this filter are presented below.

3.2  Adaptive loop filtering

ALF is one of the in-loop filters that is applied at the end 
of the decoding process. It is applied to samples previously 
filtered by the DBF and SAO filters. The core operation 
of ALF is based on Wiener filters [26]. It was designed 
to reduce the mean square error between the original and 
reconstructed samples, and to reduce the coding artefacts 
caused by the previous stages. The functionality of the ALF 
decoder side is illustrated in Fig. 2. It consists of three main 
processes: (1) classification of luma components based on 
gradient calculation, (2) filtering of the luma component, 
and (3) filtering of the chroma component. In addition, 
cross-component filtering is adapted by VVC ALF.

3.2.1  Classification of luma components

The subblock-level classification process starts by classify-
ing each 4 × 4 size block into one of 25 classes. This classifi-
cation is based on directionality and a quantified value that 
represents the activity of each sample within the block. The 

Fig. 1  Simplified block diagram of a VVC decoder

Fig. 2  Diagram of the general working flow of ALF
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determination of these parameters involves the calculation 
of the horizontal, vertical, and two diagonal gradients for 
the reconstructed samples. The calculations involved [27] 
are shown in Eqs. (1) and (2) for the vertical and horizontal 
directions and in Eqs. (3) and (4) for the two diagonal direc-
tions, where Y is the reconstructed sample and Gv , Gh , Gdo

 , 
and Gd1

 are vertical, horizontal, and two directional gradi-
ents, respectively

3.2.2  Luma and chroma component filtering

After classification, the ALF filter applies the respective 
coefficients to the reconstructed samples obtained in the 
output of SAO. VVC ALF considers a 7 × 7 diamond-shaped 
(DMS) filter for the luma component (see Fig. 5-left) and a 
5 × 5 DMS filter for the chroma component. Here, each luma 
or chroma component is represented by a square, while ci 
represents a coefficient value. The centre of the square rep-
resents the current component to be filtered. Equation 5 [28] 
is used to calculate the filtered component value Ỹ(x, y) at 
the (x, y) coordinate

Here, Y(x+xi,y+yi ) and Y(x-xi,y-yi ) represent the component 
value corresponding to ci and N represents the number of 
coefficients. The value of N is 13 for the 7 ×7 DMS filter and 
7 for the 5 ×5 DMS filter.

(1)Gv(i, j) = |2Y(i, j) − Y(i − 1, j) − Y(i + 1, j)|

(2)Gh(i, j) = |2Y(i, j) − Y(i, j − 1) − Y(i, j + 1)|

(3)Gdo
(i, j) = |2Y(i, j) − Y(i − 1, j − 1) − Y(i + 1, j + 1)|

(4)Gd1
(i, j) = |2Y(i, j) − Y(i − 1, j + 1) − Y(i + 1, j − 1)|.

(5)Ỹ(x, y) = Y(x, y) +

(
N−2∑

i=0

ci(Y(x + xi, y + yi) − Y(x, y)) +

N−2∑

i=0

ci(Y(x − xi, y − yi) − Y(x, y)) + 64

)
≫ 7.

3.2.3  Cross‑component ALF filtering

The final cross-component ALF filtering (CCALF) refines 
the chroma component using the values of the luma com-
ponent. It receives this name, because the input component 
for the filter operation is different from the component to 
which the output is applied (see Fig. 3). Just like luma and 
chroma ALF filtering, CCALF supports DMS filtering, 
which helps to reduce the required number of coefficients 
and the number of multiply and accumulate operations 
required to achieve its implementation. In the initial VVC 
proposal, the filter size was a 5 × 6 diamond shape, but was 
further reduced to a 3 × 4 diamond shape in the final ver-
sion of the VVC standard [25].

4  Versatile video decoder (VVdeC)

The Fraunhofer Heinrich Hertz Institute released the first 
version of an optimised VVC decoder, named Versatile 
Video Decoder (VVdeC), on 6 October 2020 [29]. The 
objective of this decoder is to have a real-time implemen-
tation of the VVC standard optimised for different plat-
forms. It is an open-source VVC decoder based on VVC 
test model (VTM) software, supporting the VVC Main 10 
profile. VVdeC fully supports the decoding of all bit streams 
encoded using the VVC standard. Furthermore, it is compat-
ible with FFmpeg [30] and GPAC [31].

4.1  Parallel implementation of VVdeC

To attain the aimed performance, VVdeC exploits multi-
threading and SIMD parallelisation. VVdeC starts by pars-
ing multiple frames. Then, the reconstruction process is 
applied on the parsed frames by splitting the tasks into CTU 
and CTU line based. For tracking among tasks, a stage is 
given to each CTU. It helps to execute tasks simultaneously 

when the dependencies are settled. In this process, a task 
worker is allocated to each CTU and task workers are given 
available tasks through scanning by thread pool. The decod-
ing of a frame is completed after the filtering process for all 
CTUs is completed. Compared to VTM, VVdeC has shown 
a reduction of up to 90% [8] of the decoding time.

Fig. 3  Diagram of the CCALF architecture
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4.2  ALF in VVdeC

To compute ALF, the assignment of tasks to threads in 
VVdeC considers a main thread that launches and controls 
the working threads. Each working thread computes ALF 
for each CTU that the main thread assigns, provided that the 
SAO filtering of neighbouring CTUs has been completed. 
This guarantees that the necessary preconditions are satis-
fied for the ALF filtering. The number of CTUs assigned to 
a working thread increases with the number of CTUs per 
row of the picture, but decreases with the number of work-
ing threads.

5  Proposed GPU implementation of VVdeC 
ALF

In our previous work [32], VVdeC (version 1.3) was 
ported to the ARM instruction set architecture (ISA), 
because it was originally designed for the x86-based archi-
tecture [8, 33]. The migration process involved removing 
dependencies, including external libraries, and deleting/
adapting some formal optimisation designed for x86-based 
architecture. Finally, VVdeC was optimised using ARM 
Neon SIMD to maximally exploit data-level parallelism on 
the CPU side. The resulting source code is openly avail-
able [34]. This work extends our previous work with a 
GPU-based implementation of the VVdeC ALF block on a 
heterogeneous platform using the Compute Unified Device 
Architecture (CUDA) programming API. It comprises the 
following aspects considered on the migration process: 
programme redesign, data ordering, memory allocation, 
data transfer, kernel distribution, and task schedule.

5.1  Program redesigning

The GPU-based implementation of VVdeC ALF started by 
redesigning the CPU-based programme to more efficiently 
support parallelisation using the GPU. In VVdeC, the ALF 

7 × 7 and 5 × 5 DMS filters consist of four nested for loops 
that are placed one inside another. Here, the two inside loops 
go through the block of 4 × 4 pixels that is being filtered, 
while the other two go through the CTU with a stride of 4 
pixels for each iteration. The data access pattern of VVdeC 
ALF is illustrated in Fig. 4 (top) for a CTU of 128×128 
pixels.

To achieve a more efficient implementation in the GPU, 
the four nested for loops in the source code were replaced 
with a single for loop that iterates over all pixels of the CTU. 
The conversion of the data access pattern is shown in Fig. 4 
(bottom). Afterwards, moving to the GPU was straightfor-
ward, since the size of the for loop was replaced with the 
number of GPU threads that are launched. In addition, each 
thread filters a single pixel in the same way as is done on 
the CPU. However, the data address pointers are modified, 
as explained in Sect. 5.2. In total, 128 threads per block have 
been used to exploit maximum GPU load and performance. 
The number of blocks is the number of pixels to be filtered 
divided by 128 (threads per block).

5.2  Data ordering

The 7 × 7 DMS filter requires up to three pixels above, on 
the left, right, and bottom, following a diamond shape, as 
illustrated in Fig. 5 (top left) and (top right). For 5 × 5 DMS 
filtering, the processing is the same as for 7 × 7 DMS filter-
ing, but it only needs up to two pixels.

Three distinct approaches were considered to implement 
the filter in the GPU. In a first approach, all pixels within the 
diamond shape are copied into different variables depend-
ing on their row (Img) in the diamond, as shown in Fig. 5 

Fig. 4  Conversion of data access pattern

Fig. 5  7× 7 diamond-shaped (top left), sliding diamond-shaped filter 
over CTU (top right), and data ordering pattern in the first approach 
(bottom)
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(bottom). Here, the same pixel information is copied several 
times to filter adjacent pixels.

The second approach aimed to reduce duplicated pixels 
copied to the GPU. For each CTU row, all pixels in each 
ImgX row are copied, where X = 0-6. Therefore, horizon-
tally adjacent pixels can share the same pixel data, but verti-
cally adjacent pixels use different data. In this case, the same 
pixels are duplicated vertically to filter the vertical adjacent 
pixels. Compared to the first approach, this one requires less 
data copy, and the implementation complexity is simpler. 
However, the same pixels are still copied more than once.

In the final approach, the CTU is copied along with three 
pixels (in total six per corner) in each direction: above, left, 
right, and bottom, as shown in Fig. 6 (top). These extra pix-
els (in total six per corner) around the CTU are copied, since 
those are also needed for filtering the pixels on the border of 
the CTU. Therefore, the bidimensional CTU is transformed 
into a one-dimensional array by concatenating each row of 
the original CTU, as shown in Fig. 6 (bottom). Here, the pix-
els at the corners marked with red are not used for both 7 × 7 
and 5 × 5 DMS filters, but they are also copied to simplify the 
addressing of the pixels in the GPU code. The advantages 
of this strategy are the following: (1) only one memory vec-
tor holds all pixel information, (2) each pixel is only copied 
once (the minimum possible), and (3) the implementation 
complexity is very low. As a disadvantage, the access is not 

coalescent if a thread wants to get the pixels of different rows 
(there is a stride of 6 + CTU width), but the reduction of 
copied data improves more than the coalesced access.

Table 1 shows the amount of data transferred in bytes (B) 
for the three considered approaches (App.), the two different 
CTU sizes, and the reduction in the amount of copied bytes 
(in %) of approaches 2 and 3 compared to the first one (1).

5.3  Memory allocation

The GPU is a coprocessing unit of the CPU that executes the 
tasks assigned by the CPU. However, both GPU and CPU 
use different memory address spaces, where the GPU can-
not access the CPU memory directly. Therefore, the main 
bottleneck for CPU+GPU implementation comes from 
data transfers between CPU and GPU [35]. To optimise the 
performance of the CPU+GPU implementation, memory 
allocation needs to be efficiently managed. In this part of 
the study, different CUDA API functions are discussed to 
overcome this limitation.

The function cudaMallocHost allocates page-locked 
memory to the host. However, this approach introduces some 
limitations: When a significant amount of data are allocated, 
performance decreases. However, cudaMallocHost allocates 
the memory space to the pinned memory [36], which means 
that data need to be copied only once from the pinned mem-
ory to the GPU. On the contrary, data allocation using the 
cudaMallocManaged function requires two copies: (1) uni-
fied memory to pinned memory and (2) pinned memory in 
GPU. Considering the small amount of data per filter (100 
KB), the final implementation makes use of cudaMallocHost 
(instead of others, such as cudaMallocManaged or cudaMal-
loc), since the copy time is shorter and the resulting global 
performance is better.

5.4  Data transfer

Data transfers between the CPU and the GPU were imple-
mented using the cudaMallocHost function, which makes it 
possible to use of the memcpy function instead of cudaMem-
cpy. It results in faster data transfers and shorter copy times. 
The cudaMemcpyAsync was also tested to verify whether 
parallelism between copy and CPU execution could improve 
the performance. However, cudaMemcpyAsync showed to 
be slower in this case, as it took a setup overhead of around 
18 � s each time it was called to copy a variable before the 
asynchronous copy started. On the contrary, the copy time of 
all the variables of a filter was less than 10 � s when memcpy 
was used synchronously. Moreover, in such a case, cudaM-
emcpyAsync would be called several times by multiple CPU 

Fig. 6  Data ordering pattern in the final approach

Table 1  Reduction of data copied on the basis of different data order-
ing approaches

CTU 
size

Transferred data (Bytes) Reduction over App. 1

App. 1 
(B)

App. 2 
(B)

App3 (B) App. 2 
(%)

App. 3 (%)

128x128 409600 116992 17956 71.4% 95.6%
64×64 102400 29824 4900 70.8% 95.2%
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threads at the same time in VVdeC to copy small chunks 
of data. Thus, causing undesired bottlenecks. When CPU 
threads run in parallel with asynchronous copy and execute 
another cudaMemcpyAsync, such an operation must wait 
until the previous copy finishes. Hence, it can be concluded 
that cudaMemcpyAsync is only useful when dealing with 
large blocks of data (100 MB or greater). In our implemen-
tation, cudaMemcpyAsync did not provide benefit, as there 
are many variables and relatively few data elements per fil-
ter (100 KB). CudaMemPrefetchAsync was also tested, but 
it had a small negative impact on performance, as it takes 
3.5 � s each time it is executed.

To conclude, the best performance is obtained when syn-
chronously coping with the memcpy function in the GPU 
memory allocated with cudaMallocHost.

5.5  Kernel distribution

This section discusses the kernel distribution for ALF filter-
ing on the GPU. To increase the performance, ALF filtering 
tasks are assigned to the GPU kernels in different ways to 
maximise the parallel computation of all the filters for a 
frame.

The ALF filtering process requires reconstructed samples 
from the SAO filtering process. At the beginning of the ALF 
filtering on GPU, SAO reconstructed samples are provided 
to GPU from CPU using cudaMallocHost. Therefore, a suit-
able filter among 7 × 7 DMS filter (for the luma component) 
and two 5 × 5 DMS filters (for the chroma Cb and Cr) is 
applied to each pixel of the CTU. Moreover, all CTUs are 
processed simultaneously, as ALF CTUs are independent 
of each other.

Initially, each 7 × 7 DMS filter and two 5 × 5 DMS filters 
from each CTU are included in one kernel. This reduced the 
number of kernels launched by 3 × (if the luma and chroma 
filters are always performed). This approach improves the 
performance as the kernel requires some time to start before 
any computation is performed on the GPU. Moreover, this 
time increases with the number of CPU threads that call 
a kernel. For example, with 8 threads, on average, 180 � s 
are consumed for initialisation, while the filtering computa-
tion in GPU only takes 7 � s for 7x7 DMS filter. However, 

the GPU was mostly running continuously. The former 
observation motivated another implementation: instead of 
grouping three filters in one kernel, all filters are grouped 
in a single kernel to process a whole frame. To do that, all 
the required data are first copied to the memory space allo-
cated with cudaMallocHost. After the filter computation 
at the GPU, a thread sets the frame as reconstructed and 
ready to be used by other decoder blocks, as all CTUs can 
be computed simultaneously using the same kernel. Using 
this approach, about 500 7 × 7 and 1000 5 × 5 DMS filters can 
be executed using a single kernel to decode 3840 × 2160 
UHD sequences. Subsequently, the results of the ALF cross-
component functions of the Cb and Cr components are cop-
ied from the CPU to the GPU and added with the results 
obtained from the 5 × 5 DMS filtering of the Cb and Cr com-
ponents. Then, the executions on GPU are completed by 
clipping the results of addition between the cross-component 
and 5 × 5 DMS filters, as shown in Fig. 7. Finally, synchro-
nisation is performed to retrieve the results and send them 
back to the CPU.

By default, only one kernel can run at the same time, so if 
another is launched (by the same CPU thread or a different 
one), it waits until the existing one finishes. To solve such an 
ineffectiveness, the CUDA stream feature is used. It enables 
the execution of different kernels at the same time by the 
same application. Thus, different threads can launch ker-
nels that run concurrently, and CPU threads are not blocked, 
allowing their parallel execution.

5.6  Task schedule

Parallelism between CPU and GPU computations must 
be optimised to maximise the decoder performance. This 
requires properly scheduling not only the GPU computa-
tions, but also the data transfers between the CPU and the 
GPU. The double buffering technique was used to deal with 
this challenge.

In this study, the GPU kernel is launched with all filters 
in a frame before the frame is set as finished, while the CPU 

Fig. 7  Diagram of the hybrid approach using CPU+GPU Fig. 8  Diagram of the GPU task scheduling
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thread is kept waiting until the GPU finishes. Afterwards, 
the results are copied to the CPU and the kernel continues 
its normal execution, setting the frame as finished. Note that 
this approach does not provide full CPU–GPU parallelism, 
since other CPU threads can run meanwhile. To address 
this challenge, two data buffers allocated with cudaMal-
locHost are used, as illustrated in Fig. 8. First, the CPU 
threads copy the data necessary to compute the filter into 
one buffer. When a kernel is to be launched, the buffer is 
changed, so that other CPU threads can still run and continue 
copying the data in a buffer different from the one being 
used by the GPU. After the kernel finishes, the CPU thread 
that launched it can continue to copy the results back and set 
the image as reconstructed. This buffer change is repeated 
each time a kernel is launched. In addition, the design has 
been improved by automatically expanding the buffers when 
they run out of space, so that more data from the filters can 
be stored. Such double-buffer implementation guarantees 
efficient data-to-memory allocation.

To achieve full parallelism, the synchronisation between 
the CPU and the GPU is performed, and first, the CPU 
threads fill the first memory buffer. Next, when a thread 
reaches the end of a frame, the buffer is changed to be filled 
by other threads. Thus, other threads can continue filling 
the memory that is not going to be used by the GPU. Mean-
while, the GPU kernel is running, and other threads can con-
tinue filling the new buffer. Later, when the kernel finishes, 
the thread that launched it copies back the results that were 
stored in the old buffer used by the GPU and continues its 
execution by setting the frame as finished.

6  Experimental results

The proposed implementation was evaluated using an 
NVIDIA Jetson AGX Xavier development kit. This is an 
embedded heterogeneous platform consisting of an 8 core 
ARM 8.2 64 bit CPU and a 512 core Volta GPU [37]. This 
platform is equipped with 32 GB of RAM with a transfer 
rate of 137 GB/s. The CPU has a maximum clock rate of 
2.26 GHz, and contains a 8 MB L2 cache memory and a 4 
MB L3 cache memory. The GPU has a maximum clock rate 
of 1.37 GHz and contains a 512 KB L2 cache memory. The 
embedded platform was configured with the Ubuntu 18.04 
operating system, running CMake version 3.16, gcc version 
7.5, CUDA version 10.2, and activating the -O3 optimisa-
tion. All experiments were carried out using the maximum 
clock rate of the CPU and GPU.

6.1  Test bench description

In this evaluation, 11 video sequences have been used from 
common JVET test sequences [38]: 3 Class A1 sequences 

with resolution 3840×2160 Tango2 (TG2), FoodMarket4 
(FM4), and Campfire (CFR); 3 Class A2 sequences with 
resolution 3840×2160 CatRobot1 (CR1), DaylightRoad2 
(DR2), and ParkRunning3 (PR3); and 5 Class B sequences 
with resolution 1920×1080 MarketPlace (MPL), Ritu-
alDance (RUD), Cactus (CCT), BasketballDrive (BBD), and 
BQTerrace (BQT). These sequences have been encoded by 
setting the bit depth to 10 for all intra (AI), random access 
(RA), and low delay (LD) configurations with quantisation 
parameters (QP) equal to 22, 27, 32, and 37 (see Table 2).

Table 2  Features of the VVC test sequences

Class Sequence Resolution Frames Bit depth

A1 TG2 3840×2160 294 10
FM4 3840×2160 300 10
CFR 3840×2160 300 10

A2 CR1 3840×2160 300 10
DR2 3840×2160 300 10
PR3 3840×2160 300 10

B MPL 1920×1080 600 10
RUD 1920×1080 600 10
CCT 1920×1080 500 10
BBD 1920×1080 500 10
BQT 1920×1080 600 10
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6.2  Performance analysis

As was described in the previous section, the conceived 
CPU+GPU implementation accelerates the ALF block 
on the GPU, leaving the rest of the decoder on the CPU. 
Figure 9 shows the average decoding time distribution (in 
seconds) for the 11 test sequences considered for differ-
ent VVdeC blocks (in seconds) on the reference CPU-only 
implementation described in Subsection 5 (top) and on the 
proposed CPU+GPU implementation (bottom), both with 
ARM Neon SIMD activated for AI configurations with QP 
22-37. As can be observed, all the VVdeC blocks took a 
similar time on the CPU-only implementation compared 
to the time taken by the CPU+GPU implementation. The 
only exception is the ALF block, which obtained an aver-
age speedup of 2 in the CPU+GPU implementation. More-
over, the time consumption by ALF on the CPU + GPU 

implementation was lower than the DBF time by at least 
2.7 s. In addition, the computation time of the ED and TX 
blocks is slightly lower in the CPU+GPU implementation, 
because they benefited from more CPU availability in the 
implementation. The conclusions are similar for RA con-
figurations, as presented in Fig. 10. In this case, most of 
the decoding time was taken by EP, ALF, and DBF on both 
implementations. ALF consumed (on average) 16.6 s for 
the CPU-only implementation and 8.1 s for the CPU+GPU 
implementation. The scenario is also similar for low-delay 
sequences, where ALF consumed on average 18.9 s for the 
CPU-only implementation and 8.8 s for the CPU+GPU 
implementation (see Fig. 11).

Table 3 presents the average speedups of ALF and the 
entire decoder using the CPU + GPU implementation over 
the CPU-only implementation for the AI, RA, and LD con-
figurations with SIMD activated.
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Fig. 11  Average time distribution for VVdeC decoder blocks (in sec.) 
over CPU-only (top) and over CPU+GPU (bottom) with SIMD acti-
vated for LD configurations

Table 3  Average speedup 
obtained for ALF and total 
decoding time (TOT) using 
CPU+GPU over CPU-only with 
SIMD activated

All intra Random access Low delay

QP ALF TOT ALF TOT ALF TOT
22 1.91 1.08 2.02 1.13 2.07 1.15
27 1.93 1.12 2.09 1.14 2.15 1.16
32 1.95 1.15 2.01 1.13 2.18 1.17
37 2.28 1.18 1.93 1.11 2.22 1.18
Avg 2.02 1.13 2.01 1.13 2.16 1.17
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Fig. 12  Average fps obtained for the proposed implementation on (1) 
CPU-only (dashed line) and (2) CPU + GPU (solid line) with SIMD 
activated for different thread numbers with QPs 22, 27, 32 and 37 of 
AI (top), RA (middle), and LD (bottom) FHD sequences
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Fig. 13  Average fps obtained for the proposed implementation on (1) 
CPU-only (dashed line), and (2) CPU+GPU (solid line) with SIMD 
activated for different thread numbers with QPs 22, 27, 32, and 37 of 
AI (top), RA (middle), and LD (bottom) UHD sequences
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Figures 12 and 13 present the average performance in 
frames per second (fps) of the CPU-only and CPU+GPU 
implementations with SIMD activated for different exe-
cuting threads in the CPU using four QP values for AI, 
RA, and LD configurations UHD and Full High Defini-
tion (FHD) sequences, respectively. As can be seen, the 
CPU+GPU implementation is always faster (at least 1.1 
times) than the CPU-only implementation, independently 
of the amount of used cores. For the RA and LD configura-
tions, the CPU+GPU implementation achieved a speed-up 
of 1.2 times when compared to the CPU-only implementa-
tion using one core. For eight cores, it is up to 1.1 times 
faster than the CPU-only implementation. On average, ALF 
consumed around 20% and 12% of the decoding time in the 

CPU-only and CPU+GPU implementations, respectively. 
Furthermore, all FHD sequences achieved real-time decod-
ing in the CPU + GPU implementation on a resource-con-
strained mobile embedded platform using 8 cores, except 
AI sequences with QP equal to 22. Moreover, the decoding 
of 4K UHD LD sequences with QP 32-37 was in real time. 
The average maximum/minimum fps obtained by AI, RA, 
and LD UHD sequences with eight cores were 21.9/11.9, 
27.8/18.7, and 34.8/18.6 fps, respectively.

6.3  Energy consumption

In addition to performance, energy consumption is another 
factor to consider in resource-constrained embedded plat-
forms. The average power consumption of the platform was 
measured by reading the power consumption each time a 
frame was decoded. Subsequently, the average energy con-
sumption (in J) of the entire sequence was calculated by mul-
tiplying the average power consumption during the decoding 
by the decoding time. To measure power, the Jetson AGX 
Xavier is equipped with integrated sensors to obtain power 
consumption at the CPU and GPU (in mW) whose values 
are registered in two files in the filesystem. For CPU-only 
execution, the GPU energy is not zero, because the GPU is 
still enabled, while for the CPU+GPU, both consumptions 
are presented.

In Fig. 14, the average energy consumption per frame 
(in J/frame) of FHD and UHD sequences on CPU-only 
and CPU+GPU is presented for the AI (top), RA (middle), 
and LD (bottom) configurations with QP equal to 22-37 
and SIMD activated. As expected, the average energy con-
sumption was similar but slightly higher for the CPU+GPU 
implementation compared to the CPU-only implementa-
tion. Moreover, sequences with higher QP (lower quality 
and less computational load) consumed less energy than 
sequences with lower QP (higher quality and more com-
putational load) for all configurations. Furthermore, the 
FHD sequences consumed 2 × to 3 × less energy compared 
to the UHD sequences for all configurations. The maxi-
mum/minimum average energy consumption per frame of 
the CPU-only implementation was 1.37/0.19 J/frame for the 
AI configuration, 2.28/0.59 J/frame for the RA configura-
tion, and 0.84/0.10 J/frame for the LD configuration. For 
the CPU+GPU implementation, the maximum/minimum 
average energy consumption was 1.40/0.19 J/frame, 23.8/ 
0.61 J/frame, and 0.86/0.11 J/frame for the AI, RA, and LD 
configurations, respectively.

Accordingly, it can be concluded that active use of the 
GPU implies a slight increase in the energy consumed 
per frame (2.9%) which is compensated by the provided 
speedup. This seems fair considering that GPU modules 
usually involve higher power consumption than standard 
CPU modules, despite the difference in operating frequency. 
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However, the CPU does not benefit from the transfer of com-
putational load to the GPU, as it is on a waiting time during 
these periods. In a commercial implementation, the CPU 
might be using such clock cycles to perform other tasks 
simultaneously, thus making a more efficient use of energy 
resources.

7  Conclusions

This article proposes a hybrid approach to accelerate an 
optimised versatile video decoder (VVdeC) ALF filter 
using a GPU. The GPU has been comprehensively used 
by redesigning the VVdeC ALF programme to maximise 
the degree of parallelism over resource-constrained het-
erogeneous embedded platforms. The proposed approach 
allowed to accelerate ALF computation by an average 
of two times for AI, RA, and LD video sequences in an 
NVIDIA AGX Jetson Xavier platform. Furthermore, the 
proposed CPU+GPU implementation with SIMD acti-
vated offers an average rate of 48 fps for AI sequences, 
69 fps for RA sequences, and 80 fps for LD sequences. 
The results obtained also show an average speedup of 1.1 
for the total decoding time compared to an already fully 
optimised version of the software decoder. In addition, this 
paper presents an analysis of energy consumption, a key 
factor in the targeted embedded platforms. The CPU+GPU 
implementation with SIMD activated consumed similar 
energy compared to the CPU-only implementation with 
SIMD activated for sequences with different configura-
tions. For future work, other potential VVC blocks could 
be migrated to GPU. The following aspects are considered 
as future work to improve the current implementation: (1) 
the processing of multiple pixels per processing thread, 
and (2) the development of a strategy to use limited shared 
memory of the embedded platform used in the research to 
reduce global memory access. Finally, work is underway 
to design power consumption models that dynamically 
adapt, depending on the needs of both the environment and 
the video performance, to the most advantageous scenario 
between moving blocks of the algorithm to one or another 
processor, CPU or GPU.
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