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Abstract
The novel coronavirus pneumonia (COVID-19) is the world’s most serious public health crisis, posing a serious threat to 
public health. In clinical practice, automatic segmentation of the lesion from computed tomography (CT) images using deep 
learning methods provides an promising tool for identifying and diagnosing COVID-19. To improve the accuracy of image 
segmentation, an attention mechanism is adopted to highlight important features. However, existing attention methods are of 
weak performance or negative impact to the accuracy of convolutional neural networks (CNNs) due to various reasons (e.g. 
low contrast of the boundary between the lesion and the surrounding, the image noise). To address this issue, we propose a 
novel focal attention module (FAM) for lesion segmentation of CT images. FAM contains a channel attention module and a 
spatial attention module. In the spatial attention module, it first generates rough spatial attention, a shape prior of the lesion 
region obtained from the CT image using median filtering and distance transformation. The rough spatial attention is then 
input into two 7 × 7 convolution layers for correction, achieving refined spatial attention on the lesion region. FAM is indi-
vidually integrated with six state-of-the-art segmentation networks (e.g. UNet, DeepLabV3+, etc.), and then we validated 
these six combinations on the public dataset including COVID-19 CT images. The results show that FAM improve the Dice 
Similarity Coefficient (DSC) of CNNs by 2%, and reduced the number of false negatives (FN) and false positives (FP) up to 
17.6%, which are significantly higher than that using other attention modules such as CBAM and SENet. Furthermore, FAM 
significantly improve the convergence speed of the model training and achieve better real-time performance. The codes are 
available at GitHub (https:// github. com/ Robot visio nLab/ FAM. git).
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1 Introduction

According to the report from the Center for Systems Sci-
ence and Engineering (CSSE) of Johns Hopkins Uni-
versity, until May 25, 2022, COVID-19 has resulted in 

526,824,747 infections, of which, 6,280,794 deaths. Rapid 
detection of the infection is essential to prompt isolation 
and treatment of the patients. At present, reverse tran-
scription-polymerase chain reaction (RT-PCR) is the most 
widely adopted method for COVID-19 diagnosis. How-
ever, RT-PCR suffers from some drawbacks such as time 
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consuming, false negative caused by the sampling quality 
[1]. The chest computed tomography (CT) images cap-
tured from COVID-19 patients frequently include patchy 
bilateral shadows or ground-glass opacity in the lung [2], 
hence chest CT is adopted as an dominant method for the 
diagnosis of COVID-19 [1, 3]. Compared with RT-PCR, 
chest CT image is easy to obtain in the clinical practice, 
therefore it can be used for the severity classification of 
COVID-19 patients, for which, contouring the lesion is an 
essential procedure. The traditional manual contouring is 
tedious, time-consuming, and heavily depending on doc-
tor’s clinical experience, therefore, there is an urgent need 
for an automated lesion segmentation method specially 
designed for COVID-19 CT images.

Nowadays, convolution neural network (CNN), a typi-
cal deep learning method, is becoming an essential for 
the segmentation of COVID-19 CT image. Widely used 
CNNs include FCN [4], SegNet [5], UNet series (UNet 
[6], UNet++ [7], UNet3+ [8], etc.), and DeepLab series 
[9–11]. These methods usually rely on a large-scale data-
set with high-quality pixel-level annotation of COVID-19 
lesions. The need for large-scale data collection and data 
labeling before the model training prevents it from wide 
adoption in the context of public health.

Attention mechanism is a technology widely used in the 
fields such as natural language processing (NLP), statistical 
learning, image processing, voice recognition. It stems from 
the particularly selective attention of human vision. Atten-
tion mechanism focuses on important information with high 
weights, ignores unrelated information with low weights, 
and continuously adjusts weights so that important informa-
tion can be selected in different situations, thus making it 
expandable and robust. With the consideration of applica-
tion contexts, attention can be grouped into spatial, channel, 
layer, mixed, and temporal domains. Spatial and channel 
domains are most widely used in the tasks of image pro-
cessing. Many excellent attention modules such as SENet 
[12], CBAM [13], SKNet [14] are proposed. To improve 
the accuracy of deep learning models for COVID-19 lesion 
segmentation, attention modules (or their variations) have 
been integrated into the state-of-the-art segmentation net-
works. However, existing attention modules always cannot 
fully utilize the characteristics of CT images. Moreover, 
they always disrupt the original feature distribution of the 
input data, resulting in low segmentation accuracy and the 
inefficiency of the network training convergence.

To address the abovementioned issue, we propose a novel 
design, in which the lesion in CT image is treated as rough 
spatial attention and then combined with a channel attention 
module to achieve a novel plug-and-play attention module, 
(named focal attention module (FAM)) for lesion segmen-
tation of COVID-19 CT images. The main contributions of 
this study are as follows:

1 A novel spatial attention module is proposed. It intro-
duces the shape prior information of the lesion region to 
improve the feature analysis and weight redistribution of 
the attention module and accelerates the convergence of 
the network training.

2 We sequentially combine the spatial attention module in 
the form of the residual block with the channel attention 
module, constructing a novel Focal Attention Module 
(FAM) for lesion segmentation of COVID-19 CT images.

3 FAM is integrated into six state-of-the-art networks and 
is validated on the public COVID-19 CT image dataset.

The rest of the paper is organized as follows: Sect. 2 
describes the work related to the proposed method. Sec-
tion 3 details the design and implementation of the pro-
posed method. The experiment and discussion is described 
in Sect. 4. Finally, we conclude the study in Section.

2  Related work

In this section, we first discuss these existing deep learning-
based methods for lesion segmentation of COVID-19 CT 
images, followed by related work on the attention mecha-
nism, in the end we introduce the applications of shape pri-
ors in image segmentation.

2.1  Lesion segmentation of COVID‑19 CT images

The data annotation is usually with labor cost and time-
consuming, large-scale segmentation datasets of COVID-19 
lesions are rarely available. Meanwhile, training networks 
on a small-scale dataset suffers from the issues such as over-
fitting and poor generalization performance. Existing deep 
learning methods are proposed to attenuate these models’ 
reliance on a large-scale dataset. The attention mechanism 
is used to enhance the capability of feature extraction of 
the network. For example, Fan et al. [15] combined a semi-
supervised learning model and FCN8s network with implicit 
reverse attention and explicit edge attention mechanism to 
achieve a novel model. It achieves a sensitivity of 72.5% and 
an accuracy of 96.0%. Chen et al. [16] proposed a residual 
attention UNet and applied a soft attention mechanism to 
enhance the capability of feature learning of the model. 
The proposed model achieves a performance with a seg-
mentation accuracy of 89%. Zhao et al. [17] integrated their 
proposed spatial-wise and channel-wise attention modules 
on UNet++ [7]. The Dice Similarity Coefficients (DSC) of 
the model is 88.99%. A number of novel loss functions and 
special network modules are also proposed. For example, 
Wang et al. [18] proposed noise-robust dice loss to solve 
the problem of poor training results caused by low-quality 
labels, and the DSC of the model is 80.72%. Inspired by 
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contrast enhancement methods and Atrous Spatial Pyramid 
Pooling (ASPP) [10], Yan et al. [19] proposed a novel Pro-
gressive Atrous Spatial Pyramid Pooling (PASPP) module to 
progressively aggregate information and obtain more useful 
contextual features, and the DSC of the model is 72.60%. 
Elharrouss et al. [20] proposed a multi-class segmenta-
tion network based on an encoder-decoder structure, and 
the multi-input stream of the network allows the model to 
learn more features. It achieves a sensitivity of 71.1%. In 
addition, multi-scale features fusion [21], multipoint super-
vised training [22], and conditional generation model [23] 
are promising for improving the segmentation accuracy of 
COVID-19 lesions.

2.2  Attention mechanism

Attention is an essential and complex cognitive function 
in the human brain [24]. With attention, people can work 
methodically while receiving a large amount of information 
through vision, hearing, touch, etc. The human brain can 
select small portions of interested information from these 
large amounts of input information to focus on, meanwhile 
ignoring other portions.

In the context of computer vision, attentions can be 
divided into soft attention and hard attention [25]. For 
soft attention, by calculating the attention weight, all 
data is included in the attention range, and no filter con-
dition for the data feature is set. Hard attention sets the 
filtering condition after calculating the attention weight 
and forms a part of the attention weight value that does 
not meet the condition to 0. Contrarily, soft attention is 
probabilistic, end-to-end differentiable, and utilizes back-
propagation and forward-propagation to learn the atten-
tion weight without the posterior sampling. There are a 
number of studies regarding the soft attention. Inspired by 
translation and rotation without deformation of the pool-
ing mechanism, Jaderberg et al. [26] proposed a spatial 
transformation module that could learn the transformation 
from the network. It was widely used for Optical Charac-
ter Recognition (OCR). Hu et al. [12] proposed a chan-
nel attention model (SENet), but SENet cannot capture 
spatial contextual information. Woo et al. [13] expanded 
the SENet and proposed an attention module (CBAM) 
to constrain and enhance the input feature map from the 
channel and spatial dimensions. But, the spatial attention 
module of CBAM fails to capture information at different 
scales and is not able to establish a long-range depend-
ency. Inspired by the classical non-local means method 
[27] for image processing, Wang et al. [28] proposed an 
attention module (non-local neural networks) for capturing 
long-range dependencies. Fu et al. [29] amalgamated the 
advantages of CBAM and Non-local Neural Networks to 
propose the DANet, an attention module widely used in 

semantic segmentation. Drawing on the idea of residual 
networks, Wang et al. [30] proposed a novel solution to 
solve the problem of information reduction caused by 
stacked attention modules. A Criss-Cross Attention is 
proposed by Huang et al. [31], to reduce the calculations 
of Non-local Neural Networks. Gao et al. [32] proposed 
a Spatially Modulated Co-Attention (SMCA) mechanism 
to accelerate training convergence, but it suffers from the 
increased time of computation and inference. A particular 
channel attention module [33] was proposed to distinguish 
the esophagus and surrounding tissues from esophageal 
cancer. However, there are limited literatures regarding the 
hard attention, and studies [34–36] argued that reinforce-
ment learning is required for training in hard attention due 
to its non-differentiability.

Although there are a number of studies [16, 17, 37, 38] 
introducing the attention mechanism for lesion segmenta-
tion on COVID-19 CT images, the improvement in the 
performance and accuracy of these models is still urgently 
expected in academia and industry.

2.3  Shape priors in image segmentation

Traditional segmentation methods (e.g., thresholding, 
watershed, and region growing) usually suffer from the 
lack of robustness and poor segmentation accuracy due to 
the noise, low contrast, and complexity of objects in medi-
cal images. Recently, the rapid development of deep learn-
ing methods promoted the adoption of deep learning-based 
image segmentation algorithms in medical image segmen-
tation. Studies [39–43] have shown that integrating prior 
knowledge of objects into rigorous segmentation formulas 
can improve the segmentation accuracy of a specific target. 
The prior knowledge has been utilized in various forms, 
e.g., user interaction, object shape and appearance [44].

The shape is one of the most important geometric attrib-
utes of anatomical objects, and shape priors can reduce 
the search space of the potential segmentation outputs for 
deep learning models [45]. Ravishankar et al. [46] incor-
porated the shape model explicitly in FCN through a novel 
loss function that penalizes the deviation of the predicted 
segmentation mask from a learned shape model. Avanti 
et al. [47] used stacked automatic encoders to infer the 
target shape, then the inferred shape is incorporated into 
deformable models to improve the accuracy and robust-
ness. In addition, Ngo et al. [48] and Cremers et al. [40] 
combined level set and genetic algorithms with deep learn-
ing to improve the training effect of the model on small 
datasets. Zhao et al. [49] obtained the shape prior of the 
lung region through threshold segmentation to optimize 
the segmentation of the lung.
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3  Proposed method

3.1  Design rationale of focal attention module

Given an intermediate feature map � ∈ ℝ
C×H×W , and an 

input CT image � ∈ ℝ
1×H×W is defined as the input. FAM 

sequentially infers a 1D channel attention map M
c
∈ ℝ

C×1×1 
and a 2D spatial attention map �s ∈ ℝ

1×H×W as illustrated in 
Fig. 1. The attention module is formularized as:

where ⊗ denotes element-wise multiplication. During mul-
tiplication, the attention values are broadcasted accordingly: 
channel attention values are broadcasted along the channel 
dimension, and vice versa. �′′ is the final refined output. Dif-
ferent from naive stacking attention modules (e.g., CBAM, 
SENet), the feature map refined by the spatial attention mod-
ule (as depicted in Fig. 2) is combined as a residual branch 
into the feature map refined by the channel attention module 
due to the following analysis:

1. When the input � is a negative sample, spatial attention 
obtained from its lung image � by distance transforma-
tion contains less feature information. In this case, stack-
ing will degrade the value of features in deep layers.

(1)�
� = �c(�)⊗ �,

(2)�
�� =

(
�s(�) + 1

)
⊗ �

� ,

2. Residual branch works as feature selectors, which enhance 
good features and suppress noise from trunk features.

3. Inspired by Residual Attention Network [38], attention 
residual learning not only keeps good properties of orig-
inal features but also allows to be refined by the spatial 
attention module.

3.2  Channel attention module

The channel attention module focuses on “what” is meaningful given 
the feature maps. To compute the channel attention efficiently, spatial 
information of a feature map is first aggregated by average-pooling 
and max-pooling operations, respectively, thus two different spatial 
context descriptors (i.e. �c

avg
 and �c

max
 ) are obtained. Both descriptors 

are then forwarded to a multi-layer perceptron (MLP) with one hid-
den layer, achieving two output feature maps. Finally, the output fea-
ture maps are merged using element-wise summation. To reduce the 
number of parameters, the hidden layer size is set to ℝC∕r×1×1 , where 
r is the reduction ratio. The channel attention is formularized as:

where � represents the sigmoid function, �0 ∈ ℝ
C∕r×C and 

�1 ∈ ℝ
C×C∕r . �0 and �1 are the weights of the MLP and 

are shared for both inputs. The ReLU activation function is 
followed by �0.

(3)
�c(�) = �(MLP(AvgPool(�)) +MLP(�������(�)))

= �

(
W1

(
W0

(
�
c
avg

))
+W1

(
W0

(
�
c
avg

)))
,

Fig. 1  The overview of focal 
attention module, which 
consists of channel attention 
module and spatial attention 
module

Fig. 2  a The channel atten-
tion module: max-pooling, 
average-pooling outputs, and 
a multi-layer perceptron; b the 
spatial attention module obtains 
a rough shape prior of the lesion 
region by median filtering and 
distance transformation
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3.3  Spatial attention module

The spatial attention focuses on “where’” is the interested in 
given feature maps. The spatial attention in CBAM is learned 
from a 7 × 7 convolution layer, and it has two shortcomings 
when dealing with the specific task of lesion segmentation for 
COVID-19 diagnosis: (1) low efficiency on learning process; 
(2) the change of spatial attention to the feature space easily 
cause the problematic convergence of training and poor net-
work generalization performance, especially when the dataset 
is small or the parameters of the backbone network are few. 
Two mechanisms are introduced to address these issues: (1) 
adopting the residual structure and refined the feature maps 
with spatial attention while preserving trunk network fea-
tures (as shown in Fig. 1); (2) utilizing the shape prior of the 
COVID-19 lesion region to reduce the search space of the 
spatial attention module. The main steps (as shown in Fig. 2b) 
while computing the spatial attention include lung segmenta-
tion, median filtering, and distance transformation.

3.3.1  Lung segmentation

To efficiently obtain the shape prior of the lesion region, the 
lung needs to be segmented from CT images. Currently, many 
excellent methods of lung segmentation have been proposed 
and widely used. These methods are mainly divided into three 
types: traditional image processing-based algorithms, deep 
learning-based algorithms and the combination of the two 
former methods. Because segmentation of the lung is not the 
focus of this paper, the lung region is segmented with a simple 
mask operation from labels in the dataset.

3.3.2  Median filtering

Median filtering is introduced to eliminate partial noise 
pixels consisting of the pulmonary trachea and pulmonary 
vessels from the lung image. Median filtering, a nonlinear 
method that can preserve the details of the edges of an image 

while eliminating noise, has been widely used in fields such 
as image enhancement and image recovery. As shown in 
Fig. 3a, a few noise pixels in the lung region, such as regions 
of the tiny pulmonary trachea and pulmonary vessels, inter-
fere significantly with the accurate segmentation of lesions. 
As shown in Fig. 3b, the median filtering eliminates most of 
the small pulmonary trachea and pulmonary vessels. For the 
large pulmonary trachea and pulmonary vessels, the median 
filtering also reduces their pixel region. Meanwhile, median 
filtering retains the nature of the lesions (i.e. ground-glass 
opacity) with little reduction in the area of the lesions due 
to its large pixel region.

3.3.3  Distance transformation

Distance transformation (DT) is to convert a digital binary 
image that consists of object and non-object pixels into another 
image in which each object pixel owns a value corresponding 
to the minimum distance from the non-object by a distance 
function [50, 51]. Distance transformation is widely used for 
target thinning, object skeleton extraction. Euclidean distance, 
city block distance, and chessboard distance are widely used 
measures for distance transformation. The full workflow of 
distance transformation is introduced as follows:

Given an image J , it’s binarized to get an image Jb . In 
Jb , 1 is associated with object pixel and 0 with the back-
ground pixel. Hence, we have a pixel set O represented by 
all the object pixels and Oc represented by all the back-
ground pixels.

where t and b represent the pixel of objects and background 
respectively. The distance transformation ( DT  ) generates a 
map D , in which the value of each pixel in O is the smallest 
distance from this pixel to Oc:

(4)O =
{
t||Jb(t) = 1

}
,

(5)O
c =

{
b||Jb(b) = 0

}
,

Fig. 3  The process of eliminating noise pixels in the lung region of 
CT image step by step. a A lot of noise pixels (i.e. pulmonary trachea 
and pulmonary vessels inside the lung region). b Applying median 

filtering to partially eliminate the noise pixels. c Applying distance 
transformation to further eliminate the noise pixels and extract the 
main lesion region
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where the image D is called the distance map of J . It is 
assumed that O contains at least one pixel. Otherwise, 
the output of the DT  is undefined, i.e., the outliers will be 
ignored in the distance transformation. Moreover, d(t, b) rep-
resents Euclidean distance, is formularized as:

where H and W  represent the height and width of the image 
J respectively.

As shown in Fig. 3c, distance transformation is used to 
eliminate noise pixels (i.e., the pulmonary trachea and pulmo-
nary vessels) and extract the main lesion region. By applying 

(6)D(t) = min {d(t, b)|t ∈ O , b ∈ O
c},

(7)d(t, b) =

√(
tx − bx

)2
+
(
ty − by

)2

0 ≤ x < W, 0 ≤ y < H,

sequential median filtering and distance transformation, the 
distribution of connected regions in a lung image is shown 
in Fig. 4. The connected regions containing more than 200 
pixels represent the lesion region, and those with a small area 
represent the region of the pulmonary trachea and pulmonary 
vessels. By applying distance transformation, the distribution 
of connected regions in the lung image is close to the ground 
truth. Distance maps of several lung images are shown in 
Fig. 5. By comparing the distance map with the correspond-
ing lesion label, the main lesion region is extracted.

Normalization serves as an activation function to obtain the 
shape prior of the lesion region. As shown in Fig. 6b, distance 
transformation strengthens the weight of the main connected 
regions and weakens the weight of the edge parts (as shown 
in Fig. 6a). Furthermore, as shown in Fig. 6c, normalization 
removes both the edge and connected regions with a small 
area. The normalization function Norm is formularized as:

where X represents an image matrix, Xmin and Xmax repre-
sent the minimum and maximum values in X respectively. 
Next, as illustrated in Fig. 2b, two 7 × 7 convolution lay-
ers are utilized to learn the attention weight of edge pixels 
which has a low boundary contrast to surroundings, as well 
as adaptively tuning up attention weights to other regions. 
Finally, refined spatial attention is obtained. Spatial attention 
is formularized as:

where � is the input CT image, � represents the sigmoid 
function, f seg and fmed represent the lung segmentation 
network and median filtering, respectively. f cov

7∗7
 is the 7 × 7 

convolution layer. DT represents the distance transformation.

(8)Norm(X) =
X − Xmin

Xmax − Xmin

,

(9)�s(�) = �
(
f cov
7×7

(
f cov
7×7

(
Norm

(
DT

(
fmed (f seg(�))

)))))
,

Fig. 4  The distributions of connected regions in a lung image with-
out/with applying sequential median filtering, with applying distance 
transformation

Fig. 5  Distance maps of several lung images: a lung region is segmented from CT images in the dataset. b Distance maps of lung images 
obtained by distance transformation. c By comparing the distance map with the corresponding lesion label, the main lesion region is extracted
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4  Experiment

4.1  Dataset and metrics

The dataset contains 20 groups of labeled CT scans of 
COVID-19 patients. Two radiologists manually labeled 
the regions of left lung, right lung, and COVID-19 lesions 
on the images and an extra verification of the labeled 
regions was carried out by another radiologist. CT slices 
are exported from the CT scans as 2D images (752 × 670 
pixels), and a group of processed images are listed in Fig. 7. 
The dataset contains a total of 3520 CT images and is 
divided into a training set and a testing set at a ratio of 4:1 
(as detailed in Table 1). It is noted that “positive” means 
CT images with the lesion, and “negative” means healthy 
CT images.

The Dice Similarity Coefficients (DSC), false negatives 
(FN), false positives (FP) and inference time of the net-
works are adopted as evaluation metrics. DSC is a stand-
ard metric for comparing the pixel-wise results between the 
ground truth and predicted segmentation. It is formularized 
as follows:

(10)DSC(A,B) =
2|A ∩ B|
|A| + |B|

,

where A is the lesion label, and B denotes the segmented 
lesion image.

4.2  Training method

An Adam optimizer with a learning rate of 0.001 is 
employed to minimize the binary cross-entropy (BCE) loss. 
The total number of training epochs and batch size is set 
to 100 and 1, respectively. The network weights are initial-
ized with Kaiming initialization, and the network biases 
are initialized by 0. Moreover, the positive and negative 
samples are trained alternately, and the dataset is shuffled 
in each iteration. The formula of the BCE loss is as follows:

where G is the label and P is the output of the network.

(11)LossBCE = −
[
G log (P) + (1 − G) log (1 − P)

]
,

Fig. 6  A numerical example of distance transformation: a a binary image containing several connected regions; b the distance map of (a); c is 
the normalization of (b)

Fig. 7  The dataset contains 
segmentation labels for the left 
lung, right lung and COVID-19 
lesions. The lung region is seg-
mented based on the lung label

Table 1  Details of the dataset

Positive Negative Total

Train 1474 1341 2815
Test 369 336 705
Total 1843 1677 3520
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4.3  Ablation analysis

FAM can be conveniently integrated into any CNNs as a 
lightweight and plug-and-play attention module. As shown 
in Fig. 8, FAM is integrated into convolution layers to refine 
the intermediate feature map. FAM and two state-of-the-
art attention modules (i.e. SENet [19] and CBAM [20]) are 
respectively inserted into every two convolution layers of 
six state-of-the-art segmentation networks [6–11, 16, 21] 
for ablation experiments. All the related networks and mod-
ules are reproduced in the framework PyTorch, trained and 
inferenced on a single NVIDIA GeForce RTX 2080Ti GPU 
with CUDA v10.2 and cuDNN v7.6.5. The main concerns in 
this ablation analysis contains: shape prior, time complexity, 

the performance of the network and convergence rate of the 
network training.

4.3.1  Shape prior

FAM is constructed based on the shape prior and the 
spatial attention module of CBAM. In the case that 
CBAM and FAM are integrated respectively between 
each convolution layer in SegNet (as shown in Fig. 9). 
A visualization of the spatial attention is built in Fig. 10 
to illustrate the effect of shape prior. Since that SegNet 
is a typical encode-decode structure, in which, low-level 
features and high-level semantic features are extracted 
accordingly, the feature map contained in the middle 
layers is abstract. CBAM adopts such a feature extrac-
tion workflow because of the connection between its 
spatial attention module and the network, i.e., the input 
of the spatial attention module comes from inside the 
network rather than outside. Thus, the spatial attention 
of CBAM integrated into the middle layers is abstract, 
and that integrated into other layers highlights only the 
lung region rather than the lesion region, resulting in the 
inaccuracy of the spatial attention learning of CBAM. 
The shape prior information of the lesion region is 
introduced in the spatial attention module to reduce the 
search space. In summary, FAM focuses on the lesion 
region without being disturbed by the no-lesion region 
during the spatial attention learning process.

4.3.2  Time complexity

Time complexity determines the training and inference 
time of the network. The network with high time complex-
ity suffer from poor real-time performance. Floating Point 

Fig. 8  The structure of the integration of FAM with the network

Fig. 9  The workflow of attention modules integrated with SegNet

Fig. 10  Spatial attention com-
parison between CBAM and 
FAM in SegNet. We visualized 
the spatial attention for sixteen 
attention modules of SegNet 
when using CBAM and FAM. 
c is the lung image segmented 
from the input CT image. d and 
e are corresponding lesion label 
and shape prior
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Operations (FLOPs) is a classical metric of the time com-
plexity. The time complexity of a network is formularized 
as follows:

where l denotes the number of layers in the network. fFLOPs 
represents the function that calculates the FLOPs of a layer. 
FLOPs for each type of layer is formularized as:

where f conv
FLOPs

 , f linear
FLOPs

 , f pooling
FLOPs

 , f relu
FLOPs

 and f sigmoid

FLOPs
 represent the 

function that calculate the FLOPs of convolution layer, full con-
nect layer, global pooling layer, Relu layer and sigmoid layer 
respectively. These five types of layers are used in FAM, SENet 
and CBAM. Cin and Cout denote the channel number of the 
input and output feature map respectively. Kw and Kh denote 
the width and height of the convolution kernel respectively. Qw 
and Qh denote the width and height of the input feature map 
respectively. Nin and Nout denote the number of input and output 
neurons. We set the channel number of the input feature map to 
16 and set the reduction ratio of the channel attention module 
to 16. The size of the input feature map is 652 × 752. FLOPs of 
FAM, SENet and CBAM are listed in Table 2. SENet achieves 
the smallest FLOPs because it lacks a spatial attention module. 
FAM and CBAM share a similar structure, but FLOPs of the lat-
ter is less than the former by about 15 million. It is because FAM 
owns fewer pooling layers than CBAM. As shown in Table. 3, 
FLOPs of six state-of-the-art segmentation networks increase 
very little when FAM is integrated between every two convolu-
tion layers. Moreover, the inference time of FAM is 4 ms faster 
than that for CBAM on average. In conclusion, FAM is able to 
greatly improve the performance of the network with very little 
time complexity increasement.

(12)T = O

(
l∑

i=1

fFLOPs(layer)

)
,

(13)f conv
FLOPs

= 2CinCoutKwKhQwQh,

(14)f linear
FLOPs

= 2NinNout,

(15)f
pooling

FLOPs
= CinQwQh,

(16)f relu
FLOPs

= CinQwQh,

(17)f
sigmoid

FLOPs
= 4CinQwQh,

4.3.3  Performance analysis of the networks with attention 
modules

The average DSC, FN and FP of all images in the test set 
are adopted to analyze the performance of the integration of 
attention modules to the networks (as detailed in Table 3). 
FAM adds almost no extra parameters to the network, as it 
only has one more 7 × 7 convolution than CBAM. The integra-
tion of FAM improves the DSC of all these networks, with an 
improvement of 2% for SegNet. In addition, the integration of 
FAM reduces the FN and FP, with a reduction of 17.6% for 
PSPNet.

SENet improves the performance of UNet, PSPNet and 
UNet++, meanwhile it degrades the performance of FCN, 
SegNet and deeplabV3+. CBAM improves the performance of 
SegNet and PSPNet, meanwhile it degrades the performance 
of FCN, UNet, Deeplabv3 and UNet++. This finding shows 
that the effectiveness of the integration of the attention module 
depends on the structure of the network.

Figure 11. shows the segmentation result of SegNet 
integrated with different attention modules on the data-
set. As shown in Fig. 11, SegNet without the integration 
of the attention module suffers from false detection in 
lesions of both left and right lobes to some extent. The 
integration of SENet alleviates it but CBAM exacerbates 
it. Although the SegNet integrated with FAM has many 
false detections, overall it has the highest segmentation 
accuracy.

4.3.4  Convergence analysis of the network training

Six networks with attention modules are trained with the 
same experimental settings and dataset. As shown in Fig. 12, 
all networks converge within 60 iterations. FAM acceler-
ates model training better than SegNet or CBAM does. For 
SegNet, UNet++ and DeepLabV3+, SENet does not signifi-
cantly accelerate the model training. For UNet and UNet++, 
CBAM decelerates the convergence of the model training. 
However, FAM accelerates the training of FCN, UNet, Seg-
Net, PSPNet and DeepLabV3+, as well as minimizing the 
loss.

For UNet++, FAM performs better than the other two 
attention modules. For UNet and PSPNet, FAM makes the 
training process more stable. The result shows that FAM 
achieves better convergence rate and less converged loss 

Table 2  FLOPs of FAM, SENet 
and CBAM

Bold represents values of our proposed method

Conv Linear Pooling Relu Sigmoid Total

SENet 0 64 7,844,864 1 64 7,844,993
CBAM 99,047,552 0 31,379,456 2 34,363,392 164,790,402
FAM 99,047,552 0 15,689,728 505,346 34,363,392 149,606,018
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value of the model training among these six networks than 
CBAM does. In addition, although SENet only applies its 
attention in the channel dimension, it achieves better per-
formance than CBAM in specific networks such as FCN, 
UNet and PSPNet.

5  Conclusion

In this study, a lightweight and plug-and-play attention 
module, is proposed to improve the lesion segmentation 

Table 3  Performance 
comparison of FAM, SENet 
and CBAM on state-of-the-art 
segmentation network

Bold represents values of our proposed method

Network Attention module #Param (k) FLOPs (G) DSC% FN + FP Inference 
time (ms)

FCN – 19,169.03 201.18 85.80 824 29
SENet 19,319.04 201.25 85.59 830 33
CBAM 19,319.83 201.32 85.65 823 56
FAM 19,320.04 201.30 86.41 762 53

UNet – 31,042.37 421.05 86.03 770 69
SENet 31,260.48 421.44 86.13 781 72
CBAM 31,261.37 422.12 85.22 818 114
FAM 31,262.25 421.57 86.56 767 110

SegNet – 29,442.43 308.98 85.13 839 56
SENet 29,742.47 309.79 85.03 837 60
CBAM 29,744.05 309.93 85.80 796 106
FAM 29,744.83 309.84 87.13 720 101

DeepLabV3+ – 59,233.51 170.07 87.42 712 42
SENet 59,856.02 170.75 86.85 746 45
CBAM 59,858.71 170.79 86.51 766 91
FAM 59,860.01 170.76 88.54 601 85

PSPNet – 27,509.47 313.67 86.67 769 56
SENet 27,677.10 313.74 86.98 763 60
CBAM 27,677.45 313.81 86.93 772 92
FAM 27,677.83 313.80 88.12 634 90

UNet++ – 47,170.32 1539.32 85.67 820 187
SENet 47,415.21 1539.58 85.85 800 191
CBAM 47,417.20 1539.89 85.70 794 240
FAM 47,418.06 1539.62 87.06 723 232

Fig. 11  The comparison of the 
segmentation results on lesions 
of COVID-19 CT images by 
applying various combina-
tions of SegNet and attention 
modules
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performance of CNNs for COVID-19 CT images. FAM 
refines the input feature map from channel and space 
dimensions to maximize the network representation. In the 
spatial attention of FAM, shape prior of the lesion region 
is used to reduce the search space for attention learning. 
In addition, the feature map refined by spatial attention is 
added to the network as a residual branch. A set of experi-
ments proved that: (1) FAM could improve the segmen-
tation performance on a small-scale public COVID-19 
CT image dataset; (2) FAM could accelerate the conver-
gence speed of the model training; (3) FAM is capable 
of being stacked in a deep segmentation network without 
performance loss. (4) FAM could achieve better real-time 
performance.

FAM is promising for practical use in public health. In 
future, we will work towards improving the generated shape 
prior to enhance the generalization performance of FAM 
based on the up-to-date COVID-19 CT image datasets.

Acknowledgements This study was supported by Natural Science 
Foundation of Zhejiang Province (No. LQ21H190004), China Postdoc-
toral Science Foundation (No. 2020T130102ZX), Postdoctoral Science 
Foundation of Zhejiang Province (No. ZJ2020031), the Educational 
Commission of Zhejiang Province of China (No. Y202147553).

Data availability  The datasets generated during and analyzed during 
the current study are available from the corresponding author on rea-
sonable request.

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

References

 1. Ai, T., Yang, Z., Hou, H., et al.: Correlation of chest CT and RT-
PCR testing for coronavirus disease 2019 (COVID-19) in China: a 
report of 1014 cases. Radiology 296(2), E32–E40 (2020). https:// 
doi. org/ 10. 1148/ radiol. 20202 00642

 2. Adams, H.J., Kwee, T.C., Yakar, D., et al.: Chest CT imaging 
signature of coronavirus disease 2019 infection: in pursuit of the 
scientific evidence. Chest 158(5), 1885–1895 (2020). https:// doi. 
org/ 10. 1016/j. chest. 2020. 06. 025

 3. Xu, X., Tian, H., Zhang, X., Qi, L., He, Q., Dou, W.: DisCOV: 
distributed COVID-19 detection on X-ray images with edge-cloud 
collaboration. IEEE Trans. Serv. Comput. (2022). https:// doi. org/ 
10. 1109/ TSC. 2022. 31422 65

 4. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks 
for semantic segmentation. IEEE Trans. Pattern Anal. Mach. 
Intell. 39(4), 640–651 (2016). https:// doi. org/ 10. 1109/ TPAMI. 
2016. 25726 83

 5. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep 
convolutional encoder-decoder architecture for image segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 
(2017). https:// doi. org/ 10. 1109/ TPAMI. 2016. 26446 15

 6. Ronneberger, O., Fischer, P., Brox, T.: “U-net: Convolutional 
networks for biomedical image segmentation. In: International 
Conference on Medical image computing and computer-assisted 
intervention. Springer, pp 234–241 (2015). https:// doi. org/ 10. 
1007/ 978-3- 319- 24574-4_ 28

 7. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., et  al.: 
Unet++: a nested u-net architecture for medical image segmenta-
tion. In: Deep learning in medical image analysis and multimodal 
learning for clinical decision support, pp. 3–11. Springer (2018). 
https:// doi. org/ 10. 1007/ 978-3- 030- 00889-5_1

 8. Huang, H., Lin, L., Tong, R., Hu, H., Zhang, Q., Iwamoto, Y., 
Han, X., Chen, Y.-W., Wu, J.: Unet 3+: A full-scale connected 
UNET for medical image segmentation. In: ICASSP 2020–2020 
IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP). IEEE, pp. 1055–1059. (2020) https:// doi. 
org/ 10. 1109/ ICASS P40776. 2020. 90534 05

Fig. 12  Diagram of training networks integrated with various attention modules. a–c and d–f show that FAM accelerates the network training as 
well as minimizes the loss

https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1016/j.chest.2020.06.025
https://doi.org/10.1016/j.chest.2020.06.025
https://doi.org/10.1109/TSC.2022.3142265
https://doi.org/10.1109/TSC.2022.3142265
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1109/ICASSP40776.2020.9053405
https://doi.org/10.1109/ICASSP40776.2020.9053405


1102 Journal of Real-Time Image Processing (2022) 19:1091–1104

1 3

 9. Chen, L.-C., Papandreou, G., Kokkinos, I. et al.: Semantic image 
segmentation with deep convolutional nets and fully connected 
CRFS. (2014) [Online]. https:// arxiv. org/ abs/ 1412. 7062

 10. Chen, L.-C., Papandreou, G., Kokkinos, I., et al.: Deeplab: Seman-
tic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected CRFS. IEEE Trans. Pattern Anal. 
Mach. Intell. 40(4), 834–848 (2017). https:// doi. org/ 10. 1109/ 
TPAMI. 2017. 26991 84

 11. Florian, L.-C., Adam, S. H.: Rethinking atrous convolution for 
semantic image segmentation. In: Conference on Computer Vision 
and Pattern Recognition (CVPR). IEEE/CVF, (2017) [Online]. 
https:// arxiv. org/ abs/ 1706. 05587

 12. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-exci-
tation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 
2011–2023 (2020). https:// doi. org/ 10. 1109/ TPAMI. 2019. 29133 72

 13. Woo, S., Park, J., Lee, J.-Y., Kweon, I. S.: Cbam: Convolutional 
block attention module. In: Proceedings of the European confer-
ence on computer vision (ECCV), pp. 3–19 (2018) https:// doi. org/ 
10. 1007/ 978-3- 030- 01234-2_1

 14. Wu, W., Zhang, Y., Wang, D., Lei, Y.: Sk-net: deep learning on 
point cloud via end-to-end discovery of spatial keypoints. Proc. 
AAAI Conf. Artif. Intell. 34(04), 6422–6429 (2020). https:// doi. 
org/ 10. 1609/ aaai. v34i04. 6113

 15. Fan, D.P., Zhou, T., Ji, G.P., et al.: Inf-Net: automatic COVID-19 
lung infection segmentation from CT images. IEEE Trans. Med. 
Imaging PP(99), 1–1 (2020). https:// doi. org/ 10. 1109/ TMI. 2020. 
29966 45

 16. Chen, X., Yao, L., Zhang, Y.: Residual attention u-net for auto-
mated multi-class segmentation of covid-19 chest CT images. 
(2020) [Online]. Available: https:// arxiv. org/ abs/ 2004. 05645

 17. Zhao, S., Li, Z., Chen, Y., et al.: SCOAT-Net: aa novel network 
for segmenting COVID-19 lung opacification from CT images. 
Pattern Recogn. 119, 108109 (2021). https:// doi. org/ 10. 1016/j. 
patcog. 2021. 108109

 18. Wang, G., Liu, X., Li, C., et al.: A noise-robust framework for 
automatic segmentation of COVID-19 pneumonia lesions from 
CT images. IEEE Trans. Med. Imaging 39(8), 2653–2663 (2020). 
https:// doi. org/ 10. 1109/ TMI. 2020. 30003 14

 19. Yan, Q., Wang, B., Gong, D. et al.; COVID-19 chest CT image 
segmentation—a deep convolutional neural network solution. 
(2020) [Online]. Available: https:// arxiv. org/ abs/ 2004. 10987

 20. Elharrouss, O., Subramanian, N., Al-Maadeed, S.: An encoder-
decoder-based method for COVID-19 lung infection segmenta-
tion. (2020) [Online]. Available: https:// arxiv. org/ abs/ 2007. 00861

 21. Qiu, Y., Liu, Y., Li, S., Xu, J.: Miniseg: an extremely minimum 
network for efficient COVID-19 segmentation. In: Proceedings 
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 6, 
(2021) 4846–4854. https:// ojs. aaai. org/ index. php/ AAAI/ artic le/ 
view/ 16617

 22. Pei, H.-Y., Yang, D., Liu, G.-R., et al.: MPS-net: multi-point 
supervised network for CT image segmentation of covid-19. IEEE 
Access 9, 47144–47153 (2021). https:// doi. org/ 10. 1109/ ACCESS. 
2021. 30670 47

 23. Zhang, P., Zhong, Y., Deng, Y., et  al.: CoSinGAN: learning 
COVID-19 infection segmentation from a single radiological 
image. Diagnostics 10(11), 901 (2020). https:// doi. org/ 10. 3390/ 
diagn ostic s1011 0901

 24. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual 
attention for rapid scene analysis. IEEE Trans. Pattern Anal. 
Mach. Intell. 20(11), 1254–1259 (1998). https:// doi. org/ 10. 1109/ 
34. 730558

 25. Wang, F., Tax, D. M.: Survey on the attention based RNN model 
and its applications in computer vision. (2016) [Online]. Avail-
able: https:// arxiv. org/ abs/ 1601. 06823

 26. Jaderberg, M., Simonyan, K., Zisserman, A.: Spatial transformer 
networks. Adv. Neural Inform. Process. Syst. 28 (2015). https://
dl.acm.org/doi/abs/https:// doi. org/ 10. 5555/ 29694 42. 29694 65

 27. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for 
image denoising. In: 2005 IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition (CVPR’05), vol. 
2. IEEE, pp. 60–65 (2005). https:// doi. org/ 10. 1109/ CVPR. 2005. 
38

 28. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural net-
works. In: Proceedings of the IEEE conference on computer vision 
and pattern recognition, pp 7794–7803 (2018). https:// doi. org/ 10. 
1109/ CVPR. 2018. 00813

 29. Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual 
attention network for scene segmentation. In: Proceedings of the 
IEEE/CVF conference on computer vision and pattern recogni-
tion, pp 3146–3154 (2019). https:// doi. org/ 10. 1109/ CVPR. 2019. 
00326

 30. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, 
X., Tang, X.: Residual attention network for image classification. 
In: Proceedings of the IEEE conference on computer vision and 
pattern recognition, pp 3156–3164 (2017). https:// doi. org/ 10. 
1109/ CVPR. 2017. 683

 31. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: 
Ccnet: Criss-cross attention for semantic segmentation. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer 
Vision, pp. 603–612 (2019). https:// doi. org/ 10. 1109/ TPAMI. 2020. 
30070 32

 32. Gao, P., Zheng, M., Wang, X., Dai, J., Li, H.: Fast convergence of 
detr with spatially modulated co-attention (2021) [Online]. https:// 
doi. org/ 10. 48550/ arXiv. 2108. 02404

 33. Huang, G., Zhu, J., Li, J., Wang, Z., Cheng, L., Liu, L., Li, H., 
Zhou, J.: Channel-attention U-Net: channel attention mechanism 
for semantic segmentation of esophagus and esophageal cancer. 
IEEE Access 8, 122798–122810 (2020). https:// doi. org/ 10. 1109/ 
ACCESS. 2020. 30077 19

 34. Zhao, B., Wu, X., Feng, J., et al.: Diversified visual attention 
networks for fine-grained object classification. IEEE Trans. Mul-
timed. 19(6), 1245–1256 (2017). https:// doi. org/ 10. 1109/ TMM. 
2017. 26484 98

 35. Mnih, V., Heess, N., Graves, A.: Recurrent models of visual atten-
tion. Adv. Neural Inform. processing Syst. 27 (2014). https://
dl.acm.org/doi/abs/https:// doi. org/ 10. 5555/ 29690 33. 29690 73

 36. Liu, X., Xia, T., Wang, J. et al.: Fully convolutional attention 
networks for fine-grained recognition. (2016) [Online]. https:// 
arxiv. org/ abs/ 1603. 06765

 37. Zhao, X., Zhang, P., Song, F. et al.: D2a u-net: automatic segmen-
tation of COVID-19 lesions from CT slices with dilated convolu-
tion and dual attention mechanism. (2021) [Online]. https:// arxiv. 
org/ abs/ 2102. 05210

 38. Zhou, T., Canu, S., Ruan, S.: Automatic COVID-19 CT segmenta-
tion using U-Net integrated spatial and channel attention mecha-
nism. Int. J. Imaging Syst. Technol. 31(1), 16–27 (2021). https:// 
doi. org/ 10. 1002/ ima. 22527

 39. Zhou, X., Xu, X., Liang, W., Zeng, Z., Yan, Z.: Deep-learning- 
enhanced multitarget detection for end-edge-cloud surveillance in 
smart IoT. IEEE Internet Things J. 8(16), 12588–12596 (2021). 
https:// doi. org/ 10. 1109/ JIOT. 2021. 30774 49

 40. Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and 
intrinsic alignment for shape priors in level set segmentation. Int. 
J. Comput. Vis. 69(3), 335–351 (2006). https:// doi. org/ 10. 1007/ 
s11263- 006- 7533-5

 41. Li, K., Tao, W.: Adaptive optimal shape prior for easy interactive 
object segmentation. IEEE Trans. Multimed. 17(7), 994–1005 
(2015). https:// doi. org/ 10. 1109/ TMM. 2015. 24337 95

https://arxiv.org/abs/1412.7062
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
https://arxiv.org/abs/1706.05587
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1609/aaai.v34i04.6113
https://doi.org/10.1609/aaai.v34i04.6113
https://doi.org/10.1109/TMI.2020.2996645
https://doi.org/10.1109/TMI.2020.2996645
https://arxiv.org/abs/2004.05645
https://doi.org/10.1016/j.patcog.2021.108109
https://doi.org/10.1016/j.patcog.2021.108109
https://doi.org/10.1109/TMI.2020.3000314
https://arxiv.org/abs/2004.10987
https://arxiv.org/abs/2007.00861
https://ojs.aaai.org/index.php/AAAI/article/view/16617
https://ojs.aaai.org/index.php/AAAI/article/view/16617
https://doi.org/10.1109/ACCESS.2021.3067047
https://doi.org/10.1109/ACCESS.2021.3067047
https://doi.org/10.3390/diagnostics10110901
https://doi.org/10.3390/diagnostics10110901
https://doi.org/10.1109/34.730558
https://doi.org/10.1109/34.730558
https://arxiv.org/abs/1601.06823
https://doi.org/10.5555/2969442.2969465
https://doi.org/10.1109/CVPR.2005.38
https://doi.org/10.1109/CVPR.2005.38
https://doi.org/10.1109/CVPR.2018.00813
https://doi.org/10.1109/CVPR.2018.00813
https://doi.org/10.1109/CVPR.2019.00326
https://doi.org/10.1109/CVPR.2019.00326
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/TPAMI.2020.3007032
https://doi.org/10.1109/TPAMI.2020.3007032
https://doi.org/10.48550/arXiv.2108.02404
https://doi.org/10.48550/arXiv.2108.02404
https://doi.org/10.1109/ACCESS.2020.3007719
https://doi.org/10.1109/ACCESS.2020.3007719
https://doi.org/10.1109/TMM.2017.2648498
https://doi.org/10.1109/TMM.2017.2648498
https://doi.org/10.5555/2969033.2969073
https://arxiv.org/abs/1603.06765
https://arxiv.org/abs/1603.06765
https://arxiv.org/abs/2102.05210
https://arxiv.org/abs/2102.05210
https://doi.org/10.1002/ima.22527
https://doi.org/10.1002/ima.22527
https://doi.org/10.1109/JIOT.2021.3077449
https://doi.org/10.1007/s11263-006-7533-5
https://doi.org/10.1007/s11263-006-7533-5
https://doi.org/10.1109/TMM.2015.2433795


1103Journal of Real-Time Image Processing (2022) 19:1091–1104 

1 3

 42. Wang, H., Zhang, H.: Adaptive shape prior in graph cut segmenta-
tion. In: 2010 IEEE International Conference on Image Pro- cess-
ing. IEEE, pp 3029–3032 (2010). https:// doi. org/ 10. 1109/ ICIP. 
2010. 56533 35

 43. Veksler, O.: Star shape prior for graph-cut image segmentation. In: 
European Conference on Computer Vision. Springer, pp 454–467 
(2008). https:// doi. org/ 10. 1007/ 978-3- 540- 88690-7_ 34

 44. Nosrati, M. S., Hamarneh, G.: Incorporating prior knowledge in 
medical image segmentation: a survey (2021) [Online]. Available: 
https:// arxiv. org/ abs/ 1607. 01092

 45. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, 
M.: TeTrIS: template transformer networks for image segmenta-
tion with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–
2606 (2019). https:// doi. org/ 10. 1109/ TMI. 2019. 29059 90

 46. Ravishankar, H., Venkataramani, R., Thiruvenkadam, S., Sudha-
kar, P., Vaidya, V.: Learning and incorporating shape models for 
semantic segmentation. In: International conference on medical 
image computing and computer-assisted intervention. Springer, pp 
203–211 (2017). https:// doi. org/ 10. 1007/ 978-3- 319- 66182-7_ 24

 47. Avendi, M.R., Kheradvar, A., Jafarkhani, H.: A combined deep-
learning and deformable-model approach to fully automatic seg-
mentation of the left ventricle in cardiac MRI. Med. Image Anal. 
30, 108–119 (2016). https:// doi. org/ 10. 1016/j. media. 2016. 01. 005

 48. Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and 
level set for the automated segmentation of the left ventricle of 
the heart from cardiac cine magnetic resonance. Med. Image Anal. 
35, 159–171 (2017). https:// doi. org/ 10. 1016/j. media. 2016. 05. 009

 49. Zhao, C., Xu, Y., He, Z., Tang, J., Zhang, Y., Han, J., Shi, Y., 
Zhou, W.: Lung segmentation and automatic detection of COVID-
19 using radiomic features from chest CT images. Pattern Recogn. 
119, 108071 (2021). https:// doi. org/ 10. 1016/j. patcog. 2021. 108071

 50. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture 
processing. J. ACM (JACM) 13(4), 471–494 (1966). https:// doi. 
org/ 10. 1145/ 321356. 321357

 51. Shih, F.Y., Wu, Y.-T.: Fast Euclidean distance transformation 
in two scans using a 3x3 neighborhood. Comput. Vis. Image 
Underst. 93(2), 195–205 (2004). https:// doi. org/ 10. 1016/j. cviu. 
2003. 09. 004

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

Xiaoxin Wu  received the B.E. 
degree from ChongQing Medical 
University, China, in 2013, the 
Doctoral degree in Zhejiang Uni-
versity, China, in 2019. Cur-
rently he is an attending physi-
cian in the First Affiliated 
Hospital, Zhejiang University 
School of Medicine. His current 
research focuses on the diagnosis 
and treatment of emerging infec-
tious diseases.

Zhihao Zhang  received the B.E. 
degree in Electronical Informa-
tion Science and Technology 
from Nanjing XiaoZhuang Uni-
versity, Nanjing, China, in 2018. 
He is currently working toward 
the M.S. degree in Artificial 
Intelligence and Big Data from 
Shanghai University of Electric 
Power. His current research 
focuses on image processing, 
deep learning and defect 
detection.

Lingling Guo  received the B.E. 
degree from Zhejiang University, 
China, in 2011, the Ph.D. degree 
in Chemical Engineering from 
Alabama University, USA, in 
2015. Currently she is an assis-
tant professor in Zhejiang Uni-
versity of Technology. Her cur-
rent research focuses on the 
industr ial information and 
automation.

Hui Chen  received the B.E. 
degree from Tianjin University 
of Traditional Chinese Medicine, 
China, in 2012. Currently he is a 
supervisor nurse in the First 
Affiliated Hospital, Zhejiang 
University School of Medicine. 
His current research focuses on 
the treatment of emerging infec-
tious diseases.

Qiaojie Luo  received the Ph.D. 
degree in Stomatology from 
Zhejiang University in 2015. 
Currently she is a dentist and sci-
ence researcher in the Affiliated 
Stomatology Hospital of Zheji-
ang University. Her current 
research focuses on implantol-
ogy and adhesive dentistry.

https://doi.org/10.1109/ICIP.2010.5653335
https://doi.org/10.1109/ICIP.2010.5653335
https://doi.org/10.1007/978-3-540-88690-7_34
https://arxiv.org/abs/1607.01092
https://doi.org/10.1109/TMI.2019.2905990
https://doi.org/10.1007/978-3-319-66182-7_24
https://doi.org/10.1016/j.media.2016.01.005
https://doi.org/10.1016/j.media.2016.05.009
https://doi.org/10.1016/j.patcog.2021.108071
https://doi.org/10.1145/321356.321357
https://doi.org/10.1145/321356.321357
https://doi.org/10.1016/j.cviu.2003.09.004
https://doi.org/10.1016/j.cviu.2003.09.004


1104 Journal of Real-Time Image Processing (2022) 19:1091–1104

1 3

Bei Jin  received the B.S. degree 
in Stomatology from Wenzhou 
Medical University, Zhejiang, 
China, in 2005. He is currently 
an attending physician in 
Taizhou Hospital of Zhejiang 
Province. His current research 
focuses on Oral and Maxillofa-
cial Surgery.

Weiyan Gu  received the M.S. 
degree in Stomatology from 
Wenzhou Medical University, 
Zhejiang, China, in 2017. She is 
currently an attending physician 
in Taizhou Hospital of Zhejiang 
Province. Her current research 
focuses on Prosthodontics and 
Oral Implantology.

Fangfang Lu  received the Ph.D. 
degree in control theory and con-
trol engineering from Shanghai 
Jiaotong University, Shanghai, 
China, in 2013. She is currently 
an assistant professor in Shang-
hai University of Electric Power. 
Her current research focuses on 
medical image processing, 
machine learning, pattern recog-
nition and image quality 
assessment.

Jingjing Chen  received the Ph. 
D in Computer Science from 
Hong Kong Baptist University in 
2016. He was a research fellow 
in Blockchain with the Sunyard 
System Engineering Co. Ltd. 
during 2017–2019, and research 
fellow with the School of Tradi-
tional Chinese Medicine of Hong 
Kong Baptist University during 
2019–2020. Currently he is a 
research fellow with the school 
of Economics of Fudan Univer-
sity. He also serves as research 
fellow with Fudan-Stanford 
China Institute for Financial 

Technology and Security. His research interests include: Blockchain, 
e-Government and Enterprise Information System.


	FAM: focal attention module for lesion segmentation of COVID-19 CT images
	Abstract
	1 Introduction
	2 Related work
	2.1 Lesion segmentation of COVID-19 CT images
	2.2 Attention mechanism
	2.3 Shape priors in image segmentation

	3 Proposed method
	3.1 Design rationale of focal attention module
	3.2 Channel attention module
	3.3 Spatial attention module
	3.3.1 Lung segmentation
	3.3.2 Median filtering
	3.3.3 Distance transformation


	4 Experiment
	4.1 Dataset and metrics
	4.2 Training method
	4.3 Ablation analysis
	4.3.1 Shape prior
	4.3.2 Time complexity
	4.3.3 Performance analysis of the networks with attention modules
	4.3.4 Convergence analysis of the network training


	5 Conclusion
	Acknowledgements 
	References




