
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2023) 20:43
https://doi.org/10.1007/s11554-023-01300-z

ORIGINAL RESEARCH PAPER

GPU‑based parallelisation of a versatile video coding adaptive loop
filter in resource‑constrained heterogeneous embedded platform

Anup Saha1 · Nuno Roma2 · Miguel Chavarrías1 · Tiago Dias3 · Fernando Pescador1 · Víctor Aranda1

Received: 15 December 2022 / Accepted: 25 March 2023 / Published online: 13 April 2023
© The Author(s) 2023

Abstract
This paper presents a GPU-based parallelisation of an optimised versatile video decoder (VVC) adaptive loop filter (ALF)
filter on a resource-constrained heterogeneous platform. The GPU has been comprehensively utilised to maximise the degree
of parallelism, making the programme capable of exploiting the GPU capabilities. The proposed approach enables to acceler-
ate the ALF computation by an average of two times when compared to an already fully optimised version of the software
decoder implementation over an embedded platform. Finally, this work presents an analysis of energy consumption, showing
that the proposed methodology has a negligible impact on this key parameter.

Keywords GPU · VVC · Video decoder · Embedded · ALF · Filter

1 Introduction

The Joint Video Experts Team (JVET), from ISO/IEC JTC1
and VCEG (Q6/16), released the current state-of-the-art ver-
satile video coding (VVC) standard in July 2020 [1]. Com-
pared to the High-Efficiency Video Coding (HEVC) stand-
ard [2], VVC provides the same visual quality with 50% bit
rate savings. However, this reduction in bit rate comes at the
cost of a significant increase in computational complexity:

×10 more in the encoder and ×2 more in the decoder, with
respect to HEVC [3]. This increase in complexity is a crucial
limiting factor for both consumer computers and resource-
constrained embedded systems.

The greater coding efficiency that VVC offers is achieved
thanks to the introduction of several new functionalities
compared to HEVC. For instance, the inclusion of an Adap-
tive Loop Filter (ALF) in the filtering loop is responsible
for reducing the coding artefacts and minimising the mean
square error between the original and reconstructed samples.
However, these in-loop filters significantly increase the com-
putational complexity requirements of a decoder, on average
30% and 40% when decoding on a high-performance gen-
eral purpose processor (HGPP) and an embedded general
purpose processor (EGPP), respectively [4, 5]. According
to [5], ALF alone represents an average computational com-
plexity of 5–12% and 12–24% of the total decoding time
share on an HGPP and an EGPP, respectively. As a result, it
has become a rather challenging research goal to reduce the
in-loop filtering time, and more particularly to reduce the
ALF filtering time through parallelisation to achieve real-
time decoding.

In this scenario, portable embedded systems on chip
(SoCs) are being equipped with dedicated hardware to han-
dle encoding and decoding operations. For example, the
NVIDIA Jetson AGX Xavier development kit integrates
a full-featured HEVC encoder and decoder [6]. However,
the operational condition of this type of hardware is highly

 * Miguel Chavarrías
 miguel.chavarrias@upm.es

 Anup Saha
 anup.saha@upm.es

 Nuno Roma
 nuno.roma@inesc-id.pt

 Tiago Dias
 tiago.dias@isel.pt

 Fernando Pescador
 fernando.pescador@upm.es

 Víctor Aranda
 victor.arandal@upm.es

1 Universidad Politécnica de Madrid, Madrid, Spain
2 INESC-ID, Instituto Superior Técnico, Universidade de

Lisboa, Lisbon, Portugal
3 INESC-ID, ISEL, Instituto Politécnico de Lisboa, Lisbon,

Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-023-01300-z&domain=pdf
http://orcid.org/0000-0003-2268-3642
http://orcid.org/0000-0003-2491-4977
http://orcid.org/0000-0003-0280-3440
http://orcid.org/0000-0001-7445-5823
http://orcid.org/0000-0002-3610-4296
http://orcid.org/0000-0002-3885-1068

 Journal of Real-Time Image Processing (2023) 20:43

1 3

43 Page 2 of 13

constrained to predefined parameterisations, including
video resolution or frame rate, and only to a particular video
standard. To address these limitations, a hybrid approach
[7] using a central processing unit (CPU) and a graphics
processing unit (GPU) can be employed for efficient encod-
ing and decoding on heterogeneous platforms. In accord-
ance, the main contribution of the presented research is a
GPU-based parallelisation of an optimised versatile video
decoder (VVdeC) ALF filter. The ALF filtering process has
been chosen to be processed by the GPU due to being a high
computationally demanding process of VVC and involving a
high degree of parallelism. The remaining decoding blocks
are executed on the CPU. The main contributions of this
article are summarised as follows:

– A detailed methodology is presented to exploit GPU for
VVdeC ALF. This information is essential not only for
different VVdeC blocks but also for other video encoding
and decoding applications.

– The VVdeC ALF source code has been redesigned to
maximise the degree of parallelism, making the pro-
gramme capable of exploiting GPU capabilities.

– The presented results show real-time decoding of FHD
sequences using CPU+GPU-based hybrid approach.
Furthermore, the information from these results is
related with an analysis of the energy consumption of
the embedded platforms employed.

– The proposed method does not affect or introduce any
loss in video quality, and the decoded video output is
exactly the same as the reference.

The rest of this manuscript is structured as follows. Section 2
discusses related work on VVC parallelisation. In Sect. 3,
a brief overview of a simplified block diagram of the VVC
decoder and the ALF filtering process is presented. Section 4
discusses the current implementation of ALF in VVdeC.
In Sect. 5, the proposed methodology is detailed. Section 6
presents the experimental results obtained. Finally, the con-
clusion of the paper is provided in Sect. 7.

2 Related work

To tackle the complexity issues of the VVC standard,
several parallel CPU and other implementations based
on heterogeneous architectures were proposed for VVC
codecs. An optimised VVC decoder was presented in [8]
that supports real-time decoding using single instruction
multiple data (SIMD) intrinsics and multi-core processing
with an x86 architecture. S. Gudumasu et al. [9] proposed
a redesign technique of the VVC decoder based on data
and task parallelisation that achieved real-time decoding

using multi-core CPU over heterogeneous platforms. In
[10], the authors used not only data and task parallelisa-
tion but also SIMD instructions to accelerate the VVC
decoder on x86 CPUs. In [11], an optimised VVC software
decoder is proposed for ARM-based mobile devices that
exploit the intrinsic and multi-CPU cores of SIMD based
on ARM Neon.

Several GPU-based implementations have also been
reported in the literature for different video encoders and
decoders, including VVC. In [12], the proposed VVC
implementation accelerates the VVC reference software
decoder by 16× using CPU+GPU. Here, VVC motion com-
pensation was accelerated by organising the GPU threads
and by satisfying data dependencies for re-partitioning the
coding unit. In [13], a GPU-based implementation of the
adaptive multiple transform block is presented. This func-
tionality is also included in VVC, but on top of the Open-
HEVC decoder [14]. The study obtained a performance
improvement of 11× in the transforms. In [15], Wang et al.
introduced a pipeline structure for parallel in-loop filter-
ing in the HEVC encoder using a GPU, achieving up to
47% of time savings in filter performance. In [16] and
[17], the authors accelerated HEVC inverse quantisation,
inverse transformation, intra-prediction, and in-loop filters
using GPUs, with the aim of satisfying real-time require-
ments by obtaining more than 40 fps for 4K Ultra High
Definition (UHD) video sequences. Furthermore, a set of
parallel algorithms based on CPU + GPU are presented
in [18], where context adaptive binary arithmetic coding
(CABAC) is processed on the CPU and inverse quantisa-
tion, inverse DCT, intra- and inter-decoder, and in-loop fil-
ters are processed on the GPU. This solution achieved real-
time decoding for High Definition (HD) sequences with
a frame rate of up to 67 fps. Zhang et al. designed several
core-based parallel algorithms for the Sample Adaptive
Offset (SAO) filter [19]. This implementation achieved a
22× speedup of the SAO process. Regarding the second
generation of the Audio Video Coding Standard (AVS2)
[20], the loop filter, which includes the deblocking filter
(DBF), SAO, and ALF, was also accelerated by 22× using
a load balanced implementation of CPU+GPU together
with several other memory optimisations [7]. The authors
in [21] and [22] presented a GPU-based implementation
of intra-decompression and intra-decoding, respectively,
for the third generation of the Audio Video Coding Stand-
ard (AVS3) [23]. Both implementations obtained real-time
decoding for 8K video with an average frame rate of more
than 47 fps.

Taking advantage of the similarity in the implementa-
tion tools, these techniques can also be applied to acceler-
ate VVC encoder and decoder operations. Up until now,
this approach was not followed and most research work
focused on optimisations for nonresource-constrained

Journal of Real-Time Image Processing (2023) 20:43

1 3

Page 3 of 13 43

platforms. This work aims to fill this gap using the GPU
of a resource-constrained heterogeneous platform to accel-
erate the computation of the ALF block of an already opti-
mised VVC decoder.

3 VVC decompression

This section introduces the decoder block diagram with a
special focus on the optimised ALF module.

3.1 Decoder structure

The simplified block diagram of a standard VVC decoder
is presented in Fig. 1. The decoding process begins with
the entropy decoding (ED) of the input bitstream through
CABAC [24]. The entropy decoding process produces all the
information required for decompressing the video. Then, the
inverse quantisation and inverse transformation (TX) process
produce the residual data from the input coefficients. These
residuals are then added to the prediction pixels from intra-
prediction (IP) or inter-prediction (EP). Then, four in-loop
filters are applied: (1) inverse luma mapping with chroma
scaling [25] helps to improve the coding efficiency by effi-
ciently mapping the range of variation of the input signals,
(2) DBF is applied at the block boundaries to mitigate the
block artefacts, (3) SAO is applied after DBF to reduce the
sample distortion, and (4) ALF is used to minimise the mean
square error. Finally, after finishing the ALF filtering, the
decoded video is obtained.

As presented in the introduction, this work is focused on
the parallelisation of the ALF block in GPU, by aiming at the
migration of its execution to a GPU kernel. For this reason,
some details of this filter are presented below.

3.2 Adaptive loop filtering

ALF is one of the in-loop filters that is applied at the end
of the decoding process. It is applied to samples previously
filtered by the DBF and SAO filters. The core operation
of ALF is based on Wiener filters [26]. It was designed
to reduce the mean square error between the original and
reconstructed samples, and to reduce the coding artefacts
caused by the previous stages. The functionality of the ALF
decoder side is illustrated in Fig. 2. It consists of three main
processes: (1) classification of luma components based on
gradient calculation, (2) filtering of the luma component,
and (3) filtering of the chroma component. In addition,
cross-component filtering is adapted by VVC ALF.

3.2.1 Classification of luma components

The subblock-level classification process starts by classify-
ing each 4 × 4 size block into one of 25 classes. This classifi-
cation is based on directionality and a quantified value that
represents the activity of each sample within the block. The

Fig. 1 Simplified block diagram of a VVC decoder

Fig. 2 Diagram of the general working flow of ALF

 Journal of Real-Time Image Processing (2023) 20:43

1 3

43 Page 4 of 13

determination of these parameters involves the calculation
of the horizontal, vertical, and two diagonal gradients for
the reconstructed samples. The calculations involved [27]
are shown in Eqs. (1) and (2) for the vertical and horizontal
directions and in Eqs. (3) and (4) for the two diagonal direc-
tions, where Y is the reconstructed sample and Gv , Gh , Gdo

 ,
and Gd1

 are vertical, horizontal, and two directional gradi-
ents, respectively

3.2.2 Luma and chroma component filtering

After classification, the ALF filter applies the respective
coefficients to the reconstructed samples obtained in the
output of SAO. VVC ALF considers a 7 × 7 diamond-shaped
(DMS) filter for the luma component (see Fig. 5-left) and a
5 × 5 DMS filter for the chroma component. Here, each luma
or chroma component is represented by a square, while ci
represents a coefficient value. The centre of the square rep-
resents the current component to be filtered. Equation 5 [28]
is used to calculate the filtered component value Ỹ(x, y) at
the (x, y) coordinate

Here, Y(x+xi,y+yi) and Y(x-xi,y-yi) represent the component
value corresponding to ci and N represents the number of
coefficients. The value of N is 13 for the 7 ×7 DMS filter and
7 for the 5 ×5 DMS filter.

(1)Gv(i, j) = |2Y(i, j) − Y(i − 1, j) − Y(i + 1, j)|

(2)Gh(i, j) = |2Y(i, j) − Y(i, j − 1) − Y(i, j + 1)|

(3)Gdo
(i, j) = |2Y(i, j) − Y(i − 1, j − 1) − Y(i + 1, j + 1)|

(4)Gd1
(i, j) = |2Y(i, j) − Y(i − 1, j + 1) − Y(i + 1, j − 1)|.

(5)Ỹ(x, y) = Y(x, y) +

(
N−2∑

i=0

ci(Y(x + xi, y + yi) − Y(x, y)) +

N−2∑

i=0

ci(Y(x − xi, y − yi) − Y(x, y)) + 64

)
≫ 7.

3.2.3 Cross‑component ALF filtering

The final cross-component ALF filtering (CCALF) refines
the chroma component using the values of the luma com-
ponent. It receives this name, because the input component
for the filter operation is different from the component to
which the output is applied (see Fig. 3). Just like luma and
chroma ALF filtering, CCALF supports DMS filtering,
which helps to reduce the required number of coefficients
and the number of multiply and accumulate operations
required to achieve its implementation. In the initial VVC
proposal, the filter size was a 5 × 6 diamond shape, but was
further reduced to a 3 × 4 diamond shape in the final ver-
sion of the VVC standard [25].

4 Versatile video decoder (VVdeC)

The Fraunhofer Heinrich Hertz Institute released the first
version of an optimised VVC decoder, named Versatile
Video Decoder (VVdeC), on 6 October 2020 [29]. The
objective of this decoder is to have a real-time implemen-
tation of the VVC standard optimised for different plat-
forms. It is an open-source VVC decoder based on VVC
test model (VTM) software, supporting the VVC Main 10
profile. VVdeC fully supports the decoding of all bit streams
encoded using the VVC standard. Furthermore, it is compat-
ible with FFmpeg [30] and GPAC [31].

4.1 Parallel implementation of VVdeC

To attain the aimed performance, VVdeC exploits multi-
threading and SIMD parallelisation. VVdeC starts by pars-
ing multiple frames. Then, the reconstruction process is
applied on the parsed frames by splitting the tasks into CTU
and CTU line based. For tracking among tasks, a stage is
given to each CTU. It helps to execute tasks simultaneously

when the dependencies are settled. In this process, a task
worker is allocated to each CTU and task workers are given
available tasks through scanning by thread pool. The decod-
ing of a frame is completed after the filtering process for all
CTUs is completed. Compared to VTM, VVdeC has shown
a reduction of up to 90% [8] of the decoding time.

Fig. 3 Diagram of the CCALF architecture

Journal of Real-Time Image Processing (2023) 20:43

1 3

Page 5 of 13 43

4.2 ALF in VVdeC

To compute ALF, the assignment of tasks to threads in
VVdeC considers a main thread that launches and controls
the working threads. Each working thread computes ALF
for each CTU that the main thread assigns, provided that the
SAO filtering of neighbouring CTUs has been completed.
This guarantees that the necessary preconditions are satis-
fied for the ALF filtering. The number of CTUs assigned to
a working thread increases with the number of CTUs per
row of the picture, but decreases with the number of work-
ing threads.

5 Proposed GPU implementation of VVdeC
ALF

In our previous work [32], VVdeC (version 1.3) was
ported to the ARM instruction set architecture (ISA),
because it was originally designed for the x86-based archi-
tecture [8, 33]. The migration process involved removing
dependencies, including external libraries, and deleting/
adapting some formal optimisation designed for x86-based
architecture. Finally, VVdeC was optimised using ARM
Neon SIMD to maximally exploit data-level parallelism on
the CPU side. The resulting source code is openly avail-
able [34]. This work extends our previous work with a
GPU-based implementation of the VVdeC ALF block on a
heterogeneous platform using the Compute Unified Device
Architecture (CUDA) programming API. It comprises the
following aspects considered on the migration process:
programme redesign, data ordering, memory allocation,
data transfer, kernel distribution, and task schedule.

5.1 Program redesigning

The GPU-based implementation of VVdeC ALF started by
redesigning the CPU-based programme to more efficiently
support parallelisation using the GPU. In VVdeC, the ALF

7 × 7 and 5 × 5 DMS filters consist of four nested for loops
that are placed one inside another. Here, the two inside loops
go through the block of 4 × 4 pixels that is being filtered,
while the other two go through the CTU with a stride of 4
pixels for each iteration. The data access pattern of VVdeC
ALF is illustrated in Fig. 4 (top) for a CTU of 128×128
pixels.

To achieve a more efficient implementation in the GPU,
the four nested for loops in the source code were replaced
with a single for loop that iterates over all pixels of the CTU.
The conversion of the data access pattern is shown in Fig. 4
(bottom). Afterwards, moving to the GPU was straightfor-
ward, since the size of the for loop was replaced with the
number of GPU threads that are launched. In addition, each
thread filters a single pixel in the same way as is done on
the CPU. However, the data address pointers are modified,
as explained in Sect. 5.2. In total, 128 threads per block have
been used to exploit maximum GPU load and performance.
The number of blocks is the number of pixels to be filtered
divided by 128 (threads per block).

5.2 Data ordering

The 7 × 7 DMS filter requires up to three pixels above, on
the left, right, and bottom, following a diamond shape, as
illustrated in Fig. 5 (top left) and (top right). For 5 × 5 DMS
filtering, the processing is the same as for 7 × 7 DMS filter-
ing, but it only needs up to two pixels.

Three distinct approaches were considered to implement
the filter in the GPU. In a first approach, all pixels within the
diamond shape are copied into different variables depend-
ing on their row (Img) in the diamond, as shown in Fig. 5

Fig. 4 Conversion of data access pattern

Fig. 5 7× 7 diamond-shaped (top left), sliding diamond-shaped filter
over CTU (top right), and data ordering pattern in the first approach
(bottom)

 Journal of Real-Time Image Processing (2023) 20:43

1 3

43 Page 6 of 13

(bottom). Here, the same pixel information is copied several
times to filter adjacent pixels.

The second approach aimed to reduce duplicated pixels
copied to the GPU. For each CTU row, all pixels in each
ImgX row are copied, where X = 0-6. Therefore, horizon-
tally adjacent pixels can share the same pixel data, but verti-
cally adjacent pixels use different data. In this case, the same
pixels are duplicated vertically to filter the vertical adjacent
pixels. Compared to the first approach, this one requires less
data copy, and the implementation complexity is simpler.
However, the same pixels are still copied more than once.

In the final approach, the CTU is copied along with three
pixels (in total six per corner) in each direction: above, left,
right, and bottom, as shown in Fig. 6 (top). These extra pix-
els (in total six per corner) around the CTU are copied, since
those are also needed for filtering the pixels on the border of
the CTU. Therefore, the bidimensional CTU is transformed
into a one-dimensional array by concatenating each row of
the original CTU, as shown in Fig. 6 (bottom). Here, the pix-
els at the corners marked with red are not used for both 7 × 7
and 5 × 5 DMS filters, but they are also copied to simplify the
addressing of the pixels in the GPU code. The advantages
of this strategy are the following: (1) only one memory vec-
tor holds all pixel information, (2) each pixel is only copied
once (the minimum possible), and (3) the implementation
complexity is very low. As a disadvantage, the access is not

coalescent if a thread wants to get the pixels of different rows
(there is a stride of 6 + CTU width), but the reduction of
copied data improves more than the coalesced access.

Table 1 shows the amount of data transferred in bytes (B)
for the three considered approaches (App.), the two different
CTU sizes, and the reduction in the amount of copied bytes
(in %) of approaches 2 and 3 compared to the first one (1).

5.3 Memory allocation

The GPU is a coprocessing unit of the CPU that executes the
tasks assigned by the CPU. However, both GPU and CPU
use different memory address spaces, where the GPU can-
not access the CPU memory directly. Therefore, the main
bottleneck for CPU+GPU implementation comes from
data transfers between CPU and GPU [35]. To optimise the
performance of the CPU+GPU implementation, memory
allocation needs to be efficiently managed. In this part of
the study, different CUDA API functions are discussed to
overcome this limitation.

The function cudaMallocHost allocates page-locked
memory to the host. However, this approach introduces some
limitations: When a significant amount of data are allocated,
performance decreases. However, cudaMallocHost allocates
the memory space to the pinned memory [36], which means
that data need to be copied only once from the pinned mem-
ory to the GPU. On the contrary, data allocation using the
cudaMallocManaged function requires two copies: (1) uni-
fied memory to pinned memory and (2) pinned memory in
GPU. Considering the small amount of data per filter (100
KB), the final implementation makes use of cudaMallocHost
(instead of others, such as cudaMallocManaged or cudaMal-
loc), since the copy time is shorter and the resulting global
performance is better.

5.4 Data transfer

Data transfers between the CPU and the GPU were imple-
mented using the cudaMallocHost function, which makes it
possible to use of the memcpy function instead of cudaMem-
cpy. It results in faster data transfers and shorter copy times.
The cudaMemcpyAsync was also tested to verify whether
parallelism between copy and CPU execution could improve
the performance. However, cudaMemcpyAsync showed to
be slower in this case, as it took a setup overhead of around
18 � s each time it was called to copy a variable before the
asynchronous copy started. On the contrary, the copy time of
all the variables of a filter was less than 10 � s when memcpy
was used synchronously. Moreover, in such a case, cudaM-
emcpyAsync would be called several times by multiple CPU

Fig. 6 Data ordering pattern in the final approach

Table 1 Reduction of data copied on the basis of different data order-
ing approaches

CTU
size

Transferred data (Bytes) Reduction over App. 1

App. 1
(B)

App. 2
(B)

App3 (B) App. 2
(%)

App. 3 (%)

128x128 409600 116992 17956 71.4% 95.6%
64×64 102400 29824 4900 70.8% 95.2%

Journal of Real-Time Image Processing (2023) 20:43

1 3

Page 7 of 13 43

threads at the same time in VVdeC to copy small chunks
of data. Thus, causing undesired bottlenecks. When CPU
threads run in parallel with asynchronous copy and execute
another cudaMemcpyAsync, such an operation must wait
until the previous copy finishes. Hence, it can be concluded
that cudaMemcpyAsync is only useful when dealing with
large blocks of data (100 MB or greater). In our implemen-
tation, cudaMemcpyAsync did not provide benefit, as there
are many variables and relatively few data elements per fil-
ter (100 KB). CudaMemPrefetchAsync was also tested, but
it had a small negative impact on performance, as it takes
3.5 � s each time it is executed.

To conclude, the best performance is obtained when syn-
chronously coping with the memcpy function in the GPU
memory allocated with cudaMallocHost.

5.5 Kernel distribution

This section discusses the kernel distribution for ALF filter-
ing on the GPU. To increase the performance, ALF filtering
tasks are assigned to the GPU kernels in different ways to
maximise the parallel computation of all the filters for a
frame.

The ALF filtering process requires reconstructed samples
from the SAO filtering process. At the beginning of the ALF
filtering on GPU, SAO reconstructed samples are provided
to GPU from CPU using cudaMallocHost. Therefore, a suit-
able filter among 7 × 7 DMS filter (for the luma component)
and two 5 × 5 DMS filters (for the chroma Cb and Cr) is
applied to each pixel of the CTU. Moreover, all CTUs are
processed simultaneously, as ALF CTUs are independent
of each other.

Initially, each 7 × 7 DMS filter and two 5 × 5 DMS filters
from each CTU are included in one kernel. This reduced the
number of kernels launched by 3 × (if the luma and chroma
filters are always performed). This approach improves the
performance as the kernel requires some time to start before
any computation is performed on the GPU. Moreover, this
time increases with the number of CPU threads that call
a kernel. For example, with 8 threads, on average, 180 � s
are consumed for initialisation, while the filtering computa-
tion in GPU only takes 7 � s for 7x7 DMS filter. However,

the GPU was mostly running continuously. The former
observation motivated another implementation: instead of
grouping three filters in one kernel, all filters are grouped
in a single kernel to process a whole frame. To do that, all
the required data are first copied to the memory space allo-
cated with cudaMallocHost. After the filter computation
at the GPU, a thread sets the frame as reconstructed and
ready to be used by other decoder blocks, as all CTUs can
be computed simultaneously using the same kernel. Using
this approach, about 500 7 × 7 and 1000 5 × 5 DMS filters can
be executed using a single kernel to decode 3840 × 2160
UHD sequences. Subsequently, the results of the ALF cross-
component functions of the Cb and Cr components are cop-
ied from the CPU to the GPU and added with the results
obtained from the 5 × 5 DMS filtering of the Cb and Cr com-
ponents. Then, the executions on GPU are completed by
clipping the results of addition between the cross-component
and 5 × 5 DMS filters, as shown in Fig. 7. Finally, synchro-
nisation is performed to retrieve the results and send them
back to the CPU.

By default, only one kernel can run at the same time, so if
another is launched (by the same CPU thread or a different
one), it waits until the existing one finishes. To solve such an
ineffectiveness, the CUDA stream feature is used. It enables
the execution of different kernels at the same time by the
same application. Thus, different threads can launch ker-
nels that run concurrently, and CPU threads are not blocked,
allowing their parallel execution.

5.6 Task schedule

Parallelism between CPU and GPU computations must
be optimised to maximise the decoder performance. This
requires properly scheduling not only the GPU computa-
tions, but also the data transfers between the CPU and the
GPU. The double buffering technique was used to deal with
this challenge.

In this study, the GPU kernel is launched with all filters
in a frame before the frame is set as finished, while the CPU

Fig. 7 Diagram of the hybrid approach using CPU+GPU Fig. 8 Diagram of the GPU task scheduling

 Journal of Real-Time Image Processing (2023) 20:43

1 3

43 Page 8 of 13

thread is kept waiting until the GPU finishes. Afterwards,
the results are copied to the CPU and the kernel continues
its normal execution, setting the frame as finished. Note that
this approach does not provide full CPU–GPU parallelism,
since other CPU threads can run meanwhile. To address
this challenge, two data buffers allocated with cudaMal-
locHost are used, as illustrated in Fig. 8. First, the CPU
threads copy the data necessary to compute the filter into
one buffer. When a kernel is to be launched, the buffer is
changed, so that other CPU threads can still run and continue
copying the data in a buffer different from the one being
used by the GPU. After the kernel finishes, the CPU thread
that launched it can continue to copy the results back and set
the image as reconstructed. This buffer change is repeated
each time a kernel is launched. In addition, the design has
been improved by automatically expanding the buffers when
they run out of space, so that more data from the filters can
be stored. Such double-buffer implementation guarantees
efficient data-to-memory allocation.

To achieve full parallelism, the synchronisation between
the CPU and the GPU is performed, and first, the CPU
threads fill the first memory buffer. Next, when a thread
reaches the end of a frame, the buffer is changed to be filled
by other threads. Thus, other threads can continue filling
the memory that is not going to be used by the GPU. Mean-
while, the GPU kernel is running, and other threads can con-
tinue filling the new buffer. Later, when the kernel finishes,
the thread that launched it copies back the results that were
stored in the old buffer used by the GPU and continues its
execution by setting the frame as finished.

6 Experimental results

The proposed implementation was evaluated using an
NVIDIA Jetson AGX Xavier development kit. This is an
embedded heterogeneous platform consisting of an 8 core
ARM 8.2 64 bit CPU and a 512 core Volta GPU [37]. This
platform is equipped with 32 GB of RAM with a transfer
rate of 137 GB/s. The CPU has a maximum clock rate of
2.26 GHz, and contains a 8 MB L2 cache memory and a 4
MB L3 cache memory. The GPU has a maximum clock rate
of 1.37 GHz and contains a 512 KB L2 cache memory. The
embedded platform was configured with the Ubuntu 18.04
operating system, running CMake version 3.16, gcc version
7.5, CUDA version 10.2, and activating the -O3 optimisa-
tion. All experiments were carried out using the maximum
clock rate of the CPU and GPU.

6.1 Test bench description

In this evaluation, 11 video sequences have been used from
common JVET test sequences [38]: 3 Class A1 sequences

with resolution 3840×2160 Tango2 (TG2), FoodMarket4
(FM4), and Campfire (CFR); 3 Class A2 sequences with
resolution 3840×2160 CatRobot1 (CR1), DaylightRoad2
(DR2), and ParkRunning3 (PR3); and 5 Class B sequences
with resolution 1920×1080 MarketPlace (MPL), Ritu-
alDance (RUD), Cactus (CCT), BasketballDrive (BBD), and
BQTerrace (BQT). These sequences have been encoded by
setting the bit depth to 10 for all intra (AI), random access
(RA), and low delay (LD) configurations with quantisation
parameters (QP) equal to 22, 27, 32, and 37 (see Table 2).

Table 2 Features of the VVC test sequences

Class Sequence Resolution Frames Bit depth

A1 TG2 3840×2160 294 10
FM4 3840×2160 300 10
CFR 3840×2160 300 10

A2 CR1 3840×2160 300 10
DR2 3840×2160 300 10
PR3 3840×2160 300 10

B MPL 1920×1080 600 10
RUD 1920×1080 600 10
CCT 1920×1080 500 10
BBD 1920×1080 500 10
BQT 1920×1080 600 10

ED TX IP EP DBF SAO ALF OT

10

20

30

40 38
.6

14
.8 18

.7

0

11
.9

2.
2

15
.4

6.
7

16
.7

10
.1 15

.3

0

11
.2

1.
9

15
.5

3.
9

9.
1

7.
6

12
.6

0

10
.5

1.
4

15
.5

2.
75.
7

6

10
.7

0

9.
9

0.
9

13
.4

2.
1D
ec
od

in
g
ti
m
e
(s
ec
on

ds
)

Implementation on CPU-only

QP 22

QP 27

QP 32

QP37

ED TX IP EP DBF SAO ALF OT

10

20

30

40 37
.8

13
.8

19
.4

0

12
.1

2.
3

8 6.
7

16
.2

9.
5

15
.7

0

11
.3

2

8

3.
8

9 7.
1

12
.9

0

10
.6

1.
4

7.
9

2.
65.
7

5.
7

11

0

9.
9

0.
9

5.
9

2D
ec
od

in
g
ti
m
e
(s
ec
on

ds
)

Implementation on CPU+GPU

QP 22

QP 27

QP 32

QP37

Fig. 9 Average time distribution for different blocks of the VVdeC
decoder (in sec.) over CPU-only (top) and over CPU+GPU (bottom)
with SIMD activated for all intra configurations

Journal of Real-Time Image Processing (2023) 20:43

1 3

Page 9 of 13 43

6.2 Performance analysis

As was described in the previous section, the conceived
CPU+GPU implementation accelerates the ALF block
on the GPU, leaving the rest of the decoder on the CPU.
Figure 9 shows the average decoding time distribution (in
seconds) for the 11 test sequences considered for differ-
ent VVdeC blocks (in seconds) on the reference CPU-only
implementation described in Subsection 5 (top) and on the
proposed CPU+GPU implementation (bottom), both with
ARM Neon SIMD activated for AI configurations with QP
22-37. As can be observed, all the VVdeC blocks took a
similar time on the CPU-only implementation compared
to the time taken by the CPU+GPU implementation. The
only exception is the ALF block, which obtained an aver-
age speedup of 2 in the CPU+GPU implementation. More-
over, the time consumption by ALF on the CPU + GPU

implementation was lower than the DBF time by at least
2.7 s. In addition, the computation time of the ED and TX
blocks is slightly lower in the CPU+GPU implementation,
because they benefited from more CPU availability in the
implementation. The conclusions are similar for RA con-
figurations, as presented in Fig. 10. In this case, most of
the decoding time was taken by EP, ALF, and DBF on both
implementations. ALF consumed (on average) 16.6 s for
the CPU-only implementation and 8.1 s for the CPU+GPU
implementation. The scenario is also similar for low-delay
sequences, where ALF consumed on average 18.9 s for the
CPU-only implementation and 8.8 s for the CPU+GPU
implementation (see Fig. 11).

Table 3 presents the average speedups of ALF and the
entire decoder using the CPU + GPU implementation over
the CPU-only implementation for the AI, RA, and LD con-
figurations with SIMD activated.

ED TX IP EP DBF SAO ALF OT

10

20

30

40
10

.7

5.
3

5.
3

35
.5

11
.6

1.
2

21

2.
34.
7

2.
9 3.
7

33
.3

10
.2

0.
6

18
.4

1.
82.
7

1.
8 2.
7

32
.2

9.
5

0.
3

15
.5

1.
7

1.
7

1.
2 2

31
.6

9.
2

0.
2

11
.6

1.
6D
ec
od

in
g
ti
m
e
(s
ec
on

ds
)

Implementation on CPU-only

QP 22

QP 27

QP 32

QP37

ED TX IP EP DBF SAO ALF OT

10

20

30

40

10
.5

5 5.
5

35
.1

12

1.
3

10
.3

2.
34.
6

2.
7 3.
8

33
.6

10
.2

0.
7

8.
7

1.
62.
6

1.
7 2.
7

32

10

0.
3

7.
6

1.
4

1.
7

1.
1 2

31
.7

9.
1

0.
2

5.
9

1.
4D
ec
od

in
g
ti
m
e
(s
ec
on

ds
)

Implementation on CPU+GPU

QP 22

QP 27

QP 32

QP37

Fig. 10 Average time distribution for VVdeC decoder blocks (in sec.)
over CPU-only (top) and over CPU+GPU (bottom) with SIMD acti-
vated for random access configurations

ED TX IP EP DBF SAO ALF OT

10

20

30

40

10
.3

6.
4

4.
1

27
.8

11
.9

1.
5

23
.3

3

4.
8

3.
7

3.
6

24
.1

13

0.
6

20
.3

2.
4

2.
7

2.
2

2.
6

21

12
.2

0.
3

17
.8

1.
9

1.
7

1.
4

1.
9

18
.7

11
.5

0.
2

14
.3

1.
7D
ec
od

in
g
ti
m
e
(s
ec
on

ds
)

Implementation on CPU-only

QP 22

QP 27

QP 32

QP37

ED TX IP EP DBF SAO ALF OT

10

20

30

40

10
.2

6.
5

4

28

12
.7

1.
4

11
.2

2.
94.
7

3.
8

3.
5

24
.6

13
.1

0.
6

9.
5

2.
1

2.
6

2.
2

2.
5

22
.2

12
.3

0.
3

8.
2

1.
6

1.
7

1.
4

1.
8

19
.4

11
.5

0.
2

6.
4

1.
2D
ec
od

in
g
ti
m
e
(s
ec
on

ds
)

Implementation on CPU+GPU

QP 22

QP 27

QP 32

QP37

Fig. 11 Average time distribution for VVdeC decoder blocks (in sec.)
over CPU-only (top) and over CPU+GPU (bottom) with SIMD acti-
vated for LD configurations

Table 3 Average speedup
obtained for ALF and total
decoding time (TOT) using
CPU+GPU over CPU-only with
SIMD activated

All intra Random access Low delay

QP ALF TOT ALF TOT ALF TOT
22 1.91 1.08 2.02 1.13 2.07 1.15
27 1.93 1.12 2.09 1.14 2.15 1.16
32 1.95 1.15 2.01 1.13 2.18 1.17
37 2.28 1.18 1.93 1.11 2.22 1.18
Avg 2.02 1.13 2.01 1.13 2.16 1.17

 Journal of Real-Time Image Processing (2023) 20:43

1 3

43 Page 10 of 13

1 2 3 4 5 6 7 8
0

20

40

60

80

Number of threads

D
ec
od

in
g
fr
am

e
ra
te

(f
ps

)

All intra

QP22
QP27
QP32
QP37

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number of threads

D
ec
od

in
g
fr
am

e
ra
te

(f
ps

)

Random access

QP22
QP27
QP32
QP37

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

Number of threads

D
ec
od

in
g
fr
am

e
ra
te

(f
ps

)

Low delay

QP22
QP27
QP32
QP37

Fig. 12 Average fps obtained for the proposed implementation on (1)
CPU-only (dashed line) and (2) CPU + GPU (solid line) with SIMD
activated for different thread numbers with QPs 22, 27, 32 and 37 of
AI (top), RA (middle), and LD (bottom) FHD sequences

1 2 3 4 5 6 7 8
0

5

10

15

20

25

Number of threads

D
ec
od

in
g
fr
am

e
ra
te

(f
ps

)

All intra

QP22
QP27
QP32
QP37

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

Number of threads

D
ec
od

in
g
fr
am

e
ra
te

(f
ps

)

Random access

QP22
QP27
QP32
QP37

1 2 3 4 5 6 7 8
0

10

20

30

40

Number of threads

D
ec
od

in
g
fr
am

e
ra
te

(f
ps

)

Low delay

QP22
QP27
QP32
QP37

Fig. 13 Average fps obtained for the proposed implementation on (1)
CPU-only (dashed line), and (2) CPU+GPU (solid line) with SIMD
activated for different thread numbers with QPs 22, 27, 32, and 37 of
AI (top), RA (middle), and LD (bottom) UHD sequences

Journal of Real-Time Image Processing (2023) 20:43

1 3

Page 11 of 13 43

Figures 12 and 13 present the average performance in
frames per second (fps) of the CPU-only and CPU+GPU
implementations with SIMD activated for different exe-
cuting threads in the CPU using four QP values for AI,
RA, and LD configurations UHD and Full High Defini-
tion (FHD) sequences, respectively. As can be seen, the
CPU+GPU implementation is always faster (at least 1.1
times) than the CPU-only implementation, independently
of the amount of used cores. For the RA and LD configura-
tions, the CPU+GPU implementation achieved a speed-up
of 1.2 times when compared to the CPU-only implementa-
tion using one core. For eight cores, it is up to 1.1 times
faster than the CPU-only implementation. On average, ALF
consumed around 20% and 12% of the decoding time in the

CPU-only and CPU+GPU implementations, respectively.
Furthermore, all FHD sequences achieved real-time decod-
ing in the CPU + GPU implementation on a resource-con-
strained mobile embedded platform using 8 cores, except
AI sequences with QP equal to 22. Moreover, the decoding
of 4K UHD LD sequences with QP 32-37 was in real time.
The average maximum/minimum fps obtained by AI, RA,
and LD UHD sequences with eight cores were 21.9/11.9,
27.8/18.7, and 34.8/18.6 fps, respectively.

6.3 Energy consumption

In addition to performance, energy consumption is another
factor to consider in resource-constrained embedded plat-
forms. The average power consumption of the platform was
measured by reading the power consumption each time a
frame was decoded. Subsequently, the average energy con-
sumption (in J) of the entire sequence was calculated by mul-
tiplying the average power consumption during the decoding
by the decoding time. To measure power, the Jetson AGX
Xavier is equipped with integrated sensors to obtain power
consumption at the CPU and GPU (in mW) whose values
are registered in two files in the filesystem. For CPU-only
execution, the GPU energy is not zero, because the GPU is
still enabled, while for the CPU+GPU, both consumptions
are presented.

In Fig. 14, the average energy consumption per frame
(in J/frame) of FHD and UHD sequences on CPU-only
and CPU+GPU is presented for the AI (top), RA (middle),
and LD (bottom) configurations with QP equal to 22-37
and SIMD activated. As expected, the average energy con-
sumption was similar but slightly higher for the CPU+GPU
implementation compared to the CPU-only implementa-
tion. Moreover, sequences with higher QP (lower quality
and less computational load) consumed less energy than
sequences with lower QP (higher quality and more com-
putational load) for all configurations. Furthermore, the
FHD sequences consumed 2 × to 3 × less energy compared
to the UHD sequences for all configurations. The maxi-
mum/minimum average energy consumption per frame of
the CPU-only implementation was 1.37/0.19 J/frame for the
AI configuration, 2.28/0.59 J/frame for the RA configura-
tion, and 0.84/0.10 J/frame for the LD configuration. For
the CPU+GPU implementation, the maximum/minimum
average energy consumption was 1.40/0.19 J/frame, 23.8/
0.61 J/frame, and 0.86/0.11 J/frame for the AI, RA, and LD
configurations, respectively.

Accordingly, it can be concluded that active use of the
GPU implies a slight increase in the energy consumed
per frame (2.9%) which is compensated by the provided
speedup. This seems fair considering that GPU modules
usually involve higher power consumption than standard
CPU modules, despite the difference in operating frequency.

QP22 QP27 QP32 QP37
0

0.5

1

1.5
0.
38

0.
29

0.
23

0.
19

0.
38

0.
28

0.
23

0.
19

1.
37

0.
93

0.
76

0.
63

1.
4

0.
97

0.
79

0.
67

Jo
ul
e/

Fr
am

e
All intra

CPU:FHD CPU+GPU:FHD CPU:UHD CPU+GPU:UHD

QP22 QP27 QP32 QP37
0

1

2

0.
95

0.
77

0.
67

0.
59

0.
99

0.
79

0.
68

0.
61

2.
28

1.
96

1.
77

1.
57

2.
38

2.
01

1.
81

1.
6

Jo
ul
e/

fr
am

e

Random access

CPU:FHD CPU+GPU:FHD CPU:UHD CPU+GPU:UHD

QP22 QP27 QP32 QP37
0

0.5

1

0.
22

0.
15

0.
12

0.
1

0.
24

0.
16

0.
13

0.
11

0.
84

0.
61

0.
49

0.
42

0.
86

0.
64

0.
53

0.
45

Jo
ul
e/

fr
am

e

Low delay

CPU:FHD CPU+GPU:FHD CPU:UHD CPU+GPU:UHD

Fig. 14 Average energy consumed (in J per frame) for FHD and UHD
over CPU-only and CPU+GPU for AI (top), RA (middle), and LD
(bottom) configurations with QPs 22-37 and SIMD activated

 Journal of Real-Time Image Processing (2023) 20:43

1 3

43 Page 12 of 13

However, the CPU does not benefit from the transfer of com-
putational load to the GPU, as it is on a waiting time during
these periods. In a commercial implementation, the CPU
might be using such clock cycles to perform other tasks
simultaneously, thus making a more efficient use of energy
resources.

7 Conclusions

This article proposes a hybrid approach to accelerate an
optimised versatile video decoder (VVdeC) ALF filter
using a GPU. The GPU has been comprehensively used
by redesigning the VVdeC ALF programme to maximise
the degree of parallelism over resource-constrained het-
erogeneous embedded platforms. The proposed approach
allowed to accelerate ALF computation by an average
of two times for AI, RA, and LD video sequences in an
NVIDIA AGX Jetson Xavier platform. Furthermore, the
proposed CPU+GPU implementation with SIMD acti-
vated offers an average rate of 48 fps for AI sequences,
69 fps for RA sequences, and 80 fps for LD sequences.
The results obtained also show an average speedup of 1.1
for the total decoding time compared to an already fully
optimised version of the software decoder. In addition, this
paper presents an analysis of energy consumption, a key
factor in the targeted embedded platforms. The CPU+GPU
implementation with SIMD activated consumed similar
energy compared to the CPU-only implementation with
SIMD activated for sequences with different configura-
tions. For future work, other potential VVC blocks could
be migrated to GPU. The following aspects are considered
as future work to improve the current implementation: (1)
the processing of multiple pixels per processing thread,
and (2) the development of a strategy to use limited shared
memory of the embedded platform used in the research to
reduce global memory access. Finally, work is underway
to design power consumption models that dynamically
adapt, depending on the needs of both the environment and
the video performance, to the most advantageous scenario
between moving blocks of the algorithm to one or another
processor, CPU or GPU.

Author Contributions AS, VA, and TD mainly worked on the imple-
mentation, software development, and testing. NR, MC, and FP con-
tributed to idea generation, general work supervision, and looked for
funds to support the research work. All authors contributed to the
manuscript writing and review.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature. This research was funded by Span-
ish Ministerio de Ciencia y Innovación, under Grant No. TALENT

(PID2020-116417RB-C41), and Portuguese national funds through
Fundacao para a Ciência e a Tecnologia (FCT) under Grant No.
UIDB/50021/2020.

Data availability No data was used for the research described in the
article.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Fraunhofer HHI is proud to present the new state-of-the-art in
global video coding: H.266/VVC brings video transmission to
new speed. https:// newsl etter. fraun hofer. de/- viewo nline2/ 17386/
465/ 11/ 14SHc BTt/ V44RE LLZBp/1 (2022). Accessed 5 Jun
(2022)

 2. JCT-VC.: High efficient video coding (HEVC), ITU-T Recom-
mendation H.265 and ISO/IEC 23008-2, ITU-T and ISO/IEC JTC
1. (2013)

 3. Feldmann, C.: Versatile video coding hits major milestone. https://
bitmo vin. com/ compr ession- stand ards- vvc- 2020 (2022). Accessed
05 June (2022)

 4. Pakdaman, F., Adelimanesh, M.A., Gabbouj, M., Hashemi, M.R.:
Complexity analysis of next-generation VVC encoding and decod-
ing. IEEE Int. Conf. Image Process. (ICIP) 2020, 3134–3138
(2020). https:// doi. org/ 10. 1109/ ICIP4 0778. 2020. 91909 83

 5. Saha, A., Chavarrías, M., Pescador, F., Groba, Á.M., Chassaigne,
K., Cebrián, P.L.: Complexity analysis of a versatile video coding
decoder over embedded systems and general purpose processors.
Sensors 21, 3320 (2021). https:// doi. org/ 10. 3390/ s2110 3320

 6. Franklin, D.: NVIDIA Jetson AGX Xavier Delivers 32 TeraOps
for New Era of AI in Robotics, y. https:// devel oper. nvidia. com/
blog/ nvidia- jetson- agx- xavier- 32- terao ps- ai- robot ics/ (2022).
Accessed 07 June 2022

 7. Li, S., Wang, R., Yao, K.: CUDA acceleration for AVS2 loop
filtering. IEEE Second Int. Conf. Multimed. Big Data (BigMM)
2016, 246–250 (2016). https:// doi. org/ 10. 1109/ BigMM. 2016. 66

 8. Wieckowski, A., et al.: Towards a live software decoder imple-
mentation for the upcoming versatile video coding (VVC) codec.
IEEE Int. Conf. Image Process. (ICIP) 2020, 3124–3128 (2020).
https:// doi. org/ 10. 1109/ ICIP4 0778. 2020. 91911 99

 9. Gudumasu, S., Bandyopadhyay, S., He, Y.: Software-based versa-
tile video coding decoder parallelization. Proc. ACM Multimed.
Syst. Conf. (2020). https:// doi. org/ 10. 1145/ 33398 25. 33918 71

 10. Zhu, B., et al.: A real-time H.266, VVC software decoder. IEEE
Int. Conf. Multimed. Expo (ICME) 2021, 1–6 (2021). https:// doi.
org/ 10. 1109/ ICME5 1207. 2021. 94284 70

http://creativecommons.org/licenses/by/4.0/
https://newsletter.fraunhofer.de/-viewonline2/17386/465/11/14SHcBTt/V44RELLZBp/1
https://newsletter.fraunhofer.de/-viewonline2/17386/465/11/14SHcBTt/V44RELLZBp/1
https://bitmovin.com/compression-standards-vvc-2020
https://bitmovin.com/compression-standards-vvc-2020
https://doi.org/10.1109/ICIP40778.2020.9190983
https://doi.org/10.3390/s21103320
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://developer.nvidia.com/blog/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/
https://doi.org/10.1109/BigMM.2016.66
https://doi.org/10.1109/ICIP40778.2020.9191199
https://doi.org/10.1145/3339825.3391871
https://doi.org/10.1109/ICME51207.2021.9428470
https://doi.org/10.1109/ICME51207.2021.9428470

Journal of Real-Time Image Processing (2023) 20:43

1 3

Page 13 of 13 43

 11. Li, Y., et al.: An optimized H266/VVC software decoder on
mobile platform. Pict. Coding Symp. (PCS) (2021). https:// doi.
org/ 10. 1109/ PCS50 896. 2021. 94774 84

 12. Han, X., Wang, S., Ma, S., Gao, W.: Optimization of motion com-
pensation based On GPU and CPU For VVC decoding. IEEE Int.
Conf. Image Process. (ICIP) 2020, 1196–1200 (2020). https:// doi.
org/ 10. 1109/ ICIP4 0778. 2020. 91907 08

 13. Vázquez, M.F., Saha, A., Morillas, R.M., Lapastora M.C., Oso,
F.P. D.: Work-in-progress: porting new versatile video coding
transforms to a heterogeneous GPU-based technology. In: Inter-
national Conference on Compliers, Architectures and Synthesis
for Embedded Systems, pp. 1–2 (2019)

 14. OpenHEVC software repository. https:// github. com/ OpenH EVC/
openH EVC (2022). Accessed 14 May 2022

 15. Wang, Y., Guo, X., Fan, X., Lu, Y., Zhao, D., Gao, W.: Parallel
in-loop filtering in HEVC encoder on GPU. IEEE Trans. Con-
sum. Electron. 64(3), 276–284 (2018). https:// doi. org/ 10. 1109/
TCE. 2018. 28678 12

 16. de Souza, D.F., Ilic, A., Roma, N., Sousa, L.: HEVC in-loop fil-
ters GPU parallelization in embedded systems. Int. Conf. Embed.
Comput. Syst. (2015). https:// doi. org/ 10. 1109/ SAMOS. 2015.
73636 67

 17. de Souza, D.F., Ilic, A., Roma, N., Sousa, L.: GPU-assisted HEVC
intra decoder. J. Real-Time Image Proc. 12(2), 531–547 (2016).
https:// doi. org/ 10. 1007/ s11554- 015- 0519-1

 18. Ma, A., Guo, C.: Parallel acceleration of HEVC decoder based on
CPU+GPU heterogeneous platform. Seventh Int. Conf. Inf. Sci.
Technol. (ICIST) 2017, 323–330 (2017). https:// doi. org/ 10. 1109/
ICIST. 2017. 79267 78

 19. Zhang, W., Guo, C.: Design and implementation of parallel
algorithms for sample adaptive offset in HEVC based on GPU.
Sixth Int. Conf. Inf. Sci. Technol. (ICIST) 2016, 181–187 (2016).
https:// doi. org/ 10. 1109/ ICIST. 2016. 74834 07

 20. Ma, S., Huang, T., Wen, G.: The second generation IEEE, video
coding standard. In: IEEE China Summit and International Con-
ferece on Signal and Information Processing, p. 2015 (1857)

 21. Jiang, B., Xu, H., Luo, F., Wang, S., Ma, S., Gao, W.: GPU-based
intra decompression for 8K real-time AVS3 decoder. IEEE Conf.
Multimed. Inf. Process. Retr. (MIPR) (2020). https:// doi. org/ 10.
1109/ MIPR4 9039. 2020. 00061

 22. Han, X., et al.: GPU based Real-Time UHD Intra Decoding for
AVS3. IEEE Int. Conf. Multimed. Expo Worksh. (ICMEW) 2020,
1–6 (2020). https:// doi. org/ 10. 1109/ ICMEW 46912. 2020. 91060 09

 23. Jiaqi, Z., Chuanmin, J., Meng, L., Shanshe, W., Siwei, M., Wen, J.:
Gao. Recent development of AVS video coding standard : Avs3.
In: 2019 Picture Coding Symposium (PCS), IEEE, pp. 311–315
(2019)

 24. Karwowski, D.: Precise probability estimation of symbols in VVC
CABAC entropy encoder. IEEE Access 9, 65361–65368 (2021).
https:// doi. org/ 10. 1109/ ACCESS. 2021. 30758 75

 25. Karczewicz, M., et al.: VVC in-loop filters. IEEE Trans. Circuits
Syst. Video Technol. 31(10), 3907–3925 (2021). https:// doi. org/
10. 1109/ TCSVT. 2021. 30722 97

 26. Tsai, C.-Y., et al.: Adaptive loop filtering for video coding. IEEE
J. Sel. Top. Signal Process. 7(6), 934–945 (2013). https:// doi. org/
10. 1109/ JSTSP. 2013. 22719 74

 27. Erfurt, J., et al.: Extended multiple feature-based classifications
for adaptive loop filtering. APSIPA Trans. Signal Inf. Process. 8,
28 (2019). https:// doi. org/ 10. 1017/ ATSIP. 2019. 19

 28. Wang, X., Sun, H., Katto, J., Fan, Y.: A hardware architecture for
adaptive loop filter in VVC decoder. IEEE 14 Int. Conf. ASIC
(ASICON) 2021, 1–4 (2021). https:// doi. org/ 10. 1109/ ASICO
N52560. 2021. 96203 32

 29. Fraunhofer HHI VVdeC Software Repository. https:// github. com/
fraun hofer hhi/ vvdec (2022). Accessed 02 July 2022

 30. Ffmpeg.: A complete, cross-platform solution to record, convert
and stream audio and video. https:// ffmpeg. org/ (2022). Accessed
22 Aug 2022

 31. GPAC: Multimedia Open Source Project. https:// gpac. wp. imt. fr/
(2022). Accessed 22 Aug 2022

 32. Saha, A., Chavarrías, M., Aranda, V., Garrido, M.J., Pescador,
F.: Implementation of a real-time versatile video coding decoder
based on VVdeC over an embedded multi-core platform. IEEE
Trans. Consum. Electron. (2022). https:// doi. org/ 10. 1109/ TCE.
2022. 32025 12

 33. Fraunhofer HHI VVdeC software repository, Releases vvdec-
0.2.0.0. https:// github. com/ fraun hofer hhi/ vvdec/ relea ses/ tag/ v0.2.
0.0 (2022). Accessed 27 Apr 2022

 34. Saha, A.: VVdeC2_ARM_Neon. https:// github. com/ Saham ec/
VVdeC2_ ARM_ Neon (2022). Accessed 19 May 2022

 35. Sunitha, N.V., Raju, K., Chiplunkar, N.N.: Performance improve-
ment of CUDA applications by reducing CPU-GPU data trans-
fer overhead. Int. Conf. Invent. Commun. Comput. Technol.
(ICICCT) (2017). https:// doi. org/ 10. 1109/ ICICCT. 2017. 79751 90

 36. Ponnuraj, R.P.: CUDA memory model. https:// medium. com/ analy
tics- vidhya/ cuda- memory- model- 823f0 2cef0 bf (2022). Accessed
12 Aug 2022

 37. NVIDIA Jetson AGX Xavier Developer Kit, User Guide.
DA_09403_003, December 17, 2019. https:// devel oper. nvidia.
com/ jetson- agx- xavier- devel oper- kit- user- guide (2022). Accessed
06 July 2022

 38. Bossen, F., Boyce, J., Li, X., Seregin, V., Sühring, K.: JVET com-
mon test conditions and software reference configurations for SDR
Video, Document JVET-N1010. JVET of ITU-T, Geneva (2019)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/PCS50896.2021.9477484
https://doi.org/10.1109/PCS50896.2021.9477484
https://doi.org/10.1109/ICIP40778.2020.9190708
https://doi.org/10.1109/ICIP40778.2020.9190708
https://github.com/OpenHEVC/openHEVC
https://github.com/OpenHEVC/openHEVC
https://doi.org/10.1109/TCE.2018.2867812
https://doi.org/10.1109/TCE.2018.2867812
https://doi.org/10.1109/SAMOS.2015.7363667
https://doi.org/10.1109/SAMOS.2015.7363667
https://doi.org/10.1007/s11554-015-0519-1
https://doi.org/10.1109/ICIST.2017.7926778
https://doi.org/10.1109/ICIST.2017.7926778
https://doi.org/10.1109/ICIST.2016.7483407
https://doi.org/10.1109/MIPR49039.2020.00061
https://doi.org/10.1109/MIPR49039.2020.00061
https://doi.org/10.1109/ICMEW46912.2020.9106009
https://doi.org/10.1109/ACCESS.2021.3075875
https://doi.org/10.1109/TCSVT.2021.3072297
https://doi.org/10.1109/TCSVT.2021.3072297
https://doi.org/10.1109/JSTSP.2013.2271974
https://doi.org/10.1109/JSTSP.2013.2271974
https://doi.org/10.1017/ATSIP.2019.19
https://doi.org/10.1109/ASICON52560.2021.9620332
https://doi.org/10.1109/ASICON52560.2021.9620332
https://github.com/fraunhoferhhi/vvdec
https://github.com/fraunhoferhhi/vvdec
https://ffmpeg.org/
https://gpac.wp.imt.fr/
https://doi.org/10.1109/TCE.2022.3202512
https://doi.org/10.1109/TCE.2022.3202512
https://github.com/fraunhoferhhi/vvdec/releases/tag/v0.2.0.0
https://github.com/fraunhoferhhi/vvdec/releases/tag/v0.2.0.0
https://github.com/Sahamec/VVdeC2_ARM_Neon
https://github.com/Sahamec/VVdeC2_ARM_Neon
https://doi.org/10.1109/ICICCT.2017.7975190
https://medium.com/analytics-vidhya/cuda-memory-model-823f02cef0bf
https://medium.com/analytics-vidhya/cuda-memory-model-823f02cef0bf
https://developer.nvidia.com/jetson-agx-xavier-developer-kit-user-guide
https://developer.nvidia.com/jetson-agx-xavier-developer-kit-user-guide

	GPU-based parallelisation of a versatile video coding adaptive loop filter in resource-constrained heterogeneous embedded platform
	Abstract
	1 Introduction
	2 Related work
	3 VVC decompression
	3.1 Decoder structure
	3.2 Adaptive loop filtering
	3.2.1 Classification of luma components
	3.2.2 Luma and chroma component filtering
	3.2.3 Cross-component ALF filtering

	4 Versatile video decoder (VVdeC)
	4.1 Parallel implementation of VVdeC
	4.2 ALF in VVdeC

	5 Proposed GPU implementation of VVdeC ALF
	5.1 Program redesigning
	5.2 Data ordering
	5.3 Memory allocation
	5.4 Data transfer
	5.5 Kernel distribution
	5.6 Task schedule

	6 Experimental results
	6.1 Test bench description
	6.2 Performance analysis
	6.3 Energy consumption

	7 Conclusions
	References

