
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:2239–2267 
https://doi.org/10.1007/s11554-021-01107-w

ORIGINAL RESEARCH PAPER

Real‑time face alignment: evaluation methods, training strategies 
and implementation optimization

Constantino Álvarez Casado1 · Miguel Bordallo López1,2

Received: 11 February 2021 / Accepted: 13 April 2021 / Published online: 26 April 2021 
© The Author(s) 2021

Abstract
Face alignment is a crucial component in most face analysis systems. It focuses on identifying the location of several key-
points of the human faces in images or videos. Although several methods and models are available to developers in popular 
computer vision libraries, they still struggle with challenges such as insufficient illumination, extreme head poses, or occlu-
sions, especially when they are constrained by the needs of real-time applications. Throughout this article, we propose a 
set of training strategies and implementations based on data augmentation, software optimization techniques that help in 
improving a large variety of models belonging to several real-time algorithms for face alignment. We propose an extended 
set of evaluation metrics that allow novel evaluations to mitigate the typical problems found in real-time tracking contexts. 
The experimental results show that the generated models using our proposed techniques are faster, smaller, more accurate, 
more robust in specific challenging conditions and smoother in tracking systems. In addition, the training strategy shows to 
be applicable across different types of devices and algorithms, making them versatile in both academic and industrial uses.

Keywords  Face alignment · Real-time · Embedded devices · Cascaded regression · Optimization implementation · Training 
strategies

1  Introduction

Face alignment is a face analysis sub-problem that aims at 
estimating a sparse set of n specific points (landmarks) defin-
ing the shape of the face. Typically, this estimation includes 
the jaw, eyes, eyebrows, nose, and mouth. This identification 
of landmarks can be done either in images (a problem known 
as landmark detection) or on videos (a problem typically 
known as landmark tracking) [1, 2].

The set of points define the facial contour and face parts 
as shown in the example in the Fig. 1. That set of points 
located in a face is usually called a shape and can be consid-
ered as a vector describing the x, y coordinates (and z, in the 

case of 3D shapes) of its n points in the context of the image 
that needs to be processed.

Most of the proposed face alignment methods in the lit-
erature focus on the inference of a face shape from static 
images, disregarding challenges under real scenarios in real-
time applications such as fast face and head movements, 
extreme light conditions, artifacts from video streams such 
as noise or distortions, or smooth tracking of the landmark 
points. We see a lack of evaluation and analysis of the face 
alignment models beyond the accuracy of the inference for 
still images. Face alignment tracking systems involve other 
problems that have not been widely evaluated and mitigated. 
In this article, we propose a set of solutions to these chal-
lenges that are applicable especially in fast systems that 
require real-time operations.

This article focuses on improving the performance of 
state-of-the-art face alignment methods with emphasis on 
its operation in real time, both in embedded devices and 
desktop computers. In this context, the article leverages the 
original implementations and adapts it using multicore ena-
bled C++ libraries. The techniques are applicable to several 
well-known fast-inference face alignment algorithms as used 
both in the industry and academic domains.

 *	 Constantino Álvarez Casado 
	 constantino.lvarez.casado@oulu.fi

	 Miguel Bordallo López 
	 miguel.bordallo@vtt.fi

1	 Center for Machine Vision and Signal Analysis, University 
of Oulu, Oulu, Finland

2	 VTT Technical Research Centre of Finland Ltd., Oulu, 
Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-021-01107-w&domain=pdf


2240	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

We tackle the improvement of the accuracy of those 
models by proposing a set of training strategies, while opti-
mizing the algorithms via parallelization strategies and the 
application of software engineering techniques, accelerating 
the inference of the models and making them applicable in 
systems that require both robust and fast inference of facial 
landmarks both in static images and video sequences.

1.1 � Face alignment

Face is an important information source in many human 
contexts. it plays an important role for understanding a per-
son from a simple interaction, identity recognition [4, 5], 
face recognition [6], personality [7], emotional state [8–10], 
non-verbal communication [11] or even health [12]. This 
understanding can be used in many fields, such as human-
machine or human-computer interactions (HMI and HCI) 
[13], medical assistance applications, surveillance systems, 
robotics [14] or psychological and physiological analysis 
[15–17]. These applications support fields like education, 
commerce, health, therapy or entertainment, among others.

In recent years, face alignment has shown important 
progress. Nowadays, it is a key component in many com-
puter vision systems such as facial recognition systems, 

auto-focus systems on digital cameras in portrait and selfie 
modes, facial expression classification, augmented reality, 
and even face filters, widely used in many social media and 
social networking services [2]. Figure 2 shows a few of these 
applications. In general, we can say that all those systems 
integrate a face analysis module to produce semantic and 
quantitative information from faces.

Face analysis applications are usually comprised of a set 
of connected components, known as a pipeline. Face align-
ment is one of those core components that provides a precise 
map of facial points. Its results are in turn used further to 
compute intermediate tasks that feed the next steps. Geo-
metrical transformations, face normalization, segmentation, 
region of interest selection, head pose, or movement infor-
mation, all rely on facial alignment or landmark detection. 
For this reason, face alignment is a critical task in face analy-
sis systems since the performance of most of the next steps 
in the pipeline rely completely on its performance.

1.2 � Contribution

This article provides several contributions that are useful in 
both theoretical and practical contexts:

Fig. 1   The landmark loca-
tions defined by the Multi-PIE 
landmarks scheme [3]. (Left): 
exemplar face image with land-
marks (right): schematic

Fig. 2   Examples of face-
filtering applications using face 
landmarks detectors as a core 
technology to implement them



2241Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

•	 First, we provide a set of original C++ implementations1 
of state-of-the-art face alignment methods based on cas-
caded regression, following the original publication [18] 
and its reference Matlab implementation. This custom 
implementation is used throughout the article, as a modu-
lar prototype that allows the adaptation and evaluation on 
low-end systems and the experimentation with the train-
ing of different models under different training strategies.

•	 We extend this implementation, initially thought for face 
landmark detection, and modify it to develop a facial 
landmark tracker, able to perform in video sequences 
and real-time video, by leveraging temporal information.

•	 Based on our observations, we derive in a set of guide-
lines depicting different performance problems and the 
related metrics for their minimization. We propose three 
new evaluation metrics to assess the model performance. 
The metrics measure small and noisy spatial variations 
around predicted face shapes in similar images, as well 
as the sensitivity, to other components integrated in the 
same system such as face detection.

•	 We derive a set of rules for optimal training strategies, 
and we name them General Training eXtensions (GTX). 
Derived from the proposed set of metrics, they include 
novel techniques such as initialization variations, or the 
addition of domain-specific data annotated using teacher-
student architectures [19].

•	 We propose a set of software optimization techniques to 
accelerate the inference of these models, both in embed-
ded systems and desktop computers.

•	 Finally extensively evaluate a set of models produced 
by both our implementations and training strategies by 
comparing them with three different state-of-the-art 
implementations and models available as open-source 
code (ERT-dlib, LBF-opencv and DAN).

2 � Related work

As a general definition, we can define face alignment as 
the task of searching predefined facial key points or facial 
landmarks over a face image or video to obtain a facial 
shape. The number of key points is fixed and predefined by 
the annotation protocol and corresponds to specific physi-
ological locations of the human face. The process of face 
alignment can be comprised of several steps depending on 
the selected approach and what information is used: facial 
appearance (pixels, textures), shape information (spatial 
information), or both.

The current state-of-the-art in face alignment is com-
prised of very slow methods based on deep learning that 
require computationally heavy inference and very fast meth-
ods based on cascades of regressors that lack the ability to 
cope with complicated cases or extreme poses [2, 20]. Both 
types show a wide range of approaches that can be synthe-
sized by grouping them in high-level categories.

Most texts in the literature mainly adopt the classification 
of face alignment algorithms in two categories: generative 
methods and discriminative methods, depending on how 
they handle the probabilities and distributions based on the 
facial appearance and facial shape patterns [1, 2, 21].

2.1 � Generative methods

Generative methods also known as holistic methods, try to 
model the appearance of the face as a parametric model of 
a deformable object (synthetic version of the target face), 
similar to how Eigenfaces approach works for face recogni-
tion [22]. Based on the global facial appearance information 
and the global facial shape patterns, it takes into account the 
deformation of the face and removes it to obtain the land-
marks. The problem is typically formulated as an optimiza-
tion problem that tries to maximise the probability of facial 
reconstruction from a deformable model to find the best fit 
to the target face [1, 2, 23]. Well-know generative methods 
in the face alignment literature are the Active Shape Models 
(ASM) [24] and its improved version, the Active Appear-
ance Models (AAM) [25, 26]. Both introduced by Taylor 
and Cootes and still used nowadays, they play an important 
role in the field as reference benchmark to evaluate other 
methods [27]. The ASM method is considered the first one 
achieving to fit a Point Distribution Model (PDM) in the 
target face.

Other well-known methods, based on AAM improve-
ments, focused on unconstrained training data or robust 
and fast fitting using strong statistical and mathematical 
optimizations [28]. Examples are the Simultaneous Inverse 
Compositional (SIC) algorithm [29] seems to be accurate 
but slow, and the Project-out Inverse Compositional (POIC) 
algorithm [30] which is faster but less robust. Other gen-
erative methods can be grouped in the so-called part-based 
generative methods. Following similar ideas as AAM, they 
are based on series of local patches. The best example is 
the Constrained Local Model (CLM) method, described by 
Cristinacce and Cootes [31], which uses the global facial 
shape patterns as well as the independent local appearance 
information around each landmark to compute the prob-
ability distribution of landmark coordinates inside the local 
patch by using local classifiers-based or regression-based 
local appearance models. It is more robust to illumination 
variations and occlusions [20].1  Available at: https://​gitlab.​com/​visua​lheal​th/​vhpap​ers/​real-​time-​

facea​lignm​ent.

https://gitlab.com/visualhealth/vhpapers/real-time-facealignment
https://gitlab.com/visualhealth/vhpapers/real-time-facealignment


2242	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

2.2 � Discriminative methods

Discriminative methods learn discriminative functions dur-
ing the training stage that directly map the facial appear-
ance to the facial landmarks coordinates by computing the 
facial points where the alignment is correct based on the 
error minimization of the discriminative feature vectors. 
This mapping functions are usually achieved by regression 
models, that output whether the parametric model is well 
aligned or not [1, 20, 23]. These methods are also known as 
Regression-based methods. The process typically consists in 
multiple and independent local regressors trying to estimate 
each facial landmark independently using a global Point Dis-
tribution Model (PDM) [32] to regularize and constrain the 
predictions as a deformable shape model with constrains. 
These methods have usually demonstrated a superior per-
formance under uncontrolled conditions [20, 33]. We can 
classify the regression-based methods in three high-level 
categories: Direct Regression methods, Cascaded Regres-
sion methods and Deep-learning based regression methods.

Direct Regression methods, also called Ensemble regres-
sion-voting, are those able to map the face image appear-
ance to the facial points without any kind of initialization 
[1]. There are two type of approaches: local and global 
approaches depending on using global face appearance 
or local patches. Typical methods inside of this category 
are the Regression Forests methods [34], simple and low 
computational complexity algorithms such as the Condi-
tional Regression Forests algorithm proposed by Dantone 
et al. [35], the Random Forest Regression-Voting method 
described by Cootes et al.or the Structured-Output Regres-
sion forest method [36]. In general, these approaches are 
more robust than the previous ones due to the combination 
of votes from different face regions, but they have not dem-
onstrated a good balance between accuracy and efficiency 
for face alignment in-the-wild [1].

Cascade Regression methods compute the facial land-
marks by starting from an initial shape (e.g. canonical face 
shape). They normally geometrically transform the initial 
shapes by utilizing the face bounding box to fit it approxi-
mately to the target face, and gradually correct those land-
mark positions across different stages with their own regres-
sion function learnt during the training phase, until achieving 
the final shape in the last stage of the process [2, 23]. Cas-
caded regression methods have become as one of the most 
popular and state-of-the-art methods for this purpose. They 
show a very good balance between speed and high accuracy, 
making them a good choice for real-time face alignment 
detectors or trackers. The term was coined for first time by 
Cao et al. in the Explicit Shape Regression (ESR) approach 
[37], a boosted regression framework. Among the cascade 
regression methods, a well-known method is the Supervised 
Descent Method [38], similar to AAMs in many aspects, 

but trained in a discriminative way using linear regression 
and using hand-craft SIFT features [39] as appearance fea-
tures. The local patches are formulated as a non-linear least 
squares optimization problem, resulting in a simple but very 
fast and rather accurate approach. Other notable methods 
came as improvements up of the ESR method. Examples 
are the Regressing Local Binary Features (LBF) algorithm 
[18], re-implemented in this article and used currently for 
face alignment in OpenCV library [40] or the Ensemble of 
Regression Trees (ERT) [41] introduced by Kazemi et al. in 
2014 and well-known for being utilized by the Dlib library 
[42]. A depiction of the stage-based inference of these kinds 
of methods can be seen in Fig. 3.

More recently, Deep Neural Networks and especially 
Convolutional Neural Networks approaches have gained 
attention and become popular tools in computer vision tasks 
[43], including face alignment. They show robust and accu-
rate inferences of the facial landmarks [44–50]. CNNs can 
extract high-level image features, modeling complex non-
linear relationships between the facial appearance and the 
face shape. They are able to carry out several tasks at the 
same time like the pose estimation or a 3D shape deformable 
model, computing the 2D face shape as a projection of the 
3D model [51, 52]. Many of these approaches use heatmaps 
as a probability distribution map to compute accurately the 
coordinates of the facial landmark points in the input image 
[46, 50, 53, 54].

Although in the literature, the predominant research 
focuses in the estimation of face landmarks from still 
images, a few studies have faced the problem of face land-
marks tracking in videos. Some of them have focused on the 
temporal coherence between frames [55], others in incre-
mental learning [33, 56], using multiple initializations [57, 
58], doing tracking-by-detection [59] or exploiting a syner-
gistic approach between tracking and detection [60].

2.3 � Datasets and protocols for face alignment

There are several well-known databases related to face 
alignment. A list of the datasets and its characteristics is 
depicted in Table 1. It can be seen that some are collected 
under ”controlled” conditions, while others contain ”in-the-
wild” images. They are usually labelled with manual anno-
tations. Among all these databases, there is not a common 
protocol for annotations, leading to different face alignment 
datasets that are difficult to combine due to bias and incon-
sistencies over them [1, 2]. When talking about annotation 
protocols related to face alignment, we refer to the features 
of the annotated facial points set used by the databases. The 
protocols can contain different number of facial landmarks, 
different positions in the face shape, and different ways of 
labeling those points [61] as shown in the Fig. 4.



2243Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

Facial landmark annotations are mostly based on manual 
work, which could lead to inaccuracies due to factors such 
human fatigue or variability in high-resolution images [68, 
69], semi-automatic annotations [70] or even unsupervised 
and automatic annotations [69, 71]. The expected error in the 
manual annotations oscillates between 1 and 9%, depending 
on the landmark point, with a consensus average of an 8%. 
When a landmark prediction differs from the annotations 
below this threshold, we can consider that it could not be 
distinguished from the human annotation error.

In our experiments, we focus on the collection of data-
sets contained in the 300-W database [27] which is essen-
tially a standardized compilation of several others (mainly 
XM2VTS, FRGCv2, LFPW, AFW, Helen) with a few 
images in the most challenging of the conditions.

3 � Robust and fast face alignment system

The current face alignment state-of-the-art has placed the 
automatic face landmarks detection close to the domain of 
the human perception in terms of accuracy [46, 48–50], 
especially for still images in nonchallenging conditions. 

Still, the face alignment methods show several shortcom-
ings that would need to be overcome:

•	 Tracking even if the face alignment models work very 
well for still images, both in constrained and uncon-
strained environments, the smooth tracking of facial 
landmarks shows problems when presented with abrupt 
changes on the head pose in real-time situations. In addi-
tion, issues related to the sampling rate of the camera 
and the time processing of the face alignment algorithm 
add to the problem. Although there have been promising 
studies and results focused on this topic [85, 86], we are 
still far away from the results for still images, especially 
when accounting for the computational issues in low 
power devices.

•	 Pose The pose of the head affects directly on the face 
alignment model performance. Even the most advanced 
algorithms have problems when dealing with for extreme 
poses, especially for pitch and yaw angles.

•	 Illumination Changes in the light also affect the perfor-
mance of the models due to the texture dependence of the 
most of the approaches.

•	 Occlusion For images in-the-wild, occlusion is an 
essential artifact to take into account, since it appears 

Fig. 3   Stage-by-stage process in the LBF method. The searching area (local region) around each landmark and the radius for each stage 
decreases along the cascade [18]



2244	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

Table 1   Summary of publicly 
available face alignment 
databases and the most relevant 
features

The databases designed under control conditions are listed in blue in the first part of the table, while “in-
the-wild” databases are listed in orange. We use the following notations to represent different features: c: 
color, g: grayscale, i: images, v: videos

Name Year Type of data Number 
images/videos

Number of 
facial points

Type of annotations

XM2VTSDB [72] 1999 c, i 2360 68 2D, manual
BioID [73] 2001 g, i 1521 20 2D, manual
FRGC v2 [74] 2004 c, i 50,000 5 2D, manual
Multi-PIE [3] 2008 c, i 755,370 68 2D, manual
MUCT [62] 2010 c, i 3755 76 2D, manual
CK+ [75] 2010 g/c, v 593 68 2D, automatic
3DFAW-Video [76] 2019 c,v 66 51 2D/3D, automatic
AFLW [66] 2011 c, i 21,997 21 2D, manual
LFPW [77] 2011 c, i 1432 29 2D, manual
AFW [78] 2012 c, i 205 6 2D, automatic
Helen [63] 2012 c, i 2330 194 2D, manual
Ibug 300-W [27] 2013 c, i 3837 68 2D, manual
COFW [79] 2013 g/c, i 1852 29 2D, manual
MTFL [67] 2014 g/c, i 12,995 5 2D, manual
ACVF-2014 [80] 2014 c, v 201 9 2D, automatic
Ibug 300-VW [81] 2015 g/c, v 114 68 2D, semi-automatic
MAFL [82] 2016 c,i 20,000 5 2D, manual
LS3D-W [52] 2017 g/c, i 230,000 68 3D, automatic
Dlib 5-point [42] 2017 g/c, i 7364 5 2D, manual
WFLW [83] 2018 c, i 10,000 98 2D, manual
JD-landmark [84] 2019 c, i 15,393 106 2D, manual
LaPa [64] [65] 2020 c, i 22,000 106 2D, semi-automatic

Fig. 4   Images using different annotation protocols. Some of those protocols are listed from left to right, top to bottom: MUCT (76 points) [62], 
Helen (194 points) [63], LaPa (106 points) [64, 65], AFLW (21 points) [66], Multi-PIE (68 points) [3] and MTFL (5 points) [67]



2245Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

in multiple situations. Partial occlusions caused by 
hair, glasses, face masks, self-touching, or some exter-
nal occlusion objects, hide several face regions com-
plicating the landmark evaluation.

•	 Expression Changes in facial regions due to the influ-
ence of facial expression on the performance of the 
model. Several expression movements are very fast 
and hence difficult to track.

3.1 � Face alignment pipeline

The system topology of our face alignment general 
approach is described as a modular system as shown 
in the Fig. 5, where the face analysis modules can be 
replaced depending on the context and target application. 
A modular pipeline means that individual component 
blocks can share semantic, spatial and temporal informa-
tion between them to improve its performance, and they 
can be selected based on application needs.

3.2 � Tracking of the facial landmarks

The proposed pipeline is designed for processing both still 
images and video streams. Several issues arise when using 
face alignment models trained on still images to perform 
tracking of landmarks in a sequence of frames. The main 
observed phenomenon is related to slight differences in the 
estimated landmarks between two consecutive frames practi-
cally identical. This generates an undesirable shaking effect 
known as jittering, that ends up showing as a pronounced 
shaking effect in the normalized facial shapes and textures 
to be used in the applications. We can tackle this problem 
by both improving the models during the training stage and 
leveraging temporal information during the inference using 
a filtering approach [87]. Another undesirable observed 
effect, especially for real-time applications, is the failure 
in the face landmark detection process when the head pose 
change in a very fast movement, due to the sudden change 
of the initialization conditions. We argue that many of these 
problems partially arise from poorly designed engineering 

Fig. 5   System topology of a face alignment general approach, for both face landmarks detection and tracking. Green boxes represent the main 
modules and gray boxes represent dataflow steps



2246	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

systems. This article tries to systematically assess some of 
these design challenges.

4 � Evaluation metrics and benchmarks

Evaluation metrics refer to a set of measures that allow 
us to evaluate, quantify, and understand the performance 
of a model. We present several evaluation metrics, mainly 
focused on evaluating regression models, which we consider 
relevant for measuring the face alignment models perfor-
mance, especially for real-time applications and models.

4.1 � Standard face alignment metrics

The standard metrics for face alignment include typically 
those that are related to the quality of the predictions when 
compared to the ground truth annotations. This include 
mainly accuracy and error, and in some cases failure rate.

Accuracy is the fraction of predictions our model made 
right. Formally, the accuracy metric measures the ratio of 
correct predictions over all the processed data inputs. The 
accuracy metric is used as standard discriminative metric 
in the literature for classifying the performance of a model, 
but it suffers from presents shortcomings for understanding 
possible bias especially on unbalanced databases [88, 89].

Error can be measured by computing the difference 
between the inferred values and the ground truth values. The 
most commonly used error metrics are Mean Square Error 
(MSE), Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), and Mean Absolute Percentage Error (MAPE) 
[89, 90]. Standard evaluations in the face alignment litera-
ture are usually expressed as the point-to-point RMSE error 
between each point of the predicted shape and the ground 
truth annotations, normalized by the inter-pupil distance of 
the face [18]. A careful representation of the error distribu-
tion offers also a visual way of understanding the behaviour 
of a model.

Failure rate or Hit rate [91] is the percentage of face 
shapes with average error over or under an error threshold, 
respectively. They can be used as a way of knowing how 
many face shapes are estimated in an acceptable manner. 
It depends on an error threshold that can be arbitrarily set, 
that, in the context of face alignment, is usually set on values 
around 7–9%. [68, 92].

Computational efficiency refers to the time and effort 
required by a processor to generate a face alignment pre-
diction. It is usually expressed with two complementary 
magnitudes; the time used for inferring a face shape (in mil-
liseconds per face), and the number of the processed frames 
per second (fps). Both exclude all processes that are not 
directly related to the face alignment algorithm, such as 

reading and loading images or pre-processing steps such as 
data augmentation.

4.2 � Novel performance metrics

When applying the same face landmark detector indepen-
dently to the frames of a video, sometimes an inter-frame 
noisy and small variation, known as jitter, is observed in 
the landmark points. Those keypoints do not follow well an 
anatomically defined point across the frames, generating an 
undesirable shaking effect. This effect could be produced by 
lack of training samples, imprecise annotations with high 
variance [69], unclean datasets, or non-deterministic infer-
ence methods that use some kind of (pseudo)random infor-
mation during e.g. the initialization stage.

In addition, most of the face alignment algorithms rely 
on a face detection bounding box for shape initialization. 
It is well known that face detection is not always consist-
ent in consecutive frames. The face rectangle may vary for 
the same image depending on the face detector used [93]. 
Most of the face alignment methods suffer from initialization 
changes leading to differences in the estimated face land-
marks shape due to the aforementioned face detection jitter 
or different face rectangles. This is a phenomena known as 
Face Alignment Sensitivity [94], which describes the robust-
ness of the model to changes in the initialization. This has 
been previously studied [94], by proposing the AUC

�
 as a 

metric to measure the sensitivity to the face detector rectan-
gle. We extend the previous study by defining three comple-
mentary novel metrics, and use them to evaluate the model 
performance during tracking applications. We propose to 
compute that inter-frame error between the estimated shapes 
of two consecutive frames.

Landmarks Mean Squared Displacement metric (laMSD) 
is an adaptation of the image mean square displacement 
(iMSD) [95] adapted to video sequences. Measured in pix-
els and computed along a sequence of an arbitrary number 
of frames, it assumes the landmark points of the first frame 
as the reference, and computes the distance to the landmarks 
computed from the following frames.

Normalized Jitter Sensitivity Mean Square Error 
( NJS-MSE2

�
 ) is a metric computed by inferring the face 

landmarks on a set of reference images using a number i of 
random variations of the ground truth face rectangle or the 
rectangle from the face detector used in our application for 
each image in the set. The random variations are based on 
small face rectangle center shifts in the horizontal and verti-
cal axis. We use a high number of variations in pursuit of an 
error convergence, and the mean of the normalized error is 
then normalized by the variance, resulting in an evaluation 
metric to compare the jitter robustness of a face alignment 
model.



2247Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

Normalized Face Detection Sensitivity Mean Square 
Error ( NFDS-MSE2

�
 ) is a metric computed by inferring the 

face landmarks on a set of reference images using a number 
i of random variations of the ground truth face rectangle 
or the rectangle from the face detector used in our applica-
tion for each image in the set. For this metric, the random 
variations are based on face rectangle center shifts in the 
horizontal and vertical axis and random changes in the size 
(width and height) of the face bounding box. We use again a 
high number of variations in pursuit of an error convergence. 
The mean of the normalized error , is then normalized by 
the variance, resulting in an evaluation metric to compare 
the robustness of our face alignment model to different face 
detectors.

4.3 � Benchmarks

To evaluate our models, we test them on a mix of well estab-
lished standard benchmarks previously proposed in the lit-
erature and a set of benchmarks carefully designed by us. 
Most of the related works are mainly concerned about two 
performance indicators, accuracy and efficiency, but we 
argue that they are not the only key indicators to evaluate 

a face alignment model. We believe this combination of 
benchmarks are relevant for describing a more objective and 
realistic behavior in real-time applications running under 
unconstrained contexts. Those benchmarks are described as 
follows:

Common In-the-Wild benchmarks are a widely adopted 
set of benchmarks that focus on uncontrolled databases. In 
particular, they are useful to measure accuracy, error, and 
failure rates.

Jittering benchmarks are created ad hoc to test the accu-
racy of the models in pipelines implementing face tracking 
systems. The benchmark is designed as a set of 10 videos 
with 600 frames (1920 × 1080) where a static face (printed 
image) appears stuck on a stand without any face movement, 
as shown in the Fig. 6. The face rectangle is generated using 
a CNN face detector across all frames. The dimensions of 
the provided face bounding box in every frame is approxi-
mately 484x484 with little center shifts (between 1 and 3 
pixels of difference). A small limitation of this setup is that 
this benchmark is not only measuring the jitter produced 
by the randomness in the initializations, but also due to the 
noise of the sensor of the camera. We think that there are not 
straightforward ways of avoiding this.

Fig. 6   Jittering benchmark flow. The L2 norm is computed between the current frame and the previous one to calculate the interframe movement 
distance of the facial landmarks



2248	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

Domain-specific benchmarks are a set of benchmarks 
focused on measuring the performance of the models in 
specifically challenging scenarios, as opposed as comput-
ing just a general mean error. In this context, we collected 
images to evaluate our face-alignment models in three new 
domain-specific testsets, as shown in Fig. 7. Each testset 
belongs to one of three scenarios: Strong back-light (images 
mostly containing frontal faces and a strong light in the back, 
from a natural or artificial light source and images with a low 
dynamic range), poor light (images with a low light condi-
tion scenario like photo-selfies taken in the night or close 
environments without so much illumination) and Extreme 
pose scenarios (containing faces looking up or down in 
forced poses).

Computation speed benchmarks evaluate the efficiency of 
face-alignment models, by computing the processing time 
needed for estimating the landmarks per face as main time 
performance metric. It is composed of a few different sub-
sets. Assuming that a testset contains x images with only 
one face per image, we can compute the number of images 
(frames) processed per second. If the images on the testset 
contain more than one face per image, we can measure the 
time consumed per face shape estimation, and later compute 
the frames per second (fps). This is the mean frames per 
second of each testset and using still images, as used in the 
face-alignment literature. Apart from the measurement in 
still images, we can also measure the computation speed in 
tracking mode. In our experiments, we utilize the same video 
set as in the jittering benchmark.

5 � Training strategies

This section presents a set of training strategies that can 
be generally used to train high-performance face alignment 
models.We detail them one by one, explaining its context, 
advantages, and limitations, but finally we group them in 
a set that will be referred throughout this article as Gen-
eral Training eXtensions (GTX), and this set refers to those 
techniques that improve the inference of our models in 
unconstrained environments or improve the results in the 

test benchmarks. An overview of the training process can 
be seen in Fig. 8.

5.1 � Data Augmentation based on image 
manipulations

Data Augmentation based on image manipulations offers a 
set of techniques to improve the size and quality of a training 
dataset. It is usually based on the generation of additional 
images or annotations based on transformations performed 
on the original dataset. Several methods for this exist:

Geometric transformations, also known as spatial trans-
formations, are transformations of the image coordinate sys-
tem. It refers to operations that transform an image using 
variations of the shape. Some of the most frequent geometric 
transformations are flipping, rotation, cropping, translation, 
or scaling.

Color transformation, also known as photometric trans-
formations, are transformations over the pixels values in 
the matrices which compose an image, rather than the pixel 
positions. Some of the most frequent color transforma-
tions are changes in brightness, contrast, colorspaces and 
normalizations.

5.2 � Data Augmentation based on statistical 
manipulations

Statistical manipulations focus on numerical optimizations 
not interpreted from a visual perspective. Some algorithms 
are more stable working with a controlled range of numbers. 
Close numbers, in the sense of a continuous space with a lin-
ear scale, can produce smoother optimization paths and this 
can guarantee stable convergence of weights and biases [96]. 
Other statistical manipulations focus on finding discriminant 
properties through a statistical analysis to search for different 
classes in the database, such as discriminant power analysis 
(DPA) based on the DCT coefficients [97–99]. This opens 
the door for performing data augmentation in those classes 
with less representation. Statistical manipulations also refer 
to changes in some of the input conditions that affect the 
final estimation, such as noise, initializations or lighting. 
Some techniques are:

Fig. 7   Example images inside 
of the three domain-specific 
testsets. From left to right: 
strong back-light scenario, poor 
light scenario and extreme 
pitched head pose



2249Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

Image normalization changes the range of the pixels in an 
image by normalizing for a maximum and minimum value, 
by centering using the mean of all the channels or each indi-
vidually, by scaling the pixel values to have a zero mean and 
unit variance or by histogram equalization to accomplish 
an uniform distribution of intensities. The main idea of the 
normalization is to enhance the discriminative information 
contained in the image, avoiding external components like 
ambient illumination changes [100].

Noise injection generates new images by adding certain 
amount of noise to the training dataset can lead to a bet-
ter generalization error and fault tolerance by enhancing 
the learning capability [101]. Noise injection consists in 
creating a new matrix with random values following some 

distribution, adding it to the original image. The effect of 
the noise injection ranges from a regularization effect [102, 
103] to expand the samples in the dataset by adding variance 
and more samples, provoking that the models do not learn 
so much about specific training samples, making them able 
to learn more robust features. Adding noise to images is uti-
lized also for simulating the noise patterns or noise jittering 
presented in camera sensors, or generating images in low 
light conditions [104].

Initialization variation consists on introducing different 
initializations of the landmark points from an initial shape 
fitted in the face bounding box given for the face detector. 
Initialization variations can be generated by slightly shift-
ing the center of the face bounding boxes around and/or 

Fig. 8   Training process in the LBF method. The learning process follows a cascaded fashion topology. A linear regression of local features mini-
mizes the distance between the current shape and the target ground truth shape



2250	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

changing the size of the face rectangle. This technique has 
as an objective to reduce the variance caused when using dif-
ferent face detectors and the interframe variations caused by 
the noise. Initialization variations are shown in Fig. 9. To the 
best of our knowledge, this is the first time that experiments 
related to this technique are performed. Experimental results 
can be found in Sect. 7.

Outlier removal refers to removing the samples of the 
training dataset which are far away from the mean or other 
statistical indexes computed over the data, as a general 
explanation. Usually, it is a procedure carried out during 
the preprocessing step in the training pipeline, especially 
when raw data is used directly. Although we are not able 
to tell really which samples are outliers or not, we can set 
some constrains related to the ground truth data, such as, 
for example, limitations in the range of head angles. In our 
experiments, this was carried out after training the first mod-
els, and studying which samples had the biggest error, semi-
automatically inspecting them and removing them from the 
training data.

5.3 � Addition of domain specific data

To improve the model performance, it is possible to aug-
ment the training data by incorporating totally new data. In 

particular, we study the collection of images that belong to 
specific conditions that have proven to fail in the base mod-
els. As an example, we tackle faces with extreme poses in 
terms of pitch (head looking up or down) and faces captured 
in very low illumination or against powerful backlights, pre-
senting poor contrast and dynamic range. The images are 
annotated using a slow and accurate model and a teacher-
student architecture. More details on the formulation of 
this technique can be seen in our previous publication [19]. 
Examples of the resulting models can be seen in Fig. 10.

6 � Implementation and parallelization

This section shows a set of implementation techniques rang-
ing from serial optimization to parallelization strategies. The 
solutions are analyzed later in terms of performance, and its 
possible accuracy trade-offs.

6.1 � Reference algorithms

To evaluate our method, we focus on three face alignment 
methodologies that are considered to be state-of-the-art for 
different applications. The first model is trained using a 
Deep Alignment Network (DAN), one of the methods that 
has proven to have the best accuracy, at the expense of a rela-
tively big computational time. The second model is based on 
a Cascade of Regressions of Local Binary Features (LBF). 
To provide a comparison and to show the validity of our 
method for different algorithms and models, we also train a 
complementary model based on an Ensemble of Regression 
Trees (ERT).

In this evaluation, we start from our own C++ single 
thread implementations of the algorithms which are loosely 
based on [46] (DAN), [18] (LBF) and [41] (ERT). The 
results obtained by our implementations closely match the 
ones published by the original authors of the methods.

During the experiments and evaluations, we will use the 
next nomenclature to refer to our models:

•	 LBF(TND)base LBF models with T stages, N number of 
trees per landmark per stage, and D bits of tree depth, 
trained using similar training strategies and data aug-
mentation than in the original papers. The training and 
inference are our own C++ implementations.

•	 LBF(TND)gtx LBF models with T stages, N number of 
trees per landmark per stage, and D bits of tree depth, 
trained using the set of training strategies and data aug-
mentation proposed in Sect. 5. The training and inference 
are our own C++ implementations.

•	 LBF(TND)opencv Default LBF models as implemented in 
the OpenCV library with T stages, N number of trees 
per landmark per stage and D bits of tree depth, trained 

Fig. 9   Examples of image with multiple face bounding box initializa-
tions. The ground truth face rectangle is shown in blue. The random 
variations from the ground truth rectangle are shown in red colour



2251Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

using similar training strategies, and data augmentation 
than in the original papers. The inference code is the 
official C++ code from the open-source Face module of 
the Contrib module of the OpenCV library. We evaluate 
mainly the inference benchmarks of the default LBF565 
model provided by the documentation and compare it 
with our own LBF565base and LBF565gtx models.

•	 ERTdlib Official ERT model provided by the open-source 
C++ library Dlib. We use the model as provided. For the 
inference, we use the original Dlib C++ library. This is 
considered the base ERT model during all our evalua-
tions and comparisons.

•	 ERTgtx ERT model trained by us, by creating our own 
training project using the original Dlib code, but applying 
our set of training strategies to improve it. In the infer-
ence, we use the same code provided by the library.

•	 DAN odel and implementation provided by the original 
paper in Python and C++.

6.2 � Experimental setup

To carry out the implementation and evaluation experiments, 
we train our models using the 300W dataset and protocol 

described in Sect. 1.1 and in the original publication [27]. 
Moreover, the computational complexity of the models and 
methods is measured by comparing the inference times using 
different hardware systems. We have divided all these sys-
tems in three groups as shown below:

For training only:

•	 Server computer A server computer with an Intel® Xeon 
processor with 20 cores (40 threads) at 2.2 Ghz, 250 
Gigabytes of RAM, 1 terabyte Solid State Hard Drive 
for OS, 12 terabytes RAID Solid State Hard Drive, 4 
Nvidia® Titan X and 4 Nvidia® RTX 2080, used exclu-
sively for training and validation.

For both training and inference:

•	 Laptop computer MSI laptop with an Intel® Core i7 
processor at 2.6 GHz, 16 Gigabytes of RAM, 1 terabyte 
Solid State Hard Drive and a Nvidia® GTX960M Graph-
ics Processing Unit.

•	 Desktop computer personal desktop computer mainly 
used for testing and performing the evaluation bench-
marks, but also for carrying out some basic training 

Fig. 10   Examples of images from the domain-specific testing data sets as aligned by the teacher and student models, including success and fail-
ure instances



2252	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

attempts. It used an AMD® Ryzen 5 processor, with 
16 Gigabytes of RAM, 1 terabyte SSD and a Nvidia® 
GTX1050.

For inference only:

•	 Mobile device Mediatek® MT6762 Helio P22 chipset 
with ARM Cortex-A53 Octa-core processor and 2 
Gigabytes of RAM with 5 megapixels frontal camera. 
Used for testing the inference times of the final models.

•	 Embedded system NXP® Sabrelite board using 
Freescale i.MX6Q with ARMv7 Cortex A-9 mobile 
processor running at 792MHz and 2 Gigabytes of 
RAM. Used as main device for testing the inference 
times in low-end systems.

The development devices run Linux Ubuntu as the 
operating system except the smartphone, which runs 
Android OS. Algorithms and evaluated methods used 
in the experiments are implemented in C++ compiled 
using GCC (GNU Compiler Collection) version 7.5.0. 
For the implementations, we rely in a set of open-
source libraries and machine learning model sources 
(OpenCV, DLib, LibLinear, and OpenMP). The ref-
erence slow method (DAN) also includes parts of 
the implementation in Python 3.6 (using Theano and 
Lasagne). Both training and inference implementa-
tions of the LBF algorithm were developed in C++ 
(using Qt Creator), mainly due to performance reasons 
[105, 106].

6.3 � Implementation of LBF training

The training pipeline includes parameter setting, preprocess-
ing, training, and model deployment. During the training 
stage, we set the parameters that define our models before 
the process. An example configuration can be seen in Code 
1:

•	 stages_n the number of stages in the cascade, a rather 
critical parameter in the speed-accuracy trade-off.

•	 tree_n the number of trees per landmark per stage.
•	 tree_depth the depth of each tree. Always it is the same 

for every tree in the whole topology. The tree depth 
defines the number of nodes per tree, being 2tree_depth-1 
nodes.

•	 feats_m the number of features sampled at each stage to 
train each split node where feats_m is an array setting a 
different number of features at each stage.

•	 radius_m searching radii around each landmark and at 
each stage to sample the above-mentioned feature.

The rest of the parameters are related to data augmen-
tation, preprocessing operations, error normalization, data 
bagging made for random forest training or for the definition 
of the landmarks that belong to the eye region, to perform 
the inter-pupil normalization.

The Pre-processing step includes several functions. The 
first function is a parser for reading the input data, both for 
training and testing models. It reads and process the annota-
tions and ROIs of the facial images as .txt or .csv files. For 
performance reasons, we opt for loading all images at once 
in the memory, since the algorithm must access to different 
sections of the images for each tree.

Although the Data Augmentation step could be included 
as part of the pre-processing step, we describe it inde-
pendently due its impact on the final performance of the 
models. This step implements the already defined General 
Training eXtensions (GTX), by using mostly OpenCV 
functions. After the process, we randomize the array of 
images before training to avoid too similar images in the 
same batch, since each original image could be augmented 
up to hundred-fold.

The Training step aims at providing the final model. 
The LBF method consists of a cascade of regression ran-
dom forest and linear regression, where we learn “two 
models”, one feature mapping function to generate the 
local binary features, and another to regress a global 
linear projection using those concatenated local binary 
features. For the first one, we have implemented our 
own optimized random forest C++ class. For the global 



2253Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

linear regression at every stage, we have used the external 
library LibLinear.

After training our models, a file with extension .model is 
generated. It contains all information related to the model 
such as stages, number and depth of the trees, thresholds in 
the split nodes, regression weights, number of landmarks or 
mean shape among others. Those are the files used to test 
and evaluate our models before exporting them to include 
them in our face analysis library.

6.4 � Acceleration and parallelization of the training 
process

To decrease the training times, and thanks to the independ-
ence of the local feature mapping functions in the training, 
we leverage the OpenMP library to boost the speed in the 
loops where the algorithm can perform each iteration inde-
pendently. In particular, we parallelize the loop where the 
local binary features are sampled to learn the feature map-
ping function for each 68 landmark points, as shown in the 
Code 2, where we can observe the OpenMP directives.

In the code, several remarkable issues can be observed: 
one is the code where the input array of images is partitioned 
in batches(indexes ranges) with overlap to feed each tree at 
every random forest regression. Notice that we are using the 
same input arrays (images, bounding boxes, and shapes) for 
each thread, for that reason, those shared variables where 

defined as shared, to avoid a private copy of each variable 
for each landmark training, and save memory in an already 
exhausted memory due to the big amount of input images.

By using OpenMP to accelerate the training stage, we 
have reduced the training time approximately by a factor 
of four ( × 4) in the laptop computer and a factor of ten ( × 
10) in the server computer. In general, it is rather difficult 
to be precise when measuring times in multicore and mul-
tithread programming because it depends on many factors 
like the type of processor, scheduling algorithms, opera-
tive systems or shared data.

We have made measurements on two different models 
(LBF686 and LBF555 using same number of sampled fea-
tures to train each split node) trained in a similar manner. 
We observe than the time reduction is proportional to the set 
number of threads while they are under the physical number 
of cores of the processor. When the number of threads is 
larger that the physical cores of the processor, the reduction 
decreases significantly. This is shown in the Tables 2 and 3 
for two different systems.

One of the parameters with more impact on the training 
time of the LBF models is the number of features (feats_m) 
sampled to train each split node at every tree at every stage. 
Tables 4, shows the training times of training each landmark 
point. The results show four different versions of the same 
model LBF555base , varying only the number of features 
among them.

Based on the result, an estimation of an LBF model train-
ing time can be done by multiplying these times by the num-
ber of training images and the number of landmarks used in 
the model. The same effects can be observed in both training 
computers.

These results are complemented by experimenting the 
effects of different depths and number of total training 
images. Table 5 shows the time needed to train four models 
with the same number of stages (5) and the same number 
of trees per random forest regression (5) but using different 
four depths (5, 6, 7 and 8 bits) and a growing number of 
input images. The rest of the parameters are kept constant. 
We can observe that when we increase the depth tree one bit, 
the training time for the same number of images increases 
around 35%. When we double the number of input images, 
the training time increases between 70 and 80%.

6.5 � Implementation of LBF inference and testing

The inference and testing pipeline includes validation, visu-
alization, exporting, and model loading of the results.

Inference and testing aim at evaluating the model. The 
methodology includes a validation stage after the training 
that measures all metrics mentioned in Sect. 4, implemented 
and visualized using OpenCV functions.



2254	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

Exporting, and model loading aim at integrating the 
model in the face analysis library. We have created a func-
tion to export it as a source code file to be included in the 
binary file of the library, instead of reading it from an exter-
nal binary file of the model. There are some reasons for 
such decision: the first one is to make the generated files 
as small as possible when releasing the library. This was 
done by including the model data as header and source 
code, resulting in a reduced model size. The second reason 
is related to decreasing the model’s memory loading times. 
A complementary reason is the protection of the models, 
since commercial releases might require to keep the model 
details hidden to the users.

6.6 � Acceleration and parallelization of the inference 
process

After training our face alignment models, we obtain the 
mapping function to extract the features at each stage for 
every landmark, and a global linear projection matrix. For 
each tree, we obtain a set of indexes normalized between − 1 
and 1, that express the appropriate geometrical transforma-
tions of the new shape. We have two options to parallelize 
the process; since they are independent, we can parallelize 
the computation for each landmark, or we can parallelize the 
computation for each tree, obtaining similar results for both.

In addition, we can also accelerate the multiplication of 
the high-dimensional features extracted in the above men-
tioned process and the global linear regression or transfer 
matrix Wt . This computation can be accelerated in two 
ways: by parallelization of the operations by computing 
the increment of each landmark in different threads, and/
or by avoiding unnecessary multiplications, since those 
high dimensional features vectors are very sparse and 
hence have a majority of components equal to zero. We 
take advantage of this sparsity by trying several ways of 
avoiding multiplications, and show them in Code 3. In the 
Baseline, we can see how it is the normal multiplication 
to compute the global linear projection made in the LBF 
method inference. In the technique A, we avoid thousands 
of multiplications by checking if the feature is 0 or 1. In 
the technique B, we avoid even to use a statement if, by 
multiplying only the features which are 1. For that, we 
save the index where the feature vector is one when they 
are generated in the feature extraction step. Finally, in the 
technique C, we avoid the multiplication by adding the 
value of the transfer matrix where the feature vector is 1. 

Table 2   Average training time in minutes per model, on an Intel® 
Core(TM) i7 processor at 2.6 GHz with 4 cores and 8 threads

Model 1-thread 
(min/model)

2-threads 
(min/model)

4-threads 
(min/model)

8-threads 
(min/
model)

LBF555base 87.6 47.9 26.8 21.4
LBF686base 144.1 79.5 45.1 40.4

Table 3   Average training time in minutes per model, on an Intel® 
Xeon processor with 20 cores (40 threads) at 2.2 Ghz

Model 1-thread 
(min/
model)

8-threads 
(min/model)

16-threads 
(min/model)

32-threads 
(min/
model)

LBF555base 96.6 14.1 2.3 1.4
LBF686base 157.6 22.7 3.5 2.1

Table 4   Average training time 
in milliseconds per landmarks 
per image, using different 
number of threads, in an Intel® 
Core(TM) i7 processor at 2.6 
GHz with 4 cores and 8 threads

Sampled features 
per split node

1-thread (ms/land-
mark per image)

2-threads (ms/land-
mark per image)

4-threads (ms/land-
mark per image)

8-threads (ms/
landmark per 
image)

100 0.99 0.55 0.32 0.29
200 1.19 0.66 0.37 0.34
400 1.57 0.86 0.48 0.41
800 2.29 1.24 0.69 0.58

Table 5   Average training time 
in minutes per model for four 
different models with different 
tree depths and a growing 
amount of input images (with 
and without data augmentation)

Model 300W trainset no data aug. 
(min/model)

300W trainset × 2 flip data 
aug. (min/model)

300W trainset × 6 flip + 
[− 45◦ , + 45◦ ] rotation (min/
model)

LBF555 1.97 3.64 10.59
LBF556 2.62 4.86 13.53
LBF557 3.51 6.14 16.57
LBF558 4.79 8.12 20.95



2255Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

Hence, we avoid all the multiplications, and the process 
consists in additions to compute the increment for every 
landmark in the axis X and in the axis Y. Apart from this, 
we unroll the loop for, by reducing instructions and laten-
cies, including the delay in reading data from memory 
[107].

The difference between all these options is shown in the 
Table 6, where we can observe the significant improvement 
in terms of speed when we use option C, even with mod-
ern processors and compilers [108]. The time consumption 
decreases around 40% when we use the loop unwinding tech-
nique and we avoid all multiplications.

7 � Comparative evaluation

This section empirically evaluates and analyses the impact 
of both training strategies and implementation optimization 
techniques in the final models, in terms of error, model size, 
computation time and performance in tracking mode and 
challenging scenarios. As a result of the GTX training strat-
egies depicted in Sect. 5, we have obtained a set of boosted 
models, labelled as LBFgtx models, that will be compared 
with the LBFbase models other complementary ones.

7.1 � Benchmarks and real‑time trade‑offs

During the evaluation of our implementation and models, we 
have found several trade-offs that have a direct impact on the 
performance of our applications. They are are related to the 
complexity of the models, the speed and/or precision of the 
computations, the number of accesses to the data allocated 
in the memory, the type of data used in the mathematical 
operations or the features of the hardware, among others.

The speed-accuracy trade-off is related to the accuracy of 
the system and its computation speed. Usually, a face align-
ment model is more accurate when it is more complex and 
includes a higher number of stages, trees per stage, depth of 
each tree or computed landmarks. When those parameters 
are larger, the complexity of the model increases, hence the 
inference time to detect the landmarks in a face increases 
too. Table 7 illustrates this trade-off.

The complexity of the model impacts on the computa-
tional time, and it is also directly linked with the size of the 
models. More complexity usually implies more information, 
and hence more memory space is needed to save and allocate 
it. Table 8, shows the size of every model configuration and 
the number of features extracted in each one to estimate 
the facial landmarks. Time consumption increases with the 
model size.

Model size plays a specially important role in low-end 
and embedded devices, where even the fastest of the models 
can compromise the real-time capabilities if implemented 
using nonoptimal data types.

Due to the limitations of these hardware devices (low 
power processors, low amount of cache memory, reduced 
memory bandwidth), floating-point numbers increase the 
time of computation, the memory access time [109] and the 
overhead in the computations [110]. A practical solution is 
the quantization of the models, to smaller data types [111].

We quantized the model applying Rounding Quanti-
zation [112] and fit the floating-point range in a short 
integer data type. We analyzed the impact of this quanti-
zation in a low-end device (LG k40 and NXP® Sabrelite 
board) and show it in Table 9. Quantization speeds up the 
inference in a noticeable manner, especially in low-end 
devices, without impacting heavily on the accuracy.

Table 6   The effect of the sparse multiplication techniques in the face 
alignment system

Tests using a live webcam video stream (640 × 480@30fps)

Model Baseline (ms/
face)

Technique 
A (ms/
face)

Technique 
B (ms/
face)

Technique 
C (ms/
face)

LBF555base 1.2–1.5 2.9–3.5 0.9–1.3 0.7–1.0
LBF686base 4.4–5.1 10.5–11.8 2.6–3.2 2.4–2.9



2256	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

7.2 � Jittering evaluation

We evaluated the inter-frame behavior of several LBF 
models, comparing base models with the ones trained 
using our GTX training strategies. The results are 
expressed using both the total amount of jitter in pixels 
and the laMSD metric, using the specific benchmarks 
previously described. We show the results in Table 10. 
We argue that the jittering effect is related to the gener-
alization of the model, and it is interdependent with the 
number of images used to train them and the complexity 
of the model. We have also empirically observed that the 
parameters of the regularization function when training the 
global regression have impact in the amount of jittering in 
the trained model. The results show that our GTX models 
outperform base models in a consistent manner.

7.3 � Impact of LBF parameters on model 
performance

To understand the optimal face alignment parameter and 
model selection, we extensively review next some results 
related to the topology and performance. The LBF algo-
rithm, based on a cascade of regressions is defined by a 
number of stages (T) that affects to the complexity, and as 
a consequence, the speed and accuracy performance. We 
review the accuracy performance in terms of average error 
and failure rate stage by stage, to know how our models 
perform stage by stage and show them in Tables 11 and 12. 
We observe that the higher accuracy increment happens 
in the first two or three stages. Also we can observe that 
the time processing per stage is rather similar, because the 
feature mapping functions have the same size for every 

stage, hence, the algorithm searches the same number of 
features at every stage.

When plotting the accuracy and the failure rate for several 
models, as shown in Fig. 11, we can see that the behaviour is 
common to all of them, and that both start decreasing until 
achieving almost asymptotically.

7.4 � LBF error distributions

We believe that the average error does not sufficiently 
explain how the model is failing, specially since we can 
consider that individual errors under 8%, could be indistin-
guishable from human annotation errors. Figure 12, shows 
plots of the error distributions for two different LBF686 
models and two different LBF555 models. We can observe 
the improvement between two different model configurations 

Table 7   Trade-off between 
average error, failure rate and 
computation times of different 
models in a laptop computer

In bold, best result

300W-common 300W-fullset Speed test

Model avg. er. (%) fail.rate (%) avg. er. (%) fail.rate (%) CPU (ms/face)

LBF554 6.70 18.59 10.62 31.93 1.1
LBF664 6.41 17.68 10.13 30.76 1.5
LBF645 6.31 16.06 10.11 28.73 1.6
LBF555base 6.54 16.96 10.35 29.61 1.6
LBF555dnf 6.52 17.49 10.36 30.33 1.6
LBF555gtx 6.24 14.62 8.93 27.86 1.6
LBF674 6.21 14.07 9.72 27.57 1.7
LBF565gtx 5.90 12.7 8.61 25.69 2.0
LBF547 6.73 18.05 10.85 31.20 2.7
LBF686base 6.02 11.55 9.57 24.67 5.1
LBF686gtx 5.57 8.75 7.72 21.77 5.1
LBF786 5.55 9.22 7.90 21.77 6.1
LBF698 5.99 12.27 7.81 23.80 7.2

Table 8   Sizes and dimensionality of the extracted features for several 
LBF models

Model Model size (MB) Features number CPU (ms/face)

LBF-554 19.9 13,600 1.1
LBF-664 28.8 19,584 1.5
LBF-674 33.6 22,848 1.7
LBF-645 38.5 26,112 1.6
LBF-555base 40.1 27,200 1.6
LBF-555dnf 40.1 27,200 1.6
LBF-555gtx 40.1 27,200 1.6
LBF-547 128.5 87040 2.7
LBF-686base 154.2 104,448 5.1
LBF-686gtx 154.2 104,448 5.1
LBF-786 179.7 121,856 6.1
LBF-698 694.2 470,016 7.2



2257Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

(LBF686 vs LBF555—Left vs Right) , and the improve-
ment between two different versions of the same model 
configuration (LBF555base vs LBF555gtx and LBF686base vs 
LBF686gtx—Up vs Down). In general, similar size models 
benefit from training strategies and data augmentations in a 
consistent manner, by showing less errors in the higher part 
of the distribution.

7.5 � Sensitivity evaluation

To evaluate the sensitivity of the models to external compo-
nents, we have computed the NJS-MSE2

�
 and NFDS-MSE2

�
 

values according to our defined metrics in two different 
benchmarks, one using frontal faces, and another one using 
challenging faces with low light conditions and extreme 
head poses. Table 13 shows the results for both benchmarks 
and both metrics, where higher numbers mean better results.

For a better understanding of the metric, we provide 
the values of a simulated landmark detector with different 
amounts of jittering, created by adding variations to the 
ground truth shape. We have added different percentages 
over each ground truth landmark point.

Most of the real models show base jitter values equiva-
lent to jitter between 0.5 and 2% in frontal faces, while the 
jitter due to the changes in the face detector range in values 
equivalent to 2% and 10% of jittering.

In general, for frontal faces, DAN has the best perfor-
mance in both metrics as expected by a slow non-real-time 
model. Among the fast models, the LBF-686gtx model has 
the best performance in both benchmarks for frontal and 
challenging images. In general, the GTX models work bet-
ter for the metric related to the face detector sensitivity. 
This is expected since they are trained using random vari-
ation of the face detection initializations and learn to be 
robust against these changes.

7.6 � Domain specific performance using 
Teacher‑Student annotations

Our training strategies included a solution to annotate a 
small subset of facial images belonging to challenging 
domains, utilizing a very slow but accurate model (DAN) 
to annotate challenging data for us that could be included 
in the training.

The comparative analysis of the experiments with the 
base and improved student models can be seen in Table 14. 
It can be seen that the teacher model, based on DAN, has 

Table 9   Impact of quantization in terms of accuracy (300W-common 
dataset), speed and size for different hardware devices

In bold, best result

LBF555float LBF555quantized

Hardware avg. error ms/face avg. error ms/face

Laptop (Intel Core i7) 6.49% 1.3–1.9 6.54% 0.7–1.0
Desktop (AMD Ryzen 5) 6.49% 1.1–1.5 6.54% 0.6–0.9
LG K40 (ARM Cortex 

A53)
6.49% 14.7–21.4 6.56% 2.2–6.8

NXP (ARM Cortex A9) 6.51% 24.7–38.2 6.54% 2.9–7.8
Size (MB) 40.1 17.6

Table 10   Amount of total jitter and jitter per frame in our self-
designed Jittering benchmark ordered by growing laMSD per frame

In bold, best result

Model Total jitter (pix-
els)

laMSD 
(pixels/
frame)

Frame rate (fps)

LBF-686gtx 75,177.78 142.92 217.8
LBF-565gtx 100,903.73 191.83 605.7
LBF-555gtx 113,003.38 212.44 731.9
LBF-645 121,170.13 230.36 775.0
LBF-686base 124,206.93 236.13 218.6
LBF-674 136166.44 258.87 612.8
LBF-565opencv [18, 

40]
157,653.44 299.72 742.3

LBF-664 169,967.92 323.13 763.8
LBF-555base 171,945.42 326.89 731.9
LBF-554 203,154.56 386.23 1098.0
LBF-698 271,452.04 516.07 138.8

Table 11   Average error, failure 
rate and average time consumed 
per stage by the LBF686

base
 

model using the 300W-fullset 
and 300W-common subsets to 
evaluate it

300W-common 300W-fullset Avg. Comp. Time

Stage avg. er. (%) fail.rate (%) avg. er. (%) fail.rate (%) CPU (ms/stage/face)

Initial 25.63 100.0 32.77 100.0 –
1 12.70 83.03 17.07 86.06 1.0
2 8.67 41.15 12.66 52.52 0.9
3 7.18 21.84 10.99 34.83 0.9
4 6.56 17.14 10.25 29.60 0.9
5 6.22 14.44 9.84 27.14 0.9
6 6.02 11.55 9.57 24.67 0.9



2258	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

execution times that are not suitable for real-time com-
putation when using a CPU. Both the base and improved 
models are from 100 to 300 times faster on desktop and 
mobile CPUs. As expected, the inclusion of the proposed 
training data does not have an impact on the computation 
time, since the models are not fundamentally changed and 
only the weights of the model vary with the new data.

When observing the error of the student models (LBF 
and ERT) on both Domain-Pitch and Domain-Lowlight 
testing sets, it can be seen that the average error is reduced 
from 15 to 30% adding as little as a 5% of data (150 
images). An important characteristic of the training is that 
the proposed scheme can be utilized without any loss of 
generalization abilities for the more typical data, as it can 
be seen in Table 14. The results obtained are comparable 
for LBF and ERT models, showing applicability for multi-
ple real-time. Additional experiments can be found in our 
previous work [19].

7.7 � Qualitative results

In addition to quantitative experiments, we show examples 
of the qualitative performance of the models and implemen-
tations. We show examples from both common in-the-wild 
databases and our own benchmark datasets.

The performance of the most of the models and algo-
rithms for frontal faces is most of the times excellent, as 
shown in Fig. 13, and we can assume that most of the mod-
els will perform reasonably good in optimal conditions. 
We can find slight differences among them, but mostly 
in little details of the eyes, lips or nose. Deep Alignment 
Network (DAN) models show the best results also when 
inspecting the quality of the landmarks, it estimates better 
all contours and definitions of the face parts. The differ-
ences between the ERT and LBF methods are minimal, 
and sometimes the estimation is marginally better in one 
than the other.

In challenging images, such as the ones included in 
the domain-specific benchmarks or the 300W challeng-
ing dataset, the differences are more noticeable. Figure 14 
shows estimations of several challenging images. Again, 
the slow DAN method outperforms the others, being 

highly accurate in all examples. However, we can observe 
how the data augmentation and training strategies improve 
substantially the accuracy of the real-time LBF and ERT 
models, as we can appreciate when observing regions such 
as the lips, eyes or face contours.

As the main observation, we can observe how the quali-
tative performance of the LBF686gtx model is very close to 
the DAN method, but it is approximately × 200 faster. This 
shows the applicability of our techniques for training and 
implementation to carry out fast but accurate fast align-
ment, directly usable in multiple applications and devices.

Despite the improvement show, some issues in challeng-
ing images remain. Figure 15, shows images with challeng-
ing issues that still are not solved in real-time face align-
ment. Occlusions, extreme head poses, make up or very dark 
scenarios where humans can predict well the shape, are still 
unsolved. Again, the DAN method can be considered to out-
perform the fast methods, although it also fails in the most 
challenging images.

For example, the first image shows that the best per-
formance corresponds to fast LBF and ERT models 
trained using GTX, while the base ERTdlib model and 
the LBF565opencv included in the common libraries fail. 
This suggests that there is a clear benefit in using models 
trained with our proposed strategies, directly usable by 
the same libraries.

In general, the base models are the worst ones in almost 
all scenarios. The ERTdlib and LBF565opencv models and 
implementations have similar performance, only slightly 
better than the BASE ones with a small advantage for 
ERTdlib . All of them show worse performance when com-
pared to GTX models, in almost all metrics and scenarios.

8 � Discussion and conclusion

The results of this article show the impact of a set of opti-
mization and training strategies in the context of a face 
alignment system that is intended to be integrated in a 
solution that runs in real-time, both in desktop computers 
and mobile devices. Without any algorithmic development, 
we show how clever strategies for training, implementation 

Table 12   Average error, failure 
rate and average time consumed 
per stage by the LBF555

base
 

model using the 300W-fullset 
and 300W-common subsets to 
evaluate it

300W-common 300W-fullset Avg. Comp. Time

Stage avg. er. (%) fail.rate (%) avg. er. (%) fail.rate (%) CPU (ms/stage/face)

Initial 25.12 100.0 30.94 100.0 –
1 13.28 84.84 17.76 87.81 0.4
2 9.39 53.43 13.48 61.54 0.4
3 7.66 28.88 11.63 40.49 0.4
4 6.94 21.11 10.80 33.53 0.4
5 6.54 16.96 10.35 29.61 0.3



2259Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

and system design can show tremendous impact on the 
performance of the models in terms of accuracy, speed, 
model size, or failure rate in challenging conditions.

We proposed a new set of specific metrics and bench-
marks which focus on the jittering of landmark points that 
happens in consecutive frames and the performance in 
domain-specific scenarios. We proposed a set of different 
training strategies that directly impact the accuracy of the 

face alignment models by incorporating data augmentation 
techniques that improve both the standard accuracy metrics 
and other important features of the models. We have shown 
several optimization techniques that can be directly applied 
to the inference stage, incorporating quantization of the 
models that impact especially the performance on embed-
ded devices.

Fig. 11   Average error and failure rates of several LBF models stage-by-stage using the 300W-commmon testset



2260	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

Fig. 12   Error distribution for the 300W-fulltest set using two different model configuration (LBF686 and LBF555), and two different versions of 
the two configuration (Base and GTX)

Table 13   Jitter and face detector 
sensitivity benchmarks

We provide a simulation results with different amount of jittering variations over the ground truth landmark 
points, to have a scale to quantify the evaluated models, In bold, best result 

Frontal faces test Challenging faces test

Model NJS-MSE2
�

NFDS-MSE2
�

NJS-MSE2
�

NFDS-MSE2
�

SIM (0.5%) 0.2155 0.2158 2.1419 2.1387
SIM (1.0%) 0.1076 0.1079 1.0641 1.0672
SIM (1.5%) 0.0712 0.0716 0.7117 0.7166
SIM (2.0%) 0.0536 0.0536 0.5357 0.5355
SIM (2.5%) 0.0430 0.0433 0.4297 0.4308
SIM (5.0%) 0.0215 0.0214 0.2144 0.2154
SIM (10%) 0.0108 0.0107 0.1070 0.1067
DAN [46] 0.1668 0.0404 0.1781 0.0330
ERTgtx 0.1663 0.0252 0.2430 0.0478
LBF-686gtx 0.1582 0.0556 0.3998 0.0849
ERTdlib [41, 42] 0.1442 0.0096 0.3359 0.0568
LBF565gtx 0.1213 0.0321 0.2856 0.0859
LBF565opencv [18, 40] 0.1179 0.0113 0.2913 0.0496
LBF-686base 0.1055 0.0177 0.3679 0.0836
LBF-555gtx 0.1027 0.0390 0.3777 0.0919
LBF-555base 0.0930 0.0150 0.2897 0.0848



2261Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

The resulting code and models are implemented and 
released using standard software platforms (Dlib, Opencv) 
that facilitate the adoption of these techniques and the 
direct utilization and retraining of similar models by other 

researchers and industry practitioners making easier to 
understand the type of improvements that one could expect.

Although the proposed techniques here have direct appli-
cation and show a framework to improve real-time face 

Table 14   Average error (%) 
and failed images (%) on the 
300W-fullset and domain-
specific testing subsets

In bold, best result

300-fullset Domain Pitch Domain Lowlight

Method avg. er. (%) fail.rate (%) avg. er. (%) fail.rate (%) avg. er. (%) fail.rate (%)

DANteac. [46] 5.03 1.16 3.89 0 4.01 0
LBFbase 8.2 23.0 25.5 100 19.7 100
LBF-150 8.2 23.0 18.2 76 15.4 70
LBF-300 8.3 23.5 16.5 67 14.8 66
LBF-450 8.2 23.8 15.4 60 14.2 63
LBF-600 8.4 23.5 13.8 52 13.6 54
ERTbase 8.0 22.9 24.2 100 19.8 100
ERT-150 7.9 23.1 18.1 84 17.9 77
ERT-300 8.0 23.3 16.4 81 17.5 72
ERT-450 8.0 23.6 13.7 67 16.7 67
ERT-600 8.2 23.3 13.4 56 16.0 59

Fig. 13   Inferences from DAN, ERT and LBF methods for images with frontal faces from our own testsets with and without GTX training



2262	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

alignment models based on cascaded regression methods, 
some open questions and limitations still remain.

There is a lack of face alignment algorithms using tem-
poral information to track face landmarks in video streams, 
especially for real-time applications in low-end devices. The 
temporal information can help to improve the inference in 
consecutive frames, reducing artifacts. Widely used bench-
marks are lacking of a well-defined sets aimed at measuring 
the jittering of face alignment tracker systems.

Exploiting the spatial relationships among landmark 
points, taking advantage of their relations due to, e.g., face 
symmetry, could lead to improving the speed, performance 
and parallelization in dedicated hardware, by reducing the 
size of the face alignment models or the amount of esti-
mations, since these models rely on independent landmark 
regressions that have shown to be highly parallelizable.

We have some intuitions related to the learning capacity 
of the face alignment methods based on cascaded regressors. 
It is not clear yet how much the learning capacity depends 

Fig. 14   Inferences from DAN, 
ERT and LBF methods for 
some challenging images from 
300W testsets and own datasets. 
We can observe images belong-
ing to different specific-domain 
scenes. The effects og training 
strategies show results close to 
the slower models



2263Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

on the configuration of the model or on the topology of the 
algorithm. We think this is an interesting new horizon to 
explore and understand if we have a trade-off between com-
plexity of the model and the amount of data in the training 
stage. In addition and related to the learning capacity, we 
have found a relationship between the amount of data, com-
plexity, regression parameters, and jittering. We think that 
an exhaustive quantitative evaluation is still needed to better 
understand the learning process.

A critical issue that requires further evaluation, is the 
idea of classifying if an inference made by a face alignment 

model is adequately accurate. We have explored some ideas 
to try to classify the quality of the inference by using a SVM 
classifier that leverages the same Local Binary Features used 
to estimate the face shape, or exploring the mirrorability 
property proposed by [93]. Unfortunately, we have not found 
an obvious and consistent technique to do it, or found any 
well-tested proposal in the literature. Some methods, espe-
cially the ones based on neural networks, offer confidence 
values, but its results are not always trustworthy.

In its current state of research, it is difficult to pin-
point a specific “best” model since numerous trade-offs 

Fig. 15   Inferences from DAN, ERT and LBF methods for some images containing some of the main problems that the face alignment research-
ing have to face: occlusions, lateral faces, extreme expressions, facial masks, etc



2264	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

among different metrics have to be taken into account. 
Parameters such as the number of stages in the cascade, 
the number and depth of the trees, still need to be care-
fully selected based on the specific application needs. 
All these issues are still of importance, but lay beyond 
the scope of this article and should be studied in further 
future work.

Funding  Open access funding provided by University of Oulu includ-
ing Oulu University Hospital.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Jin, X., Tan, X.: Face alignment in-the-wild: a survey. Comput. 
Vis. Image Understand. 08 (2016)

	 2.	 Wu, Y., Ji, Q.: Facial landmark detection: a literature survey. 
CoRR (2018). arXiv:​1805.​05563

	 3.	 Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-
pie. Image Vis. Comput. 28(5), 807–813 (2010)

	 4.	 Haider, K., Malik, K., Khalid, S., Nawaz, T., Jabbar, S.: Deep-
gender: real-time gender classification using deep learning for 
smartphones. J. Real Time Image Process. 16, 02 (2019)

	 5.	 Tian, Q., Zhang, W., Mao, J.-X., Yin, H.: Real-time human cross-
race aging-related face appearance detection with deep convolu-
tion architecture. J. Real Time Image Process. 17, 02 (2020)

	 6.	 Kortli, Y., Jridi, M., Atri, M.: Face recognition systems: a survey. 
Sensors 20(342), 01 (2020)

	 7.	 Júlio, C.S.,  Júnior, J., Güçlütürk, Y., Pérez, M., Güçlü, U., 
Andújar, C., Baró, X., Escalante, H.J., Guyon, I., van Gerven, 
M.A.J., van Lier, R., Escalera, S.: First impressions: a survey on 
computer vision-based apparent personality trait analysis. CoRR 
(2018). arXiv:​1804.​08046 

	 8.	 Ekman, P.: Darwin and Facial Expression: A Century of Research 
in Review. Ishk, California (2006)

	 9.	 Ekman, P.: Darwin’s contributions to our understanding of emo-
tional expressions. Philos. Trans. R. Soc. B Biol. Sci. 364(1535), 
3449–3451 (2009)

	 10.	 Robinson, P., Kaliouby, R.: Computation of emotions in man and 
machines. Philos. Trans. R. Soc. B Biol. Sci. 364:3441–3447, 12 
(2009)

	 11.	 Li, H.Z.: Nonverbal Communication and Culture. American Can-
cer Society, Atlanta, pp. 1–7 (2015)

	 12.	 Thevenot, J., López, M.B., Hadid, A.: A survey on computer 
vision for assistive medical diagnosis from faces. IEEE J. 
Biomed. Health Inform. 22(5), 1497–1511 (2018)

	 13.	 Jaimes, A., Sebe, N.: Multimodal human–computer interaction: a 
survey. Comput. Vis. Image Understand. 108(1):116–134 (2007) 
(Special Issue on Vision for Human-Computer Interaction)

	 14.	 Thomaz, A., Hoffman, G., Cakmak, M.: Computational human-
robot interaction. Found. Trends Robot. 4:104–223, 01 (2016)

	 15.	 Suen, H.-Y., Hung, K.-E., Yu-Sheng, S.: Predicting behavioral 
competencies automatically from facial expressions in real-time 
video-recorded interviews. J. Real Time Image Process. 01 
(2021)

	 16.	 Kamenskaya, E.,  Kukharev, G.: Recognition of psychological 
characteristics from face. Metody Informatyki Stosowanej, nr 
1(Tom 13):59–73 (2008)

	 17.	 Egger, M., Ley, M., Hanke, S.: Emotion recognition from 
physiological signal analysis: a review. Electron. Notes Theor. 
Comput. Sci. 343:35–55 (2019) (The proceedings of AmI, the 
2018 European Conference on Ambient Intelligence)

	 18.	 Ren, S.,  Cao, X.,  Wei, Y.,  Sun, J.: Face alignment at 3000 fps 
via regressing local binary features. In: 2014 IEEE Conference 
on Computer Vision and Pattern Recognition, pp. 1685–1692 
(2014)

	 19.	 Casado, C.Á., López, M.B.: Face alignment: improving the 
accuracy of fast models using domain-specific unlabelled data 
and a teacher–student scheme. Electron. Lett. 55(11):646–648 
(2019)

	 20.	 Johnston, B., Chazal, P.: A review of image-based automatic 
facial landmark identification techniques. EURASIP J. Image 
Video Process. 86(09), 2018 (2018)

	 21.	 Celiktutan, O., Ulukaya, S., Sankur, B.: A comparative study of 
face landmarking techniques. EURASIP J. Image Video Process. 
1–27, 2013 (2013)

	 22.	 Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. 
In: Proceedings. 1991 IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition, pp. 586–591, June 
(1991)

	 23.	 Sánchez-Lozano, E., Tzimiropoulos, G., Martinez, B., De la 
Torre, F., Valstar, M.: A functional regression approach to facial 
landmark tracking. IEEE Trans. Pattern Anal. Mach. Intell. 
40(9), 2037–2050 (2018)

	 24.	 Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active 
shape models-their training and application. Comput. Vis. Image 
Understand. 61(1), 38–59 (1995)

	 25.	 Cootes, T.F., Edwards, G.J., Taylor, C.: Active appearance mod-
els. Pattern Anal. Mach. Intell. IEEE Trans. 23:681–685, 07 
(2001)

	 26.	 Edwards, G.J., Taylor, C.J., Cootes, T.F.: Interpreting face images 
using active appearance models. In: Proceedings Third IEEE 
International Conference on Automatic Face and Gesture Rec-
ognition, pp. 300–305, April (1998)

	 27.	 Sagonas, C.,  Tzimiropoulos, G.,  Zafeiriou, S.,  Pantic, M.: 300 
faces in-the-wild challenge: the first facial landmark localization 
challenge. In: 2013 IEEE International Conference on Computer 
Vision Workshops, pp. 397–403, Dec (2013)

	 28.	 Alabort-i-Medina, J., Zafeiriou, S.: A unified framework for 
compositional fitting of active appearance models. CoRR (2016). 
arXiv:​1601.​00199

	 29.	 Baker, S., Gross, R., Matthews, I.: Lucas-kanade 20 years on: a 
unifying framework: part 3. Int. J. Comput. Vis 56, 12 (2003)

	 30.	 Matthews, I., Baker, S.: Active appearance models revisited. Int. 
J. Comput. Vis. 60, 03 (2004)

	 31.	 Cristinacce, D., Cootes, T.: Feature detection and tracking with 
constrained local models. In: Bmvc, vol. 41, pp. 929–938. Cit-
eseer, 01 (2006)

	 32.	 Maria, M.V., Tavares, J.M.R.S.: Methods to automatically build 
point distribution models for objects like hand palms and faces 
represented in images. CMES 36, 213–242 (2008)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1805.05563
http://arxiv.org/abs/1804.08046
http://arxiv.org/abs/1601.00199


2265Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

	 33.	 Asthana, A.,  Zafeiriou, S.,  Cheng, S.,  Pantic, M.: Incremen-
tal face alignment in the wild. In: 2014 IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 1859–1866, June 
(2014)

	 34.	 Liew, C.F., Yairi, T.: Robust face alignment with random for-
est: analysis of initialization, landmarks regression, and shape 
regularization methods. IEICE Trans. Inf. Syst. 99-D:496–504 
(2016)

	 35.	 Dantone, M., Gall, J.,  Fanelli, G., Gool, L.V.: Real-time facial 
feature detection using conditional regression forests. In: 2012 
IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 2578–2585, June (2012)

	 36.	 Yang, H., Patras, I.: Face parts localization using structured-
output regression forests. In: Lee, K.M., Matsushita, Y., Rehg, 
J.M., Hu, Z. (Eds.) Computer Vision—ACCV 2012. Springer, 
Berlin, pp. 667–679 (2013)

	 37.	 Cao, X.,  Wei, Y.,  Wen, F.,  Sun, J.: Face alignment by explicit 
shape regression. In: 2012 IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 2887–2894, June (2012)

	 38.	 Xiong, X., Torre, F. De la.: Supervised descent method and its 
applications to face alignment. In: 2013 IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 532–539, June 
(2013)

	 39.	 Lowe, D.: Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vis. 60:91–11 (2004)

	 40.	 Bradski, G.: The OpenCV Library. Dr. Dobb’s J. Softw. Tools 
(2000)

	 41.	 Kazemi, V.,  Sullivan, J.: One millisecond face alignment with 
an ensemble of regression trees. In: 2014 IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 1867–1874, June 
(2014)

	 42.	 King, D.E.: Dlib-ml: A machine learning toolkit. J. Mach. Learn. 
Res. 10, 1755–1758 (2009)

	 43.	 Voulodimos, A., Doulamis, N.D., Doulamis, A., Protopapadakis, 
E.: Deep learning for computer vision: a brief review. Comput. 
Intell. Neurosci. 2018 (2018)

	 44.	 Sun, Y.,  Wang, X.,  Tang, X.: Deep convolutional network cas-
cade for facial point detection. In: 2013 IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 3476–3483, June 
(2013)

	 45.	 Zhang, J., Shan, S., Kan, M., Chen, X.: Coarse-to-fine auto-
encoder networks (cfan) for real-time face alignment. In: Fleet, 
D., Pajdla, T., Schiele, B., Tuytelaars, T. (Eds.) Computer 
Vision—ECCV 2014. Springer, Cham, pp. 1–16 (2014)

	 46.	 Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment net-
work: a convolutional neural network for robust face alignment. 
CoRR (2017). arXiv:​1706.​01789 

	 47.	 Feng, Z.H., Kittler, J., Awais, M., Huber, P., Wu, X.-J.: Wing loss 
for robust facial landmark localisation with convolutional neural 
networks. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 2235–2245 (2018)

	 48.	 Park, B.-H., Se-Young, O., Kim, I.-J.: Face alignment using a 
deep neural network with local feature learning and recurrent 
regression. Expert Syst. Appl. 89, 07 (2017)

	 49.	 Mahpod, S., Das, R., Maiorana, E., Keller, Y., Campisi, P.: Facial 
landmark point localization using coarse-to-fine deep recurrent 
neural network. CoRR (2018). arXiv:​1805.​01760

	 50.	 Dapogny, A., Bailly, K., Cord, M.: Decafa: Deep convolutional 
cascade for face alignment in the wild. CoRR (2019). arXiv:​1904.​
02549

	 51.	 Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across 
large poses: a 3d solution. CoRR (2015). arXiv:​1511.​07212 

	 52.	 Bulat, A., Tzimiropoulos, G.: How far are we from solving the 
2d & 3d face alignment problem? (and a dataset of 230, 000 3d 
facial landmarks). CoRR (2017). arXiv:​1703.​07332

	 53.	 Chen, L.,  Su, H.,  Ji, Q.: Face alignment with kernel density deep 
neural network. In: 2019 IEEE/CVF International Conference on 
Computer Vision (ICCV), pp. 6991–7001, Oct (2019)

	 54.	 Wang, X., Bo, L., Li, F.: Adaptive wing loss for robust face align-
ment via heatmap regression. CoRR (2019). arXiv:​1904.​07399 

	 55.	 Peng, X., Feris, R.S., Wang, X., Metaxas, D.N.: A recurrent 
encoder-decoder network for sequential face alignment. CoRR 
(2016). arXiv:​1608.​05477 

	 56.	 Sánchez-Lozano, E., Martínez, B., Tzimiropoulos, G., Valstar, 
M.F.: Cascaded continuous regression for real-time incremental 
face tracking. CoRR (2016). arXiv:​1608.​01137

	 57.	 Yan, J., Lei, Z.,Yi, D., Li, S.Z.: Learn to combine multiple 
hypotheses for accurate face alignment. In: 2013 IEEE Interna-
tional Conference on Computer Vision Workshops, pp. 392–396 
(2013)

	 58.	 Peng, X.,  Zhang, S.,  Yang, Y., Metaxas, D.N.: Piefa: Personal-
ized incremental and ensemble face alignment. In: 2015 IEEE 
International Conference on Computer Vision (ICCV), pp. 3880–
3888, Dec (2015)

	 59.	 Xiao, S.,  Yan, S., Kassim, A.A.: Facial landmark detection via 
progressive initialization. In: 2015 IEEE International Confer-
ence on Computer Vision Workshop (ICCVW), pp. 986–993, 
Dec (2015)

	 60.	 Khan, M.H.,   McDonagh, J.,   Tzimiropoulos,G.: Synergy 
between face alignment and tracking via discriminative global 
consensus optimization. In: 2017 IEEE International Conference 
on Computer Vision (ICCV), pp. 3811–3819, Oct (2017)

	 61.	 Zhu, S., Li, C., Loy, C.C., Tang, X.: Transferring landmark anno-
tations for cross-dataset face alignment. CoRR (2014). arXiv:​
1409.​0602

	 62.	 Milborrow, S.,  Morkel, J.,  Nicolls, F.: The MUCT landmarked 
face database. In: Pattern Recognition Association of South 
Africa (2010)

	 63.	 Le, V., Brandt, J., Lin, Z., Bourdev, L., Huang, T.S.: Interac-
tive facial feature localization. In: Fitzgibbon, A., Lazebnik, 
S., Perona, P., Sato, Y., Schmid, C., (Eds.) Computer Vision—
ECCV 2012. Springer, Berlin, pp. 679–692 (2012)

	 64.	 Liu, Y., Shi, H., Shen, H., Si, Y., Wang, X., Mei, T.: A new 
dataset and boundary-attention semantic segmentation for face 
parsing. In: AAAI (2020)

	 65.	 Liu, Y., Shi, H., Si, Y., Shen, H., Wang, X., Mei, T.: A high-
efficiency framework for constructing large-scale face parsing 
benchmark. CoRR (2019). arXiv:​1905.​04830

	 66.	 Roth, P.M., Koestinger, M., Wohlhart, P., Bischof, H.: Anno-
tated Facial Landmarks in the Wild: A Large-scale. Real-world 
Database for Facial Landmark Localization. In: Proc, First IEEE 
International Workshop on Benchmarking Facial Image Analysis 
Technologies (2011)

	 67.	 Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detec-
tion by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, 
B., Tuytelaars, T., (Eds.) Computer Vision—ECCV 2014. 
Springer, Cham, pp. 94–108 (2014)

	 68.	 Fagertun, J., Harder, S., Rosengren, A., Moeller, C., Werge, 
T., Paulsen, R., Hansen, T.: 3d facial landmarks: Inter-operator 
variability of manual annotation. BMC Med. Imaging 14, 35, 10 
(2014)

	 69.	 Dong, X., Yu, S.-I., Weng, X., Wei, S.-E., Yang, Y., Sheikh, 
Y.: Supervision-by-registration: an unsupervised approach to 
improve the precision of facial landmark detectors. CoRR (2018). 
arXiv:​1807.​00966

	 70.	 Sagonas, C.,  Tzimiropoulos, G.,  Zafeiriou, S.,  Pantic, M.: A 
semi-automatic methodology for facial landmark annotation. In: 
2013 IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops, pp. 896–903, June (2013)

http://arxiv.org/abs/1706.01789
http://arxiv.org/abs/1805.01760
http://arxiv.org/abs/1904.02549
http://arxiv.org/abs/1904.02549
http://arxiv.org/abs/1511.07212
http://arxiv.org/abs/1703.07332
http://arxiv.org/abs/1904.07399
http://arxiv.org/abs/1608.05477
http://arxiv.org/abs/1608.01137
http://arxiv.org/abs/1409.0602
http://arxiv.org/abs/1409.0602
http://arxiv.org/abs/1905.04830
http://arxiv.org/abs/1807.00966


2266	 Journal of Real-Time Image Processing (2021) 18:2239–2267

1 3

	 71.	 Guo, J.,  Mei, X., Tang, K.: Automatic landmark annotation and 
dense correspondence registration for 3d human facial images. 
CoRR (2012). arXiv:​1212.​4920

	 72.	 Messer, K., Matas, J.,  Kittler, J.,  Jonsson, K., Luettin, J., Maître, 
G.: Xm2vtsdb: the extended m2vts database. In: Proc. of Audio- 
and Video-Based Person Authentication, 04 (2000)

	 73.	 Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face 
detection using the hausdorff distance. In: Bigun, J., Smeraldi, 
F., (Eds.) Audio- and Video-Based Biometric Person Authentica-
tion. Springer, Berlin, pp. 90–95 (2001)

	 74.	 Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., 
Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the 
face recognition grand challenge. In: Proceedings of the 2005 
IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition (CVPR’05)—Volume 1—Volume 01, CVPR 
’05, USA. IEEE Computer Society, pp. 947–954 (2005)

	 75.	 Lucey, P., Cohn, J.F.,  Kanade, T.,   Saragih, J.,   Ambadar, 
Z.,  Matthews, I.: The extended cohn-kanade dataset (ck+): a 
complete dataset for action unit and emotion-specified expres-
sion. In: 2010 IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition—Workshops, pp. 94–101, June 
(2010)

	 76.	 Pillai, R.K., Jeni, L.A.,  Yang, H., Zhang, Z.,  Yin, L., Cohn, J.F.: 
The 2nd 3d face alignment in the wild challenge (3dfaw-video): 
dense reconstruction from video. In: 2019 IEEE/CVF Interna-
tional Conference on Computer Vision Workshop (ICCVW), pp. 
3082–3089, Oct (2019)

	 77.	 Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: 
Localizing parts of faces using a consensus of exemplars. IEEE 
Trans. Pattern Anal. Mach. Intell. 35(12), 2930–2940 (2013)

	 78.	 Zhu, X., Ramanan, D.: Face detection, pose estimation, and 
landmark localization in the wild. In: 2012 IEEE Conference on 
Computer Vision and Pattern Recognition, pp. 2879–2886, June 
(2012)

	 79.	 Burgos-Artizzu, X.P., Perona, P., Dollár, P.: Robust face land-
mark estimation under occlusion. In: Proceedings of the IEEE 
international conference on computer vision, pp. 1513–1520 
(2013)

	 80.	 Dhamecha, T., Verma, P., Shah, M., Singh, R., Vatsa, M.: Anno-
tated crowd video face database. In: Proceedings of 2015 Inter-
national Conference on Biometrics, ICB 2015, pp. 106–112, 06 
(2015)

	 81.	 Shen, J.,  Zafeiriou, S., Chrysos, G.G., Kossaifi, J.,  Tzimiropou-
los, G.,  Pantic, M.: The first facial landmark tracking in-the-wild 
challenge: benchmark and results. In: 2015 IEEE International 
Conference on Computer Vision Workshop (ICCVW), pp. 1003–
1011, Dec (2015)

	 82.	 Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Learning and transferring 
multi-task deep representation for face alignment. CoRR (2017). 
arXiv:​1408.​3967

	 83.	 Wu, W., Qian, C.,Yang, S., Wang, Q., Cai, Y., Zhou, Q.: Look 
at boundary: a boundary-aware face alignment algorithm. CoRR 
(2018). arXiv:​1805.​10483

	 84.	 Liu, Y., Shen, H., Si, Y., Wang, X., Zhu, X., Shi, H., Hong, Z., 
Guo, H., Guo, Z., Chen, Y.,  Li, B., Xi, T., Yu, J., Xie, H., Xie, 
G., Li, M., Lu, Q., Wang, Z., Lai, S., Chai, Z., Wei, X.: Grand 
challenge of 106-point facial landmark localization. CoRR 
(2019). arXiv:​1905.​03469

	 85.	 Yang, J., Deng, J., Zhang, K., Liu, Q.: Facial shape tracking via 
spatio-temporal cascade shape regression. In: Proceedings of the 
2015 IEEE International Conference on Computer Vision Work-
shop (ICCVW), ICCVW ’15, USA. IEEE Computer Society, pp. 
994–1002 (2015)

	 86.	 Sánchez-Lozano, E., Tzimiropoulos, G., Martinez, B., De la 
Torre, F., Valstar, M.: A functional regression approach to facial 

landmark tracking. IEEE Trans. Pattern Anal. Mach. Intell. 
40(9), 2037–2050 (2018)

	 87.	 Mörwald, T., Prankl, J., Zillich, M., Vincze, M.: Advances in 
real-time object tracking. J. Real Time Image Process. 10, 01 
(2013)

	 88.	 Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for 
data classification evaluations. Int. J. Data Min. Knowl. Manag. 
Process 5, 01–11, 03 (2015)

	 89.	 Ferri, C., Hernandez-Orallo, J.,  Modroiu, R.: An experimental 
comparison of performance measures for classification. Pattern 
Recogn. Lette. 30, 27–38, 01 (2009)

	 90.	 Botchkarev, A.: Performance metrics (error measures) in machine 
learning regression, forecasting and prognostics: properties and 
typology (2018). arXiv:​1809.​03006 

	 91.	 Ahuja, S.: Introduction of a new metric hit rate and it’s variation 
with scaling on classification algorithms. Int. J. Comput. Appl. 
125, 13–16 (2015)

	 92.	 Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou, S., 
Pantic, M.: 300 faces in-the-wild challenge: database and results. 
Image Vis. Comput. 47, 01 (2016)

	 93.	 Yang, H., Patras, I.: Mirror, mirror on the wall, tell me, is the 
error small? In: IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2015, Boston, MA, USA, June 7–12, 
2015, pp. 4685–4693 (2015)

	 94.	 Yang, H., Jia, X., Loy, C.C., Robinson, P.: An empirical study of 
recent face alignment methods. CoRR (2015). arXiv:​1511.​05049

	 95.	 Digiacomo, L., Digman, M., Gratton, E., Caracciolo, G.: Devel-
opment of an image mean square displacement (imsd)-based 
method as a novel approach to study the intracellular trafficking 
of nanoparticles. Acta Biomaterialia 42, 07 (2016)

	 96.	 Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the impor-
tance of initialization and momentum in deep learning. In: 
Dasgupta, S., McAllester, D. (Eds.) Proceedings of the 30th 
International Conference on Machine Learning, volume 28 of 
Proceedings of Machine Learning Research, Atlanta, Georgia, 
USA, 17–19 Jun (2013). PMLR, pp. 1139–1147

	 97.	 Leng, L., Zhang, J., Xu, J., Khan, K., Alghathbar, K.: Dynamic 
weighted discrimination power analysis: A novel approach for 
face and palmprint recognition in dct domain. In: International 
Journal of Physical Sciences, 2010, volume 5, no. 17, pp. 2543–
2554, 12 (2010)

	 98.	 Leng, L., Li, M., Kim, C., Bi, X.: Dual-source discrimination 
power analysis for multi-instance contactless palmprint recogni-
tion. In: Multimedia Tools and Applications, 2017, volume 76, 
pp. 333–354, 01 (2017)

	 99.	 Dabbaghchian, S., Ghaemmaghami, M.P., Aghagolzadeh, A. 
Feature extraction using discrete cosine transform and discrimi-
nation power analysis with a face recognition technology. Pattern 
Recogn. 43(4), 1431–1440 (2010)

	100.	 Štruc, V., Pavešić, N.: Image normalization techniques for robust 
face recognition. In: Proceedings of the International Conference 
on Signal Processing, Robotics and Automation (ISPRA’09), 
Cambridge, UK, pp. 155–160 (2009)

	101.	 Moreno-Barea, F.J.,  Strazzera, F., Jerez, J.M.,  Urda, D.,  Franco, 
L.: Forward noise adjustment scheme for data augmentation. In: 
2018 IEEE Symposium Series on Computational Intelligence 
(SSCI), pp. 728–734, Nov (2018)

	102.	 An, G.: The effects of adding noise during backpropagation 
training on a generalization performance. Neural Comput. 8(3), 
643–674 (1996)

	103.	 Bishop, C.M.: Training with noise is equivalent to tikhonov regu-
larization. Neural Comput. 7(1), 108–116 (1995)

	104.	 Carlson, A., Skinner, K.A., Johnson-Roberson, M.: Modeling 
camera effects to improve deep vision for real and synthetic data. 
CoRR (2018). arXiv:​1803.​07721

http://arxiv.org/abs/1212.4920
http://arxiv.org/abs/1408.3967
http://arxiv.org/abs/1805.10483
http://arxiv.org/abs/1905.03469
http://arxiv.org/abs/1809.03006
http://arxiv.org/abs/1511.05049
http://arxiv.org/abs/1803.07721


2267Journal of Real-Time Image Processing (2021) 18:2239–2267	

1 3

	105.	 Hundt, R.: Loop recognition in c++/java/go/scala. In: Proceed-
ings of Scala Days 2011 (2011)

	106.	 Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, 
J.P., Saraiva, J.: Energy efficiency across programming lan-
guages: how do energy, time, and memory relate? In Proceedings 
of the 10th ACM SIGPLAN International Conference on Soft-
ware Language Engineering, SLE 2017, New York, NY, USA, 
pp. 256–267 (2017) (Association for Computing Machinery)

	107.	 Huang, J.C.,  Leng, T.: Generalized loop-unrolling: a method 
for program speedup. In: Proceedings 1999 IEEE Symposium 
on Application-Specific Systems and Software Engineering and 
Technology. ASSET’99 (Cat. No.PR00122), pp. 244–248, March 
(1999)

	108.	 Kennedy, K., Allen, J.R.: Optimizing Compilers for Modern 
Architectures: A Dependence-Based Approach. Morgan Kauf-
mann Publishers Inc., San Francisco (2001)

	109.	 Koskela, M, Viitanen, T., Jääskeläinen, P., Takala, J.H., Cam-
eron, K.: Using half-precision floating-point numbers for stor-
ing bounding volume hierarchies. In: Proceedings of the 32nd 
Computer Graphics International Conference (2015)

	110.	 Erick, L.O.: Fixed-point representation & fractional math. Ober-
star Consulting, revision 1, 2 (2007)

	111.	 Wu, H.,  Judd, P., Zhang, X.,  Isaev, M., Micikevicius, P.: Integer 
quantization for deep learning inference: principles and empirical 
evaluation (2020). arXiv:​2004.​09602

	112.	 Widrow, B., Kollár, I.: Basics of Floating-Point Quantization. 
Cambridge University Press, Cambridge, pp. 257–306 (2008)

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Constantino Álvarez Casado  is a doctoral student at the Center for 
Machine Vision and Signal analysis at the University of Oulu. He 
received his M.Sc. degree in computer science from University of 
Oulu. He has several years of industrial experience in the development 
of real-time embedded computer vision algorithms, especially for face 
analysis. Contact him at constantino.lvarezCasado@oulu.fi

Miguel Bordallo López  obtained his Ph.D. degree from the University 
of Oulu in 2014. During 15+ years he has worked at the Center for 
Machine Vision and Signal Analysis. He is currently Senior Scientist 
at VTT Technical Research Centre of Finland and Assistant Professor 
at the University of Oulu. His research interests include face analy-
sis, embedded AI, image-based real-time sensing and energy-efficient 
embedded computer vision. Contact him at miguel.bordallo@vtt.fi

http://arxiv.org/abs/2004.09602

	Real-time face alignment: evaluation methods, training strategies and implementation optimization
	Abstract
	1 Introduction
	1.1 Face alignment
	1.2 Contribution

	2 Related work
	2.1 Generative methods
	2.2 Discriminative methods
	2.3 Datasets and protocols for face alignment

	3 Robust and fast face alignment system
	3.1 Face alignment pipeline
	3.2 Tracking of the facial landmarks

	4 Evaluation metrics and benchmarks
	4.1 Standard face alignment metrics
	4.2 Novel performance metrics
	4.3 Benchmarks

	5 Training strategies
	5.1 Data Augmentation based on image manipulations
	5.2 Data Augmentation based on statistical manipulations
	5.3 Addition of domain specific data

	6 Implementation and parallelization
	6.1 Reference algorithms
	6.2 Experimental setup
	6.3 Implementation of LBF training
	6.4 Acceleration and parallelization of the training process
	6.5 Implementation of LBF inference and testing
	6.6 Acceleration and parallelization of the inference process

	7 Comparative evaluation
	7.1 Benchmarks and real-time trade-offs
	7.2 Jittering evaluation
	7.3 Impact of LBF parameters on model performance
	7.4 LBF error distributions
	7.5 Sensitivity evaluation
	7.6 Domain specific performance using Teacher-Student annotations
	7.7 Qualitative results

	8 Discussion and conclusion
	References




