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Abstract
The detection of multi-scale pedestrians is one of the challenging tasks in pedestrian detection applications. Moreover, the 
task of small-scale pedestrian detection, i.e., accurate localization of pedestrians as low-scale target objects, can help solve 
the issue of occluded pedestrian detection as well. In this paper, we present a fully convolutional neural network with a new 
architecture and an innovative, fully detailed supervision for semantic segmentation of pedestrians. The proposed network 
has been named butterfly network (BF-Net) because of its architecture analogous to a butterfly. The proposed BF-Net 
preserves the ability of simplicity so that it can process static images with a real-time image processing rate. The sub-path 
blocks embedded in the architecture of the proposed BF-Net provides a higher accuracy for detecting multi-scale objective 
targets including the small ones. The other advantage of the proposed architecture is replacing common batch normaliza-
tion with conditional one. In conclusion, the experimental results of the proposed method demonstrate that the proposed 
network outperform the other state-of-the-art networks such as U-Net +  + , U-Net3 + , Mask-RCNN, and Deeplabv3 + for 
the semantic segmentation of the pedestrians.

Keywords Butterfly network (BF-Net) · Convolutional neural network · Pedestrian detection · Semantic segmentation · 
State-of-the-art U-Nets

1 Introduction

Detecting pedestrians promptly and explicitly in a natural 
environment is a vital goal in artificial intelligence systems. 
Pedestrian detection is also an interesting subject in com-
puter vision. Besides, it is a fundamental building block in 
different applications, such as intelligent transportation sys-
tems (ITS), traffic control monitoring, visual search, models 
of human behaviour, pedestrian tracking, pose estimation, 

pedestrian detection on social networks, face detection, 
semantic segmentation and, recently, monitoring the social 
distance of pedestrians in the Covid-19 Pandemic [1–4].

 Pedestrian detection is often achieved through three 
main methods: 1) handcrafted, feature-based methods [5], 
2) deep learning methods, particularly Convolution Neural 
Networks (CNNs) [6, 7], and 3) hybrid methods [8]. While 
in hybrid methods feature extraction is done by deep learn-
ing, classification and localization are implemented based 
on algorithms, such as Support Vector Machine (SVM) or 
AdaBoost. However, an alternative strategy is to deploy 
handcrafted methods to generate proposals and deep learn-
ing methods to classify and localize pedestrians. In the hand-
crafted, feature-based method, there are two major classes, 
including channel, feature-based methods [9] and deforma-
ble, part-based methods [10]. The main challenges in pedes-
trian detection can be divided into four categories, including 
occlusion, domain adaptation, scale variance, and real-time 
detection. Detecting small-scale and occluded pedestrians in 
a live-stream manner is the most essential issue in this field.

To distinguish pedestrians, there are three significant 
steps: 1) proposal generation, 2) proposal classification, 
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and 3) post-processing. Pedestrian detection methods are 
defined based on these three steps. Firstly, proposal gen-
eration aims to recognize a set of bounding boxes where 
there are possibilities to detect pedestrians. Two leading 
approaches to achieve this aim are Region Proposal Net-
work (RPN) and Sliding Window (SW) algorithms. Sec-
ondly, proposal classification aims to divide generated 
regions into two groups, including positive (pedestrian) 
and negative (background) classes based on feature extrac-
tion. It is noteworthy that in deep learning approaches, 
the first and the second steps unite and create a unified 
architecture. Additionally, in such approaches, localization 
and classification are gained simultaneously. In the third 
step, which is the post-processing step, the extra bound-
ing boxes are excluded. Then, one or more pedestrians are 
likely surrounded by bounding boxes; therefore, the extra 
bounding boxes are neglected. The most popular approach 
in the post-processing step is non-maximum suppression 
(NMS) [11]. It is necessary that the researchers be able to 
produce distinctive feature maps to have an undemanding 
job in the classification step.

However, since supplementary information has been 
added to the pedestrian detection process, the segmentation 
method has been applied lately. Before researchers made use 
of CNN in segmentation, Random Forest (RF) and Condi-
tional Random Field (CRF) were employed in the learning 
process. Fundamentally, image segmentation in pedestrian 
detection is classified to two categories, namely semantic 
and instant segmentation [12]. These segmentation methods 
are commonly known as multi-task learning, owing to the 
use of a separate network to segment semantically along 
with pedestrian detection. For example, in [3], an instance 
segmentation has been implemented by adopting the Faster-
R-CNN feature map. Given that semantic information of the 
background image is employed to detect pedestrians, these 
methods are more precise. Meanwhile, the use of semantic 
information must not lead to false positives (FP). Semantic 
segmentation methods include a considerable amount of 
computation inasmuch as they contain complex detection 
and segmentation networks.

Generally, the modern segmentation methods can be 
considered either proposal-based methods [13] or mask-
based methods [14]. Proposal-based methods comprise a 
two-phase detection, and each region produces a proposal 
which is later segmented as a mask. In this method, pedes-
trian localization and classification is more accurate. Moreo-
ver, it is noteworthy that in this method, each proposal may 
contain several pedestrians. Segmentation must therefore 
be conducted precisely, which is not easy to achieve. That 
is why the relation between an occluded or not occluded 
pedestrian might not be distinguished. However, in mask-
based methods, this problem does not exist, and they are 

commonly employed to detect small-scale pedestrians or 
detect pedestrians in a crowded background [12].

In semantic segmentation, classification is conducted by 
means of a super pixels approach. Different semantic seg-
mentation methods have been proposed, however, most of 
them have issues in the same topics as downsampling and 
spatial invariance [15]. To solve the former issue, the Atrous 
convolution algorithm has been proposed, while CRF has 
been used to extract semantic and more precise information, 
which leads on to resolving the latter issue [16]. The major 
problem in proposing a CNN-based semantic segmentation 
is the necessity for providing pixel-wise ground truth images 
to be deployed in the learning process, as the supervised 
learning algorithms require pixel-level labelled images. 
Among such methods, there are some algorithms that pro-
vide a weakly-supervised semantic segmentation [17]. These 
methods do not entirely depend on labelled information. 
Labelling can be carried out on image level, bounding box 
level, scribble level or point level. Another problem is that 
CNN-based semantic segmentation methods are real-time 
applications. Due to their complex architecture, they conse-
quently involve a great deal of computation restricting some 
practical applications such as, ADAS and robot sensing.

In this paper, a novel semantic segmentation approach 
based on convolutional neural networks is presented. The 
proposed structure overcomes the limitations of open data-
sets as well as the deficiencies of the conventional semantic 
segmentation networks with the class of U-Nets [18]. The 
proposed network provides more flexibility for deploying the 
down-sampled batches of images and convolutional kernels, 
by introducing an innovative combination of conditional 
batch normalization and sampling blocks followed by a new 
supervision strategy based on a list of new skip connections. 
Generally, the major contributions of this paper can be sum-
marized as follows:

• The proposed network can determine low scale pedestri-
ans as target objects.

• Its special supervision prevents the loss of information 
and therefore mis-training of the network.

• The semantically segmented pedestrians can be given to 
a part detection network for possible occlusion detection.

• The implementation speed of the proposed architecture is 
high enough for possible real-time processing of images 
data, especially for surveillance and live supervision pur-
poses.

This paper is organized as follows: in Sect. 2, a literature 
review of the previously proposed strategies for semantic 
segmentation of target objects, including pedestrians, is pre-
sented. Next, Sect. 3 contains a detailed description of the 
proposed method for semantic segmentation of pedestrians 
from popular datasets. The implementation and comparative 
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results are presented in Sect. 4. Finally, this paper is con-
cluded under Sect. 5.

2  Literature review

Detection of meaningful objectives with the aid of neural 
networks has been developed notable advances for differ-
ent objectives like pedestrians. In this section, an overview 
of the methods and algorithms chronologically deployed 
for pedestrian detection is represented.

2.1  Generic pedestrian detection

Deep neural networks, although powerful in detection, 
can be computationally expensive. Deep learning-based 
pedestrian detection algorithms have originated from 
the region proposal CNN (R-CNN) detectors. Pedestrian 
detection can be categorized into two-stage detectors and 
single-stage detectors. In the first phase, two-stage detec-
tors estimate proposals. Then, each of the proposals is sent 
to classification and bounding box regression as the next 
phase of detectors.

Two-stage-based pedestrian detection algorithms have 
originated from the R-CNN detectors. In Fast-RCNN [6], 
to increase the network speed, the whole image enters the 
convolutional neural network at once. On the other hand, a 
pooling layer is also used. However, the network speed is 
still low due to the deployment of the selective search algo-
rithm. Faster-RCNN [7] was designed to reduce the number 
of hyperparameters. Tesema et al. exploited region proposal 
networks (RPNs) as fundamental detectors of pedestrians 
[8]. Moreover, they deployed a naive classifier to refine the 
pedestrian detection outcome. Zhang et al. presented an 
anchor region proposal network to detect human different 
parts of the body as well as heads and endeavor to integrate 
them to attain higher accuracy. They also utilized the post-
processing NMS to improve the detection results [19].

A significant problem with two-stage generators is 
their slow pace, which inspired researchers to speculate 
on single-stage detectors. These detectors worked based 
on the object bounding boxes and object classes, but they 
do not need intermediate object proposals. YOLO [20] and 
SSD [21], as examples of single-stage detectors, have high 
operation speed, though their accuracy is their weak point. 
Lately, RetinaNet [22] employed a novel object detection 
loss function named Focal Loss to deal with the data 
imbalance between the background (no object) and the 
other classes. Despite being a single-stage detector, Reti-
naNet is more accurate than Faster R-CNN and is analo-
gous in terms of speed to other single-stage detectors. Wei-
Yen Hsu et al. proposed the ratio-and-scale-aware YOLO 

method, which is based on YOLOv3; however, it provides 
a lot of improvement. They proposed a revolutionary fea-
ture map that transformed each positive instance into a 
feature vector to encrypt both density and diversity infor-
mation simultaneously [20]. Besides, the occlusion-sensi-
tive hard example mining method and occlusion-sensitive 
loss were designed by Jin Xie et al. [23] Their methods 
explore hard instances depending on the occlusion level 
and allocate higher weights to the detection errors taking 
place at considerably occluded pedestrians. Additionally, 
Yi Tang et al. designed the first architecture that enhanced 
pedestrian detection performance with a state-of-the-art 
framework that not only increased pedestrian informa-
tion automatically but also investigated the loss function 
policy [24]. Recently, Glenn Jocher et al. proposed the 
most efficient version of YOLO algorithm with the name 
of YOLOv5 [25]. This version of YOLO can detect tar-
get objects faster and with higher accuracy compared to 
the previously proposed versions. The current algorithm 
deploys genetic algorithm for finding the best anchors and 
uses mosaic augmentation for improving the accuracy of 
training procedure.

2.2  Pedestrian detection based on semantic 
segmentation

Some of the semantic segmentation methods are U-Net [18], 
EncNet [26], Gated shaped CNN [27], Deeplab [16], etc. In 
semantic segmentation methods, due to multi-scale detection 
and receptive field increase, some methods have been pro-
posed, such as Deeplab V2 and V3 [28]. In another method 
such as PSPNet [29] general content information is utilized 
to improve the segmentation process. Also, some methods 
such as ParseNet [30] have employed large-scale kernels 
for convulsion and designed a network including boundary 
refinement.

In research by Alavianmehr et al. [31], a new combina-
tional region and semantic segmentation CNN approach 
for pedestrian accurate detection and localization from 
static images is designed. The primary process of CNN-
based methods includes two steps, proposal extraction, and 
CNN classification. The proposed framework is a mixture 
of modern CNNs such as, YOLO and semantic segmenta-
tion networks like Fully Convolutional Networks (FCNs) 
[15], particularly those with a structure similar to those of 
U-Nets. Huazhen Chu et al. introduced an effective seg-
mentation method named Part Mask R-CNN. According 
to this method, they applied Part Mask R-CNN to every 
body part of the pedestrian to model different body parts 
and produce parts annotations utilizing database annotations 
and their processing [32]. Qiming Li et al. designed a new 
efficient anchor-free network based on Conditional Random 
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Fields (CRFs) for multi-scale pedestrian detection [33]. To 
set about the incomplete occlusion and scale problems in 
pedestrian detection, Peiyu Yang et al. developed an effec-
tive Fully Convolutional Network (FCN) [34].

Successful training of the proposed FCNs requires thou-
sands of annotated training images, and just augmentation 
cannot provide reliable training for FCNs, especially in 
the case of special imaging modalities. According to these 
issues, a U-shape architecture named U-Net was proposed. 
U-Net supplies an asymmetric structure for semantic seg-
mentation. This structure has its deficiencies. For instance, 
it is not able to detect multi-scale target objects very accu-
rately, especially in the case of low image contrast. The 
other deficiency of U-Net is that the greater contracting 
depth it has, the higher complexities it will return. To over-
come these deficiencies and add flexibility and scalability 
to the U-Net structure, some inspirational networks such 
as U-Net +  +  [35], and U-Net3 + [36], have been proposed. 
These two networks keep the original framework of U-Net 
and add some novelties to the U-Net structure. The pro-
posed novelties compensate for the existing shortcoming in 
conventional U-Net architecture. For example, adding full- 
and multi-scale supervisions, which is essential for multi-
scale semantic segmentation, embedding skip connections 
that provide integration for connected components of the 
detected objects, and so on.

In addition, all the advantages and privileges provided 
by such state-of-the-art networks like U-Net3 + should be 
compatible with the application of pedestrian detection. The 
proposed method in this paper represents a new structure 
that provides multi-scale pedestrian detection based on the 
combination of multi- and full-scale supervision. Moreover, 
the proposed structure can detect low-scale pedestrians that 
could provide a horizon in front of occlusion detection.

3  Proposed method

In this section, the proposed framework for detecting pedes-
trians from popular datasets is explained. The proposed net-
work has a novel structure so that it can be adapted to both 
online and real-time applications. The proposed method is 
folded into two parts to render a better explanation. Next, 
we examine the proposed pre-processing stage for feature 
extraction for fine-grained classification. Distinct parts of the 
proposed semantic segmentation architecture are explained 
in detail subsequently.

3.1  Pre‑processing: image augmentation

As we proposed a new structure for semantic segmentation 
of pedestrians, we should provide sufficient training and 
validation data for achieving an acceptable trained network 

Fig. 1  Applying sample augmentation to a sample image: a Original image, b Mirroring = Vertical (image x-axis), c Rotation = 180◦, and d 
Rotation = 45
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with a high volume of trainable parameters, even in the case 
of pre-trained backbones. For this case, one of the strategies 
for proving enough training images is augmentation. Image 
augmentation overcomes the under-fitting issue due to the 
low volume of input data. By deploying this procedure, all 
the trainable parameters would converge to their ultimate 
training stage. For this purpose, we deployed a list of com-
mon augmentation filters such as rotation, mirroring, and 
reflection. Figure 1 illustrates the deployed augmentation 
for a sample traffic image.

3.2  The proposed network

In this section, we introduced the proposed CNN network 
with its novel and innovative structure, which contains the 
feature extraction and selection procedures alongside seman-
tic segmentation. Semantic segmentation is the process of 
classifying each pixel associated to a particular label. It 
does not differentiate across separate instances of the same 
object. On the other hand, Instance segmentation differs 
from semantic segmentation since it labels every instance 
of a particular object in the image dissimilarly.

Figure 2 depicts the general block diagram of pedes-
trian detection system based on the semantic segmentation 
approach. The application of machine learning (ML) and 
deep learning technique in the segmentation of images has 
grown throughout the years.

In the context of this paper, the semantic segmentation 
approach is deployed for the detection of pedestrians. The 
pedestrian detection aims at the automatic driving aided 
system (ADAS), and it has a prominent role in the traffic 
surveillance strategies. The common structure for seman-
tic segmentation purposes is fully convolutional networks 
(FCNs). Recently, there are also new proposed networks 
with U-shapes deployed for semantic segmentation pur-
poses and therefore they are named as U-Nets. These net-
works are mainly deployed for semantic segmentation of 
biomedical objects because the focus of their application is 
more on the extraction of the detailed feature maps of the 
target objects. Such U-Net architectures are designed for 
extracting multi-scale target objects. Moreover, the archi-
tecture of networks like U-Net +  + and U-Net3 + has some 
deficiencies specially for detecting real world objects like 
pedestrians, so we have proposed a new architecture that is 
able to detect pedestrians from the relevant dataset images 
with more accuracy and less complexity.

Our proposed network with a new architecture can 
extract the fine features associated with pedestrian as tar-
get objects in a semantic segmentation manner. The node 
structures of different U-Nets and the one related to our 
proposed network is illustrated in Fig. 3.

As shown in Fig.  3, the proposed BF-Net does not 
have the skip connection complexities like UNet +  + and 
UNet3 + , because the obvious that the most important 
privilege of the proposed network over the competitive 
ones is that it has more flexibility to segment multi-scale 

Fig. 2  General block diagram 
of a sample automatic object 
detection system

Pre-processing 

Sem
antic Segm

entation B
lock 

Extracted Mask

Combination of original 
& Mask images

Encoder  
(Forw

ard/Interface) 
D

ecoder 
(B

ackw
ard/Learning)

C
onvolution (C

odec)
C

onvolution          SoftM
ax         C

ontracting               Expanding 



 Journal of Real-Time Image Processing (2023) 20:9

1 3

9 Page 6 of 17

target objects due to its specific supervision. The full 
details of the proposed supervision strategy and its advan-
tages are described in the next subsections.

3.3  Specific node structure of the proposed BF‑Net

As the node structure of the proposed network is like 
the appearance of a butterfly, therefore we called it as 

Butterfly-Network, and its abbreviation name is BF-Net. 
The proposed BF-Net comprises four types of nodes. Two 
of these nodes, named as � i

Co
 and � i

Ex
 are like the Contract-

ing (Encoding) and Expanding (Decoding) nodes in Con-
ventional U-Nets. The new nodes are � i

Se
 and � i

Sc
,which are 

sub-expanding and sub-contracting nodes.
The new nodes are � i

Se
 and � i

Sc
,which are sub-expanding 

and sub-contracting nodes.
� i
Se

 s that i demonstrates the ith downsampling or con-
tracting layer along the coding direction, N stands for the 
number of the main contracting/Eanding nodes, and l is 
equal to the number of sub-contracting/sub-expanding 
nodes, defined with the following formula:

(1)

� i
Se
=

⎧
⎪⎪⎨⎪⎪⎩

K

⎛⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣

� i
Se
= �N

Co

C
�
D
�
� j

Co

��N−l+i−1

j=1
,C

�
�N−l+i
Co

�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
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, C
�
U
�
� j

Se

��l

j=i+1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
scales∶(N−l+i+1)st∼(l)th

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎠
,

i = 1

i = 1,… , l − 1

Fig. 3  a Comparing illustrations of the sample structures for the cutting-edge U-Nets [35], and b illustration of the node structure for the pro-
posed network named as Butterfly Network (BF-Net) because of its resemblance to a butterfly
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where the function C(.) stands for the convolution operation, 
the function K(.) represents a convolution layer followed by 
a conditional batch normalization (CBN) and a ReLU activa-
tion. Moreover, the function D(.) stands for a max-pooling 
layer with a pooling size  2(N−l+j−1) and U(.) represents a 
bilinear up-sampling layer with a rate of  2(l−j−1). Moreover, 
operand [.] represents the channel dimension splicing and 
fusion. In addition to the definition of the sub-expanding 
nodes as � i

Se
 , the definition for � i

Sc
 nodes are as follows:

where H(.) applies the similar contracting procedure like the 
ones on the main contracting path. Finally, the feature map 
aggregation for � i

Ex
 nodes is done based on the following 

equation:

(2)� i
Sc
=

{
�1
Se
, i = 1

H(� i−1
Sc

) , i = 2,… , l

(3)

� i
Ex

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

� l
Sc
, i = N

K
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C
�
D
�
� j
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�
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�
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

scales∶1st∼(i+l−N)th

, C
�
U
�
� j

Ex

��i−l

j=i

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
scales∶(i+l−N+1)th∼Nth

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠

, i = 1,…N − 1

Due to the definitions represented for the different 
nodes existing in the proposed BF-Net, it is possible to 
illustrate the schematic structure of the proposed BF-Net 
as shown in Fig. 4 for an initial convolutional kernel size 
of 16, as mentioned in the node structure.

3.4  Proposed Multi‑scale supervision

Deep supervision was introduced in U-Net +  + , and full-
scale deep supervision was proposed in U-Net3 + that adds 
some improvements to the final supervision results. How-
ever, the full-scale deep supervision faces a serious issue.

As the supervision for the last downsampling layer in the 
structure of U-Net3 + should be done with the down-sam-
pled ground truth image, so the small-size or low-scale target 

Fig. 4  Structure of the proposed BF-Net with N = 4 direct down/up 
sampling layer and 2 sub-up/sub-down sampling ones for the seman-
tic segmentation application. The striped ellipsoids ( ) ( ) and arrows 

( )( ) resemble the node structure of the proposed BF-Net shown in 
Fig. 3b. All the skip connections
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objects may completely disappear due to downsampling. In 
that case, the supervision may lead to undesirable training 
results. This issue would be worse in the situation that there 
are multi-scale target objects in a very close contact with 
each other; so, the full-scale supervision may not take place 
efficiently. In this paper, a new approach toward conducting 
modified full-scale deep supervision is proposed.

For this purpose, we apply a bilinear upsampling followed 
by a 2D-convolution with an appropriate kernel to the �max

Sc
 , 

so that it can be concatenated with matched � i
Ex

 in the main 
expanding path. Subsequently, the concatenation of the 
blocks after resizing is applied to the output of all � i

Ex
 s plus 

�N
Sc

 s and � l
Se

 s. Simultaneously, the outputs from each main 
expanding path are passed through appropriate upsampling 
and convolutional kernels, so that they can be concatenated 
with each other as well as the up-sampled sub-expanding 
�max
Sc

 . In Eq. (4), the detailed formulas for the calculation of 
proposed supervisions (Sup.) for two different translations 
of BF-Net are shown:

The important note about the sample supervisions men-
tioned in Eq. (4), is that the computational complexity of the 
proposed supervision is perpendicular with the number of 
main paths in BF-Nets. On the other words, the higher the 
number of main paths is, the more complicated the compu-
tation of the proposed supervision would be. According to 
Eq. (4), whenever the number of contracting layers increases 
from 3 to 4 phases, and so does the number of expanding 
layers, the computational complexity will increase as well. 
The number of main expanding or main contracting might 
change depending on data set and the use of real-time appli-
cation. Consequently, the proposed BF-Net is simple, flex-
ible, expandable, and powerful.

3.5  Hybrid loss function

After concatenating all the mentioned outputs, a code block 
containing a dropout followed by 1 × 1 convolution with the 
number of kernels equal to the number of classes observed in 
the given dataset, followed by an adaptive max-pooling, and 
a proper activation function such as sigmoid is applied to the 

Sup. =

{
K
([
C3

(
U3

([
C2

(
U2

([
C1(U1(�

4

Ex
)),�3

Ex

]))
,�2

Ex
,�1

Sc

]))
,�1

Ex

])
, for BF − Net(4−2)

K
([
C4

(
U4

([
C3

(
U3

([
C2

(
U2

([
C1(U1(�

5

Ex
)),�4

Ex
,�1

Sc

]))
,�3

Ex

]))
,�2

Ex

]))
,�1

Ex

])
, for BF − Net(5−1)

concatenated output. In this case, a hybrid loss calculation 
method is deployed. The mathematical format of the hybrid 
loss is defined as:

where gn,c ∈ G and pn,c ∈ P stand for the ground truth labels 
and predicted values for class c and nth pixel belonging to 
each batch of images, respectively. Accordingly, N shows 
the number of pixels inside each batch. This equation is just 
defined for the images of a batch, so the total loss function 
for the proposed BF-Net would be defined as:

where e stands for the number of main expanding path 
blocks plus the first sub-contracting block (for instance, 
according to Fig. 5, e is equal to 5). �j s index weights that 

give each loss function calculated in Eq. (5).
For the accomplishment of the full supervision, it is nec-

essary that the concatenated output of the resized outputs of 
the mentioned nodes be passed through a block, including 
a dropout, 1 × 1 Convolution, an adaptive maxpooling, and 
finally, a sigmoid function for calculating the loss function.

3.6  Deployment of conditional batch normalization 
(CBN)

Another innovative contribution of the proposed BF-Net 
can be mentioned as the deployment of conditional batch 
normalization instead of conventional BNs. The basic idea 
for embedding batch normalization layers after convolu-
tional layers is to provide faster convergence and keep 
heterogeneity of the processed data in each convolutional 
layer to prevent the optimization failures.

The conventional BN with equation BN
(
Gi,c,w,h|�c, �c

)
 

has two �c and �c that should be predicted from an embed-
ding during the training procedure [37]. In other words, 
a BN reduces the internal covariant shift by normalizing 
feature maps belonging to each input mini-batch. How-
ever, the initialization of a network with less sensitivity 
to the initialization of the two parameters, i.e., �c and �c is 
very difficult. Accordingly, researchers suggested a condi-
tional batch normalization (CBN) to estimate two change 
measuring parameters ��c and ��c on the fixed primary 
numerical values, so that the target neural network will be 
initialized to produce outputs with a mean equal to zero 

(5)L(G,P) = −
1

N

C�
c=1

N�
n=1

⎛
⎜⎜⎝
gn,clogpn,c +

2gn,cpn,c

g2
n,c

+ p
2

n,c

⎞
⎟⎟⎠

(6)Ltotal =
∑e

j=1
�j × L(G,Pj)

Fig. 5  General overview of a conditional batch normalization (CBN) 
block for embedding in BF-Net
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and a very small variance [38]. In that case the definition 
for a conditional batch normalization would be as follows:

where 
{
Gi,.,.,.

}N

i=0
 stands for N samples in the form of a mini 

batch, and Gi,p,x,y is related to the pth vector of feature maps 
of ith sample at location ( w, h ). � stands for a fixed value 
as stabilizing and regulating coefficient. �̂c and �̂c are also 
defined as follows:

where Δ(.) s stand for latent multi perceptron layers. Accord-
ingly, the CBN is able to tune the independent feature maps 
based on different inputs, therefore assists in boosting the 
generalization ability of the network on inharmonious data 
[39].

The overall view of CBN block inside the structure of 
a sample BF-Net is illustrated in Fig. 5.

CBNs are more likely to be embedded inside a residual 
building block of each contracting/expanding path of a 
BF-Net. After describing the full details of the proposed 
network, it is time for evaluating the performance of the 
proposed method in comparison with the other cutting-
edge U-Nets.

3.7  BF‑net training

To implement the proposed BF-Net, we should train it based 
on all the points mentioned in the previous subsections. For 
instance, we should follow the node structures for down and 

(7)CBN
(
Gi,p,x,y|�̂c, �̂c

)
= �̂c

Gi,p,x,y − ℂB[G.,c,.,.]√
�2
B

[
G.,c,.,.

]
+ �

+ �̂c

(8)�̂c = �c + Δ�c

(9)�̂c = �c + Δ�c

up sampling paths as introduced on Sect. 3.3. Moreover, we 
should consider the proposed multi-scale supervision along-
side the hybrid loss function for the training procedure. The 
specific structure of the CBNs also plays an important role 
for the appropriate training and validation of the network. 
Selected optimization algorithm for training BF-Nets is 
Adam, since it is a combination of the best properties of the 
AdaGrad and RMSProp algorithms. We also adjusted the 
values for the number of epochs, the initial learning rate, 
and the patience term for the early stopping of the training 
procedure as 100,  10–5, and 20, respectively.

4  Implementation and comparative results

In this section, the performance evaluation of the proposed 
network is presented. In addition, the efficiency of the 
proposed network for the purpose of pedestrian detection 
is compared with the other state-of-the-art U-Networks. 
Accordingly, this section comprises of two subsections. 
Under the first sub-section, the validation datasets for the 
purpose of semantic segmentation of pedestrian images are 
introduced. The next sub-section is assigned to the qualita-
tive and quantitative comparative results.

4.1  Pedestrian datasets

In this paper, two dataset containing images of the pedes-
trians and their pixel-wise annotations as ground truths are 
used for assessing the performance of pedestrian detection 
by the proposed network and comparing it with the perfor-
mance of the other semantic segmentation networks. One of 
the deployed datasets is cityscapes [40, 41].

This dataset comprises of a large and diverse set of 
stereo video sequences recorded in street scenes from 50 

Table 1  Datasets for evaluating and comparing the performance of the pedestrian detection implemented by the proposed method and the other 
state-of-the-art networks
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different cities, with high quality pixel-level annotations of 
5000 frames in addition to a larger set of weakly annotated 
frames. The other dataset including pixel-wised annotation 
of pedestrians is PennFudanPad [42]. The brief introduction 
to all the deployed datasets for reporting the implementation 
results of this paper are shown in Table 1.

4.2  Qualitative and quantitative comparison results

Under this section, the qualitative and quantitative com-
parisons between the pedestrian detection outcomes of the 
proposed BF-Net and the state-of-the-art networks such as 
ResNet-50 & -101-based U-Nets are presented.

To achieve a good presentation of the proposed network 
in comparison with the other state-of-the-art networks such 
as U-Net3 + , we should apply both BF-Net and U-Net3 + to 
a similar image belonging to the introduced datasets.

Figure 6 exhibits both qualitative and quantitative results 
for the semantic segmentation of pedestrians conducted by 
ResUnet-50 based U-Net3 + (left) and the proposed ResU-
net-50 based BF-Net (right) in a sample cityscapes image.

It is worth mentioning that the true positive (TP), false 
negative (FN), false positive (FP) and true negative (TN) 
parameters are calculated based on a threshold 0.5 applied 
to the output results of the SoftMax layer.

As it can be inferred from the results shown in Fig. 6, the 
proposed BF-Net can reduce the number of false positives 

(FPs) to increase the precision of the pedestrian detection. 
This advantage alleviates the precision and subsequently the 
dice score of pedestrian detection.

Some other qualitative results for semantic segmentation 
of pedestrians based on the proposed BF-Net and the other 
competitive U-Nets are depicted in Fig. 7. The results shown 
in this figure demonstrate the great ability of the proposed 
network to detect very low scale pedestrians comparing to 
the other state-of-the-art U-Nets. This ability is due to the 
proposed supervision strategy that describes in the previous 
section. It is noteworthy that substituting the conventional 
BN blocks with the CBN ones also help improving the seg-
mentation results specially for the distracting objectives like 
riders and manikins.

The other quantitative comparison results are illustrated 
in Fig. 8. In the shown diagram of these two figures, the 
implementation results are reported from two aspects. One 
aspect is the illustration of the precision-recall curves, that 
are reported for the implementation of the proposed BF-
Net compared with the state-of-the-art U-Nets based on the 
backbone of ResNet-50 and ResNet-101.

As the curves of the diagrams in Fig. 8 show, the BF-Net 
achieves a higher performance than conventional U-Net, 
U-Net +  + , and U-Net3 + for both introduced backbones.

After comparing the performance of the proposed BF-Net 
with the state-of-the-art UNet architectures, it is important 
to compare the performance of the proposed network with 

Fig. 6  Qualitative comparison of ResNet-50-based UNet3 + (left), and proposed BF-Net (right) on a sample image belonging to the cityscapes 
dataset. Cyan areas: true positive (TP); Yellow areas: false negative (FN); Purple areas: false positive (FP)
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two other state-of-the-art networks, i.e., Mask R-CNN and 
Depplabv3 + with the same backbone ResNet50.

It is worth mentioning that we selected ResNets because 
in most of the other methods and references, these back-
bones lead to the best results with an acceptable level of 
complexity. Therefore, we built the foundation of all the 
implementation and simulations associated with our pro-
posed method based on ResNet50 and ResNet101 back-
bones. Accordingly, a fair comparison between the efficiency 
of our proposed method and the other state-of-the-art ones 
can take place [43].

The precision-recall curves of implementing pedes-
trian detection by the means of BF-Net, Mask-RCNN and 

Deeplabv3 + and applied to the images of both cityscapes 
and PennFudanPed datasets are illustrated in Fig. 9.

The other aspect of quantitative comparison is inference 
time plots shown in Fig. 10. In this plot, the inference time, 
the complexity, and  F1-scores (Dice score) are illustrated 
simultaneously for all the comparative networks. It can be 
observed from this plot that both BF-Nets have higher per-
formance with a similar rate of complexity (the size of the 
depicted circles), and an implementation speed a bit slower 
than the other networks with similar backbones. Table 2 
compares U-Net, U-Net +  + , U-Net3 + and the proposed 
BF-Net with two different ResNet-50 and ResNet-101 
backbones in terms of segmentation results measured by 
Dice coefficient and IoU (mean ± std) for the images in 

Fig. 7  Sample Qualitative comparison between the results of detect-
ing very small-scale pedestrians based on different semantic seg-
mentation networks: a original image from cityscapes dataset with 
original size, and b its associated binary ground truth, and pedestri-
ans’ detection results for: c U-Net, d U-Net +  + , e U-Net3 + , and f 

BF-Net. The images including segmentation results are cropped and 
resized for showing the segmentation results more clearly. Cyan 
areas: true positive (TP); Yellow areas: false negative (FN); Purple 
areas: false positive (FP)
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Fig. 8  Comparison of BF-Net and the three other U-Nets with imple-
menting two different ResNet-based networks: a Precision-Recall 
Curves with highlighted AP values for images of cityscapes dataset, 

and b Precision-Recall Curves with highlighted AP values for images 
PennFudanPed dataset

Fig. 9  Comparison between BF-Net, Mask-RCNN and Deeplabv3 + based on ResNet-50: a Precision-Recall Curves with highlighted AP values 
for the images of cityscapes dataset, and b Precision-Recall Curves with highlighted AP values for the images of PennFudanPed dataset
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cityscapes dataset. For each evaluation, we investigate all 
possible confidence thresholds to report the best Jaccard 
Index (J.I.) score. Larger Jaccard Index represents better 

performance. J.I. mainly assess the degree of overlap 
between the predicted set P and the ground truth label set 
G, as showed in Eq. (10).

Fig. 10  inference time, complexity (based on the size of parameters), 
and F1-Score of the proposed BF-Net and the comparative U-Nets 
for: a cityscapes dataset, and b PennFudanPed dataset. The inference 

time is calculated by the time taken to process test images belonging 
to cityscapes dataset on a single NVIDIA GeForce RTX3080 GPU 
with 8 GB of dedicated memory

Table 2  Comparison of pedestrian detection performance for test images in Cityscapes dataset between the competitive 3state-of-the-art U-Nets 
and:

Bold values indicate the results of the proposed method which are superior to other methods

(a) BF-Net with ResNet101 backbone Architecture names/Criteria name

U-Net 
(ResNet101) 
(5)
[17]

U-Net +  +  
(ResNet101) 
(5)
[34]

U-Net3 +  
(ResNet101) 
(5)
[35]

BF-Net 
(ResNet101) 
(4–1)
[Proposed]

Dice Coefficient  (F1-Score) (↑) 75.21 ± 1.31 76.84 ± 0.73 77.39 ± 0.43 78.95 ± 0.15
IoU (Jaccard) (↑) 60.27 ± 1.90 62.39 ± 0.57 63.12 ± 0.27 65.22 ± 0.08
No. trainable Param.s (Million) (↓) 16.8 21.4 17.9 18.1

(b) BF-Net with ResNet50 backbone Criteria name/Architecture names

U-Net 
(ResNet50) 
(5)
[17]

U-Net +  +  
(ResNet50) 
(5)
[34]

U-Net3 +  
(ResNet50) 
(5)
[35]

BF-Net 
(ResNet50) 
(4–1)
[Proposed]

Dice coefficient  (F1-Score) (↑) 64.92 ± 0.97 66.14 ± 1.02 68.07 ± 0.75 80.24 ± 0.34
IoU (Jaccard) (↑) 48.06 ± 0.54 49.41 ± 0.67 55.60 ± 0.45 67.00 ± 0.84
No. trainable Param.s (Million) (↓) 12.6 14.3 13.8 14.0
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And the  F1-measure, is the same as the Dice coefficient:

Table 3 contains the comparative results between the 
performance of the proposed BF-Net and the other com-
petitive U-Nets in the terms of Dice coefficient and IoU 
(mean ± std) for the images in PennFudanPed dataset.

Finally, Table  4 includes the comparative results 
of pedestrian semantic segmentation implemented by 
ResNet50 backbone BF-Net, Mask-RCNN, and Deep-
labv3 + networks for test images belonging to both city-
scapes and PennFudanPed datasets.

5  Discussion and conclusion

The semantic segmentation of pedestrians is a crucial 
preliminary step in various domains related to intelligent 
traffic systems, especially safe and secure automatic driv-
ing systems, and traffic surveillance ones. The proposed 
BF-Net provides a reliable and efficient architecture for 
pedestrian semantic segmentation with an acceptable level 
of computational complexity so that it could be deployed 
in real-time processing. In this section, the strengths and 
limitations of the proposed BF-Net are discussed under 
a separate subsection. Moreover, the subsection contains 
the impacts of this architecture on the community of the 
semantic segmentation of the pedestrians. The main con-
tribution of the proposed architecture compared with the 
other state-of-the-art networks are concluded under con-
clusion and future work subsection.

5.1  Discussion

The proposed BF-Net architecture provides semantic seg-
mentation of pedestrians with higher performance and 
lower complexity than the other state-of-the-art architec-
tures, especially the ones with architectures like traditional 
U-Net.

As the results shown in Tables 2–4, the efficiency of the 
proposed BF-Net based on Dice coefficient  (F1-score) and 
Jaccard index (IoU) increases, while the computational 
complexity based on the number of the trainable parameters 
decreases. In other words, the efficiency and the computa-
tional complexity are inversely proportional, i.e., the higher 
the number of trainable parameters is, the less efficient the 
BF-Net performs. This relationship can be formulated as 
follows:

(10)J.I. =
P ∩ G

P ∪ G

(11)Dice_Coeff icient =
2 × PG

P + G
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Besides the mentioned advantages, the proposed BF-net 
has some limitations. First, based on the precision-recall 
curves, the performance of the proposed BF-Net does out-
perform the other U-Nets for a specific range of thresholds. 
The reason could be related to the specific architecture of 
the nodes and the ways that the weights and biases trained. 
Second, the BF-Net is not faster than conventional U-Net 
and U-Net +  + . In general, for a specified applications like 
real-time and online surveillance, the pedestrian segmen-
tation scheme should be modified in such a way that the 
deployed strategy can create a trade-off between complexity 
and processing speed.

Most of the deep learning architectures for semantic 
segmentation mentioned in [43], suffer from deficien-
cies such as incompatibility of their convolutional blocks 
for pre-trained backbones. This problem occurs mostly 
because the semantic segmentation networks have no 
fully connected layers. The encoder-decoder models such 
as U-Nets have the same issue. The proposed BF-Net tries 
to solve this issue by deploying Multi-scale Supervision 
like U-Net3 + for increasing the accuracy of the segmen-
tation for low scale objects. On the other side, by concat-
enating the supervisions and producing a unique one, like 
U-Net +  + , the BF-Net succeeds to overcome the complex-
ity of U-Net3 + . The proposed BF-net is also able to be 
compatible with different pre-trained backbones that may 
have a lot of convolutional and residual blocks, by using 
flexible direct and sub-paths. In addition, the proposed BF-
Net can create a compromise between the convolutional 
blocks from the direct and sub paths by deploying appro-
priate skip connections.

5.2  Conclusion

In this paper, we proposed a new deep neural network archi-
tecture named as BF-Net for the purpose of pedestrian seman-
tic segmentation. The novelty of the proposed method is that 

(12)No.of Trainable Param.s ∝
1

Efficiency

it could be deployed for segmenting the pedestrians especially 
the ones that have several scales and different appearances in a 
series of sequential frames. The proposed network extracts all 
the available feature maps for the pedestrians as target objects, 
so that the occlusion issue can be observed and detected in 
the studied datasets. The implementation results for detecting 
pedestrians from the images of cityscapes and PennFudanPed 
databases demonstrate that the proposed method has a high 
ability to detect and even predict the existence of pedestrian 
in both stationary images and live video streams. As it is pos-
sible to embed the proposed skip connection in the structure 
of BF-Net into the feature pyramid network (FPN) existing 
in Mask R-CNN, then the next step as the future work would 
be replacing the plain skip connections of FPN with the rede-
signed skip connections of BF-Net.

Availability of data and materials The data that support the findings 
of this study are openly available in Cityscapes dataset at [https:// 
www. citys capes- datas et. com/], [40, 41] and PennFudanPad dataset at 
[https:// www. kaggle. com/ datas ets/ psvis hnu/ pennf udan database-for-
pedestrian-detection-zip], [42]. For more details please kindly refer to 
implementation and comparative results, part 4.1.
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