
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:2123–2134
https://doi.org/10.1007/s11554-021-01089-9

ORIGINAL RESEARCH PAPER

Real‑time FPGA‑based implementation of the AKAZE algorithm
with nonlinear scale space generation using image partitioning

Parastoo Soleimani1 · David W. Capson1 · Kin Fun Li1

Received: 19 November 2020 / Accepted: 24 February 2021 / Published online: 29 March 2021
© The Author(s) 2021

Abstract
The first step in a scale invariant image matching system is scale space generation. Nonlinear scale space generation algo-
rithms such as AKAZE, reduce noise and distortion in different scales while retaining the borders and key-points of the image.
An FPGA-based hardware architecture for AKAZE nonlinear scale space generation is proposed to speed up this algorithm
for real-time applications. The three contributions of this work are (1) mapping the two passes of the AKAZE algorithm
onto a hardware architecture that realizes parallel processing of multiple sections, (2) multi-scale line buffers which can be
used for different scales, and (3) a time-sharing mechanism in the memory management unit to process multiple sections
of the image in parallel. We propose a time-sharing mechanism for memory management to prevent artifacts as a result of
separating the process of image partitioning. We also use approximations in the algorithm to make hardware implementation
more efficient while maintaining the repeatability of the detection. A frame rate of 304 frames per second for a 1280 × 768
image resolution is achieved which is favorably faster in comparison with other work.

Keywords AKAZE · FPGA · Nonlinear scale space · Hardware design · Real-time · Image matching

1 Introduction

Feature detection and description are two of the impor-
tant stages in many computer vision algorithms such as
object recognition, face recognition, image stitching, image
retrieval, camera localization, and so on. One important cri-
terion in choosing a feature detector is having high repeat-
ability. Repeatability is defined as the capability of finding
the same feature in different viewpoints and scales. In fea-
ture detection, repeatable points of interest in the image are
detected, and in feature description, for each detected point,
a descriptor is defined to be matched to the same key-point
in other images. An important characteristic of a feature
detector is invariance to scale changes.

Scale invariant feature transform (SIFT) [1] and speeded
up robust features (SURF) [2] are two popular multi-scale
feature detector and descriptor algorithms. Both approaches
are computationally expensive. Oriented FAST and rotated
BRIEF (ORB) [3] and binary robust invariant scalable key-
points (BRISK) [4] feature detector and descriptor algo-
rithms were introduced to reduce the computational time of
the matching algorithm and to increase speed by using the
features from accelerated segment test (FAST) [5] detector
and binary robust independent elementary features (BRIEF)
[6] based binary descriptors.

The KAZE [7] feature detector and descriptor is another
multi-scale approach that uses nonlinear filtering instead
of a Gaussian filter, to create scale space and achieve
improvement in terms of repeatability in comparison with
other approaches. The main drawback of the KAZE feature
detector and descriptor is its speed in comparison with other
approaches, which is due to the nonlinear scale space. The
accelerated KAZE (AKAZE) [8] approach was introduced
to speed up the KAZE algorithm by using a mathematical
framework called fast explicit diffusion (FED) to build a
nonlinear scale space, and by introducing a new descriptor
named modified local difference binary (M-LDB) to reduce
storage requirement. Although it has been demonstrated

 * Parastoo Soleimani
 parastoo@uvic.ca

 David W. Capson
 capson@uvic.ca

 Kin Fun Li
 kinli@uvic.ca

1 Department of Electrical and Computer Engineering,
University of Victoria, Victoria, BC V8W 2Y2, Canada

http://orcid.org/0000-0002-1842-3613
http://orcid.org/0000-0001-6981-780X
http://orcid.org/0000-0001-7950-1577
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-021-01089-9&domain=pdf

2124 Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

in the original AKAZE paper [8] that this algorithm out-
performs other algorithms such as SIFT, SURF, ORB, and
BRISK in terms of repeatability and accuracy, it is still
slower in comparison with ORB and BRISK due to the non-
linear scale space creation.

As the demand for embedded vision systems has been
increasing in recent years, implementing real-time algo-
rithms while maintaining accuracy has become more impor-
tant. Although the AKAZE algorithm is less computation-
ally expensive in comparison with the KAZE algorithm due
to the FED filters, it still has higher computational complex-
ity compared to ORB and BRISK detectors. There are many
attempts for implementations of image processing and other
algorithms using Field Programmable Gate Array (FPGA)
due to its parallel architecture and speed benefits [9–11].
In this paper an FPGA-based accelerator for the AKAZE
feature detector is introduced to achieve higher speed while
keeping the same repeatability as the original AKAZE.

2 Related work

The SIFT feature detector and descriptor was introduced
in 2004 and is based on the difference of Gaussians (DoG)
operator. The detector is applied at different scales of an
image and for each detected key-point, a 16 × 16 s patch is
extracted and segmented into 16 sub regions. For each sub
region, a histogram of gradients is generated. The descriptor
is the concatenation of these histograms. The main drawback
of SIFT is its computational cost.

To reduce the computational cost of SIFT, SURF was
introduced in 2008. SURF uses the determinant of a Hessian
matrix in its detector and takes advantage of integral images
to increase the speed of the detection. For each detected
key-point, the descriptor is defined by using Haar wavelet
responses of its surrounding patch. In 2011, ORB was intro-
duced. ORB uses FAST as a detector and a modified version
of BRIEF as its descriptor.

The KAZE algorithm was introduced in 2012 using non-
linear scale space. The detector used in KAZE is based on
the determinant of a Hessian matrix and the descriptor is
based on the local difference binary (LDB) descriptor. By
using non-linear diffusion filtering, the boundaries of the
regions in different scales are retained, while reducing noise
in the image. Other previous methods find features using a
Gaussian scale space which smooths noise and boundaries
of objects to the same degree which results in the loss of
detail. The KAZE algorithm is rotation-invariant and scale-
invariant, and has more distinctiveness at various scales, but
it is slower in comparison with other algorithms.

To overcome this drawback, the accelerated KAZE
(AKAZE) algorithm was proposed in 2013. AKAZE non-
linear diffusion filtering is based on a fast explicit diffusion

(FED) framework which is more efficient in comparison
with KAZE filtering. The AKAZE detector is based on the
determinant of a Hessian matrix and the AKAZE descriptor
is the modified local difference binary (MLDB). Although
AKAZE is faster in comparison with the KAZE algorithm,
it is still slower than binary descriptors such as ORB and
BRISK. In this work we propose a hardware design to accel-
erate the AKAZE algorithm.

There are multiple publications that propose accelerators
for the AKAZE algorithm. Ramkumar et al. [12] propose a
GPU-based implementation of the KAZE algorithm. Jiang
et al. [13] describe a hardware architecture for the AKAZE
algorithm based on application specific integrated circuits.
They achieve a throughput of 127 frames per second for
1920 × 1080 images. However, their design does not cover
the contrast factor calculation which is an essential part of
the AKAZE algorithm. The AKAZE algorithm requires two
passes through the image and by not implementing the con-
trast factor, they are eliminating one of the passes which
contributes to higher throughput.

Kalms et al. [14] introduce a hardware accelerator based
on FPGAs for extracting AKAZE features. In their initial
publication, they propose a pipelined architecture for non-
linear scale space generation and they assume that the con-
trast factor is computed in software. In their later work [15],
they design an architecture for contrast factor computation
as well. They achieve a frame rate of 98 frames per second
for a 1024 × 768 image resolution.

Mentzer et al. [16] propose a hardware accelerator for the
AKAZE algorithm based on application specific instruction-
set processors (ASIP) which is used for an advanced driving
assistance system. They achieve a frame rate of 20 frames
per second which is higher than the results obtained from
a conventional processor and consumes less power than the
FPGAs.

Li et al. [17] use the AKAZE algorithm for extracting
descriptors from a video sequence. They use previous frame
pixels to predict the first octave of the nonlinear scale space
of the current frame in the AKAZE algorithm to increase
speed. They achieve 784 frames per second for 640 × 480
images. They propose using motion estimation to reduce
the effect of using the previous frame. Still, based on the
results they published, this method decreases the accuracy
of the algorithm. Their method is beneficial in applications
which process high video frame rates in which the amount
of changes in successive frames is negligible.

In this work, we take advantage of the fact that the algo-
rithm uses two passes through the input image. For the first
pass, we read the image and store it on the FPGA. In the
second pass, we process the image in parallel to achieve
increased speed. In comparison with [17], our method does
not require the previous frames to process the current frame.
We achieve a higher frame rate than [15] at the same image

2125Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

resolution and frequency by introducing a memory manage-
ment unit which facilitates the parallel processing of the
image.

3 A brief introduction to AKAZE nonlinear
scale space generation

The nonlinear scale space is a set of different scales of the
input image. These scales are grouped as octaves which each
of them having four sublevels in the AKAZE algorithm. Fig-
ure 1 shows a pseudocode overview of the algorithm for two
octaves.

The preprocessing step of the AKAZE algorithm gener-
ates a nonlinear scale space. In this step, the image is Gauss-
ian filtered to reduce noise. Then, since the contrast of the
image has significant effects on extracting the details of the
image, a contrast factor is computed (for use in subsequent
steps). In the second step, which computes diffusivity, a con-
ductivity function [8] is calculated using image gradients
and a contrast factor found in the preprocessing step. This
function affects how much detail of the boundaries of the
image is retained in the filtering process. In this work, we
use the conductivity function [8] in Eq. (1), as follows:

where K is the contrast factor and Lx and Ly are the gradients
of the image computed using a Scharr filter in horizontal
and vertical directions, respectively. We use the Scharr filter
parameters as shown in Fig. 2.

The output of the diffusivity step is called Lflow which is
computed for each pixel of the image. In the third and final
step, which computes the FED, the new sublevel scale is
generated using Lflow and the previous sublevel. The FED
process has multiple iterations (N), the number of which

(1)Lflow(i, j) =
1

1 +
L2
x
(i,j)+L2

y
(i,j)

K2

varies depending on the level of the scale space. The value
of (N) for each sublevel is determined using a precomputed
array from the original AKAZE algorithm [8]. In each step,
a constant step size value is multiplied by the filter.

In each FED process, the summation of the center pixel
with four adjacent pixels in vertical and horizontal direc-
tions of Lflow are multiplied by the difference between the
center pixel with four adjacent pixels in vertical and hori-
zontal directions of the previous sublevel. The summation
of the results of the multiplications is called Lstep . The FED
calculations are shown in Eqs. (2) and (3):

with k1, k2 ∈ {−1, 1} where Lstep is the output of the FED
calculation, Lt is the previous sublevel and s is the step size
constant which is different for each sublevel. The next sub-
level is generated as given in Eq. (3):

where Ltn+1 is the value of the next sublevel in the nonlinear
scale space.

4 Hardware implementation

Figure 3 is the overall block diagram of AKAZE scale space
generation. The main contribution of this work is based on
the fact that this algorithm has two passes through the input
data. We take advantage of this fact by storing the data in
the first pass and process it in parallel in the second pass. We

(2)
Lstep(i, j) = Σ(Lflow(i, j) + Lflow(i + k1, j + k2))+

(Ltn (i, j) − Ltn (i + k1, j + k2))s

(3)Ltn+1 = Lstep + Ltn

Fig. 1 Pseudocode of AKAZE algorithm

Fig. 2 Scharr filter weights

Fig. 3 Block diagram of AKAZE scale space generation with four
channels

2126 Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

need two memory units for storing the sublevels (Lt) and the
output of the conductivity function (Lflow). Each of these two
memories has the capacity to store a full image. These two
memories are implemented in the Block RAMs (BRAM) of
the FPGA. Each BRAM comprises a group of four smaller
BRAMs which store a section of an image, divided verti-
cally. The first set of BRAMs contains Lt data and the second
set of BRAMs stores Lflow data.

This design has three stages. In the first stage (the pre-
processing stage), the 8-bit grey level image enters pixel by
pixel to the preprocessing unit in which the contrast factor
of the image is calculated, and the image is filtered using a
Gaussian blur filter. The contrast factor value is used fur-
ther in the diffusivity unit, which is the second stage of this
design. Then, we store the filtered image, which is the first
level of the nonlinear scale space, in Lt memory.

After first stage is completed, the second stage (the dif-
fusivity unit) begins. This unit stores the values in Lflow
memory in preparation for the third stage, which is FED
calculation. From there on, stage 2 and stage 3 work simul-
taneously until all sublevels are generated. The output of
the third stage is the sublevels of the nonlinear scale space
which are written back to Lt memory for the next iteration.
Figure 4 shows the data flow of the algorithm at all stages.
Further details of each stage are explained in the following
sections.

4.1 Stage 1: the preprocessing unit

The block diagram of the preprocessing unit is shown in
Fig. 5. This unit has two outputs. The first output is the fil-
tered image, which is the first sublevel and initial value of
Lt , and is stored in the Lt BRAMs. The second output of
this unit is the contrast factor of the image, which is used
in Stage 2 for the calculation of image diffusivity. To cal-
culate the first sublevel, a 9 × 9 Gaussian filter is required.
The image first enters a line buffer that has a size of W × 9 ,
where W is the image width. The 9 × 9 window at the end
of the line buffer is connected to a Gaussian filter module,
in which the filtered value for the center pixel in the 9 × 9
window is calculated and is stored in the corresponding Lt
BRAM memory.

To calculate the contrast factor, first, we apply a 5 × 5
Gaussian filter to the image. The architecture for this filter
is similar to a 9 × 9 filter and differs only in the size of line
buffer and filter module. After filtering the image, the gra-
dients of the image in horizontal and vertical directions are
calculated using Scharr filters. The outputs of the Scharr
filters are used by the contrast factor calculation module.
Finally, the result of the contrast factor module is sent to
the diffusivity calculation unit which is the next stage of the
algorithm.

The block diagram of the contrast factor module is shown
in Fig. 6. This module receives the horizontal and vertical
gradients as input and generates the value of the contrast
factor as output. The process of computing the contrast fac-
tor value has two phases which is shown in Fig. 6. In the
first phase, the value of L2

x
+ L2

y
 is computed. In the original

algorithm, the square root of L2
x
+ L2

y
 is used. However, since

this value is used as an address for histogram generation, we
can safely set aside the square root. We map this value to 0
to 255 by normalization. This value is used as the address
of a set of 256 registers storing the histogram. At each clock
cycle, we increment the value of the corresponding register
to which L2

x
+ L2

y
 is pointing. At the same time, we store the

maximum of this value in the maximum finder register. After
this step is finished and the histogram is built, in the second
phase, we start from the beginning of the histogram and read

Fig. 4 Data flow of the algorithm. The FED stage starts after the dif-
fusivity stage. The preprocessing stage only processes the data once
at the beginning of the algorithm while the diffusivity and FED stages
run in each iteration

Fig. 5 Preprocessing stage architecture. This stage contains two
Gaussian filter modules. The output of the 9-row line buffer is a 9 ×
9 window and the output of the 5-row line buffer is a 5 × 5 window.
This stage computes the contrast factor and stores the filtered image
in the memory

Fig. 6 Block diagram of contrast factor calculation module

2127Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

the values of the registers and add them in the accumulator.
Whenever the value in the accumulator reaches 70% of the
maximum value of L2

x
+ L2

y
 from phase 1, we store the bin

number (same as address value) in the contrast factor reg-
ister. The value in the contrast factor register is the output
of the module.

4.2 Stage 2: diffusivity calculation

After storing the first sublevel Lt0 in the Lt memories in the
first stage, the second stage, which is the diffusivity stage,
begins. Figure 7 shows the architecture of a diffusivity chan-
nel. In this stage, we read the data from the Lt BRAMs, and
the contrast factor value of the image. The contrast factor
value is fixed for each image and does not change in the next
steps of the algorithm. The Lt data which we read from the
BRAM memory enter a 3-row line buffer. The output of the
line buffer is connected to two Scharr filters. We compute
the gradients of Lt data in x-direction and y-direction using
Scharr filters and label them as Lx and Ly , respectively. Then,
by using Lx value and Ly value and the contrast factor, we
compute the value of Lflow according to Eq. (4). For com-
puting Lflow , we use a divider IP core provided by Xilinx®
[18] which has 43 clock cycles delay. The divisor and the
dividend inputs of the IP core are 24-bit and 16-bit integers,
respectively. The output of the divider is a fixed-point 40-bit
number including 19 fractional bits. We scale the output of
the divider to avoid fractional arithmetic. Finally, we store
the result of this stage in the Lflow BRAMs.

4.3 Stage 3: FED filtering

In the third stage, we combine the data from Lflow and Lt
BRAMs to compute the sublevels in the scale space. The
AKAZE algorithm uses FED filters to generate sublevels
and different octaves. The main processing part of this step
is the FED cell module which requires a 3 × 3 window of
Lt data and a 3 × 3 window of Lflow data. To prepare the
input data for the FED cell in parallel, we use two 3-row line

(4)Lflow =
1

1 +
L2
x
+L2

y

K2

=
K2

L2
x
+ L2

y
+ K2

.

buffers for Lt data and Lflow data, respectively. We compute
the output of a FED cell module according to Eq. (2).

The architecture of this module is shown in Fig. 8. Each
sublevel is generated by the iterative use of FED filters, with
the number of FED cells required for each sublevel being
different. In this stage, the FED loop is unwrapped to the
maximum number of FEDs in the algorithm to achieve a
pipelined architecture.

We label each package of an FED cell and two line buff-
ers as an FED block. Figure 9 demonstrates an FED block
which generates the output specified in Eq. (3). For gener-
ating the first octave, we require four of these FED blocks
sequentially, which means that the output of each one is con-
nected to the input of the next. For each sublevel, we extract
the output from a specific FED block as shown in Fig. 10.
A multiplexer is used to select the appropriate output based
on the sublevel we are currently generating.

We label each group of 8 FED blocks and the multiplexer
attached to them as an FED channel. Since in this design we
process the data of the BRAM memories in parallel, 4 FED
channels work completely in parallel. Figure 11 shows the

Fig. 7 Diffusivity channel architecture

Fig. 8 FED cell architecture

Fig. 9 FED block architecture which contains two line buffers, an
FED cell, and an adder

Fig. 10 FED channel architecture which consists of 8 FED blocks

2128 Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

four FED channels. We store the output of the FED channels,
which are the sublevel data of the nonlinear scale space, in
Lt memory. These data overwrite the previous values of the
memory which contains the data from the previous sublevel.
At this stage of processing, we have the sublevel data in Lt
BRAMs. Now, the diffusivity stage can start again to gener-
ate the next Lflow for the next sublevel.

4.4 Memory management unit

The main contribution in this work is represented in the
memory management unit. We have two memories which
are dedicated to Lt data and Lflow data. The Lt data are the
sublevels of the nonlinear scale space and therefore are the
output of the algorithm while Lflow data are computed as
the required data in the middle of the processing of each
sublevel. Each of the memories are divided into n smaller
BRAMs (in this design we use n = 4), which can be inde-
pendently written or read. All of these memories are config-
ured as dual port RAMs.

In the first stage (preprocessing) the filtered pixels of the
image are written into the four BRAMs of Lt sequentially as
shown in Fig. 3. The first BRAM is filled and then, the sec-
ond. This continues until all data are completely read. The
algorithm then waits until the contrast factor is computed.

Then, since we have access to all of the image data in the
Lt BRAM, we can read from the four BRAMs in parallel. In
the second stage of the algorithm, diffusivity channels read
the data from the four Lt BRAMs in parallel. Since four dif-
fusivity channels are working in parallel, we can write the
data into Lflow BRAMs in parallel as well. In our design, we
use port A of the Lflow BRAMs to write the Lflow values as the
outputs of the diffusivity stage. As soon as writing the data is
started in the Lflow BRAMs, the third stage of the algorithm
can start working. In the third stage, FED channels read the
data from the Lflow BRAMs through port B and process them
in parallel. When the output of this stage is ready, it will
write back the results into the Lt BRAMs through port B.
The architecture of this design is illustrated in Fig. 3.

Another key element of the memory management unit
is the Lt FIFO between the second and third stages. Since
both ports of each Lt BRAM are being used, to speed up the
design, we use FIFO memories to send the required Lt data
from the diffusivity stage to the FED stage. By using a FIFO
architecture, we can synchronize the flow of the Lt data and
the Lflow data to have them available at the same time in the
third stage.

Processing the data in each of the n BRAMs separately
leads to some undesirable artifacts on the generated output.
An example of this artifact is shown in Fig. 12 as black
horizontal lines in the image. The reason for this artifact is
that the first rows and the last rows of each section require
the data of the adjacent rows from previous and subsequent
sections, respectively. To prevent this artifact, we use a time-
sharing mechanism to provide each processing channel with
the required data.

To prevent the artifacts caused by the border rows in the
diffusivity stage, we define three phases for processing each
section. There are 4 channels of processing in the diffusivity
stage. In the first phase, each channel reads the values from
the last two rows of the previous section. As a result, the
initial values of the line buffers will be filled with the data
from the previous section of the image. In the second phase,
each channel reads the data from its own corresponding sec-
tion in the memory. This phase, which is the main phase of
the process, utilizes most of the time of this stage. In the
third phase, each channel reads two rows of the data from
the next section of the image from the memory. Therefore,
the channel has access to the required information from the
next section. To implement this time-sharing mechanism,

Fig. 11 4 FED channels working in parallel

Fig. 12 An example of the artifact from processing four sections of
the image in parallel. Image from Oxford affine covariant features
dataset [19]

2129Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

we add data multiplexers to the beginning of each diffusivity
channel. In addition, we use finite state machines to issue the
required control signals for each phase.

Since the diffusivity stage and FED stage work simultane-
ously, when the process in the second phase reaches the last
row of a section, the first rows of the next section are already
updated with the next sublevel values in the memory. There-
fore, we cannot use the current data to prevent the artifact.
The solution to this problem is to store the first two rows of
each section in another part of the memory and use it in the
third phase. We propose a “helping” memory which has the
capacity of storing two rows of each section. In each itera-
tion of the algorithm, we fill the helping memories when
reading the first two rows of each section in phase two and
load from the helping memories of the next section in phase
three.

Since the first section of the image does not have a previ-
ous stage, the line buffers are filled with zeros in the first
phase for the first channel. Similarly, we use zeros as the
input data for the last channel in phase 3 since there is no
section after that. Therefore, memories 1 and 2 are connected
to the diffusivity channel 1 using a multiplexer. Memories 1,
2, and 3 are connected to the diffusivity channel 2 using the
second multiplexer. Memories 2, 3, 4 are connected to the
diffusivity channel 3 using the third multiplexer and memo-
ries 3 and 4 are connected to the diffusivity channel 4 using
the fourth multiplexer. We use the same procedure for FED
channels and Lflow memory to prevent the artifacts. Figure 13
demonstrates the time-sharing mechanism for preventing the
line artifacts in the nonlinear scale space.

4.5 Image resizer

In the original AKAZE algorithm, after each octave is gener-
ated, the size of the image is reduced by half. In our design,
the image resizer module issues the required signals to store
only half of the image in the memory to resize the image.

To do so, this module controls the write enable signals of
the port B of Lt BRAMs. When we are generating the first
level of the second octave, the resizer module disables the
write enable signal when the FED channels are generating
the outputs of even rows and even columns. Therefore, only
odd rows and columns are written into Lt BRAM memories
and the size of the image is thus reduced by half.

After this step, all other parts of the design work with the
smaller image. To do so, we design each of the line buffers
in the diffusivity and FED stages to have the capability to
work with two sizes. The architecture of the line buffers with
three rows is shown in Fig. 14. If the line buffer has more
than three rows (for example, 5 or 9 rows) the concept is the
same and only the number of the registers is different.

The line buffers have two modes. In the first mode, we
use the full capacity of the line buffers. The input pixels at
the end of each line are written to the beginning registers
of the next line. In this mode, the output window is derived
from the last registers of each line. This mode is used when
we are processing the first scale of the image. The second
mode, which is for half scale of the image, the output of the
registers in the middle of the original line buffer is sent back
to the next line. Therefore, we need to use multiplexers to
select the correct input for the first registers of each row.
In addition, the output window is derived by the registers
in the middle of the line buffer. Therefore, there is also a
multiplexer to choose the appropriate window as the output
of the module. All of the multiplexers in the line buffers are
controlled using a size mode signal which is generated by
the level controller module that contains a counter that keeps
counts of the sublevels being generated.

5 Timing analysis

In this section, we analyze the required timing of the archi-
tecture and calculate the throughput of the design, after each
line buffer is initialized. This initialization time is needed
until the output of the line buffers becomes valid and we can
have access to the data of multiple rows in parallel. We use
zero padding to process border pixels to avoid reducing the
part of the image that we are processing (Fig. 15).

Fig. 13 An example of selecting three phases for reading data from
various sections of the memories. We show the data flow for diffusiv-
ity channel 2 as an example. In phase 1, this channel reads the data
from the last two rows of the first section of the image. In phase 2,
data enter channel 2 from the second section and in phase 3, diffusiv-
ity channel 2 reads the first two rows of data from the next section.
Other channels have a similar data flow. Image from Oxford affine
covariant features dataset [19]

Fig. 14 The architecture of the 3-row line buffer with multi-scale
capability

2130 Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

In the preprocessing stage, we have a 9 × 9 Gaussian filter
module. Therefore, we need a 9 × W line buffer where W
is the width of the image. The initialization time required
for this stage is 5 ×W since after 5 rows of the image are
read, we can have valid output from this module (other rows
are initially 0s). After 5 ×W clock cycles, the output of the
Gaussian filter is valid and after that we need W × H clock
cycles to process the whole image. In this estimation we did
not include the contrast factor calculation since it overlaps
with filtering the data and its overhead is negligible. There-
fore, the required time for preprocessing is

The next stage of the design is the diffusivity stage. In
this stage, we first have line buffers for generating a 3 × 3
windows as inputs for the Scharr filters. These line buffers
require 2 ×W clock cycles for initialization and is the first
phase of the time-sharing mechanism. After that, since we
are processing the image in n different sections in parallel,
we require (W × H)∕n clock cycles to read and process n
sections of the image. In addition, an initial 43 clock cycles
are required for the divider module. After that, at each clock
cycle, the divider generates new valid results. Hence, the
number of required clock cycles for the diffusivity step is
based on the image width, height, and the number of parallel
sections according to:

The next stage is the FED module. In this stage, similar
to the diffusivity stage, we use 3-row line buffers in each
FED block module. Therefore, we need 2 ×W for initializa-
tion of each FED block module. In addition, W × H∕n clock
cycles are required for reading and processing the pixels of
each section of the image. Since for each sublevel we get the
output from a different FED block, we do not need to wait
for the data to pass all the FED blocks in an FED channel
in this stage. The first octave has four sublevels. The first
sublevel is the filtered image and therefore there is no need
to compute the result of the FED stage for it. For the second
and third sublevels, we get the outputs from the second FED
block and for the fourth sublevel, we get the output from the
third FED block. In the second octave, for the four sublev-
els of five, six, seven, and eight, we get the output from the
third, fourth, fifth and sixth FED block, respectively. It is
important to note that for the second octave, the size of the
image is reduced to half size and therefore we use W/2 and
H/2 as width and height of the image. Hence, the number of
required clock cycles for this stage is:

(5)Tpreprocessing = 5W +WH = W(5 + H)

(6)TDiffusivity = 2W +
WH

n
+ 43 = W(2 +

H

n
) + 43

Summing up the required clock cycles for one frame and
dividing by the frequency, the total delay of our design is:

The important difference in our work is the parameter n.
If we use n = 1 , the throughput of our design is similar to
that of Kalms’ work [15] and the frame rate would be 98
frames per second. If we use n = 4 , which means having
4 memory sections, we can achieve 360 frames per second
for the same image resolution (1024 × 768) at a maximum
clock frequency of 102.7 MHz (rounded off to 100 MHz in
Table 2 for ease of comparison with other work) on the Kin-
tex® Ultrascale™ FPGA. This number is also confirmed by
our simulation results. We can readily synthesize this design
for different image resolutions for various applications.

6 Experimental results

In this section, we provide the implementation results and
evaluation metrics of our work and compare our results with
other related work. We use the KCU105 FPGA board which
contains a Xilinx® Kintex® Ultrascale™ FPGA for synthe-
sizing our design. Results demonstrate the performance
of hardware design which is synthesized and simulated
using Vivado® software.

Table 1 shows the resource usage of the stages of the
design. In this table, LUTs are the Look up tables which are
the smallest logic blocks in the FPGA. DSP represents the
number of Digital Signal Processors which are the arith-
metic units in the FPGAs and FF shows the number of Flip
Flops which represents the number of registers used in the
design. Figure 16 shows the power consumption of different

(7)

TFED =

(

2W(2 + 2 + 3) +
WH

n

)

+

(

2W

2
(3 + 4 + 5 + 6) +

WH

4n

)

=W
(

32 +
5H

4n

)

(8)
Tdelay =

1

frequency
×

(

1.25WH

n
+ 32W

)

=
W

frequency
×

(

1.25H

n
+ 32

)

Table 1 Resource consumption of the stages of the algorithm

Algorithm stages LUTs Block RAMs DSP FF

Diffusivity stage 22935 0 0 15016
FED stage 79454 0 29 43714
Preprocess stage 9187 0 0 5378
Memory management unit 620 524 2 805

2131Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

stages of the design. The design consumes a total power of
1095 mW.

Table 2 demonstrates the overall resource usage, fre-
quency and speed of our implementation in comparison with
other work. In comparison with the work by Jiang et al. [13]
our work achieves higher frame rate, even though their work
does not contain the contrast factor calculation. Our frame
rate is higher than that of Kalms et al. [15], while our frame
size is bigger. In comparison with Li et al. [17], our resolu-
tion is higher than their work, and still we use less LUTs
(but more BRAM). If we use the same resolution as their
work which is 640 × 480 , our frame rate is 862 frames per
second. Based on the results of Li et al. [17], their method
affects the final accuracy. Therefore, with the same image

Table 2 Comparison of design
metrics

FPGA resources Ours Kalms et al. [15] Jiang et al. [13] Li et al. [17]

FPGA/Platform Kintex® Ultrascale™ Zynq® ASIC Kintex®-7
LUT 112596 16507 – 196134
LUTRAM 72276 – – 28068
BRAM 524 60 – 291
DSP 31 149 – 228
FF 65028 22738 – 157122
Image resolution 1280 × 720 1024 × 768 1920 × 1080 640 × 480
Frequency 100 MHz 100 MHz 200 MHz 100 MHz
Frame rate 304 fps 98 fps 127 fps 784 fps

Fig. 15 Power consumption. The left diagram shows the portion of
power consumed by different stages of the algorithm. The right dia-
gram shows the dynamic and static power consumption. Total power
consumption of the design is 1095 mW

Boat (zoom+rotation)

2 3 4 5 6
Image number

0

0.2

0.4

0.6

0.8

1

R
ep

ea
ta

bi
lit

y

Software implementation
Hardware implementation

Graffiti (viewpoint)

2 3 4 5 6
Image number

0

0.2

0.4

0.6

0.8

1

R
ep

ea
ta

bi
lit

y

Software implementation
Hardware implementation

Wall (viewpoint)

2 3 4 5 6
Image number

0

0.2

0.4

0.6

0.8

1

R
ep

ea
ta

bi
lit

y

Software implementation
Hardware implementation

Trees (blur)

2 3 4 5 6
Image number

0

0.2

0.4

0.6

0.8

1

R
ep

ea
ta

bi
lit

y

Software implementation
Hardware implementation

Leuven (light)

2 3 4 5 6
Image number

0

0.2

0.4

0.6

0.8

1

R
ep

ea
ta

bi
lit

y

Software implementation
Hardware implementation

UBC (JPEG compression)

2 3 4 5 6
Image number

0

0.2

0.4

0.6

0.8

1

R
ep

ea
ta

bi
lit

y

Software implementation
Hardware implementation

Fig. 16 Comparison of repeatability between the software implementation and the hardware implementation based on simulation using image
sets of the Oxford affine covariant features dataset [19]

2132 Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

resolution, our design achieves the highest frame rate using
the same frequency.

We designed and synthesized the proposed hardware
using VHDL in Vivado® 2017 software. We also created a
software model of the hardware in VHDL in MATLAB® for
accuracy evaluation purposes. This software model produces
identical results as the hardware implementation. Since the
focus of this paper is on nonlinear scale space generation,
we do not need a complete matching system to compare
the results. However, by adding the same key-point detec-
tor to both software implementation and the model of our
hardware, we can use the repeatability metric to evaluate
our design.

Other work has used different metrics to demonstrate the
performance of their design. Jiang et al. [13] introduce a
descriptor and report the performance of the whole system
on the Oxford dataset [19]. Li et al. [17] use a self-synthe-
sized dataset for accuracy evaluation. Kalms et al. [15] use
FREAK descriptor and report the performance of the whole
system which is also affected by FREAK descriptor. Since
these work do not use the same metric for evaluation and the
focus of our work is on nonlinear scale space generation, we
decided to use repeatability [19] to show the correctness of
the design. Higher repeatability implies improved perfor-
mance of the feature detector which is the step after non-
linear scale space generation in an image matching system.
Hence, this is an appropriate metric for demonstrating the
performance of this design. This metric demonstrates how
many key-points in the first image are found in the second
image and is defined in Eq. (9):

We use the Oxford affine covariant features dataset [19]
for comparing the repeatability of the software and the
hardware implementation of the AKAZE algorithm. We
use MATLAB® for software implementation of the algo-
rithm. The Oxford dataset contains a variety of image sets
with different transformations such as changes in rotation,
scale, viewpoint, and illumination. Each set has 6 images
from which the results of matching key-points of the first
image with other images, are used in the evaluation. We add
a Hessian detector to the nonlinear scale space images to find
the key-points for evaluation. The software implementation
is based on floating-point and the hardware implementa-
tion uses integer arithmetic which is scaled to improve the
computations. As shown in Fig. 16, the repeatability of the
hardware implementation is close to the software implemen-
tation. The small difference is due to the approximations in
bit-width in hardware design. We observe that for some of
images, software is better and in other images hardware can
be better. Since we are focusing on the nonlinear scale space

(9)Repeatability =

#of correspondences

#of key-points in the first image

filtering, approximations in bit-width have a direct effect on
the output images. It may cut off some of the details from
the images in lower bits. This could result in more matches
in some images depending on the image content.

7 Conclusion

In this work, we propose a design for nonlinear scale space
generation for the AKAZE algorithm. Using nonlinear scale
space for image matching leads to a higher accuracy but
requires more computations.

The first contribution of this work is based on the idea to
take advantage of the nature of the AKAZE algorithm which
uses two passes through the image. This gives us an oppor-
tunity to use four parallel channels to generate a nonlinear
scale space. In previous implementations of the AKAZE
algorithm [15], the image data are read from an external
memory in the first step to filter the image and compute
the contrast factor. Then, the result is written back to the
memory so that it can be read again for the next stage. We
take advantage of this fact that in the first step, the image is
read once from the external memory and we can have access
to different sections of the image if we store it on chip in
separate memories. Therefore, we design the memory man-
agement unit to store the image in 4 separate BRAMs so that
we can generate the sublevels of each section of the image in
parallel. This, in addition to the fully pipelined architecture
of each stage of the algorithm, leads to a noticeable speed
up in our design.

The second contribution of this work is the architecture
we propose for the second octave line buffers which uses the
same data path as the first octave, but in a different scale.
For this part, we introduce multi-scale line buffers which
have several output windows for parallelizing the image
input at different scales. Using traditional architecture results
in consuming twice the number of the line buffer registers
because each scale requires its own line buffers. However,
by changing the architecture of the line buffers, we use the
same hardware resources for both scales.

The third contribution of this work is the time-sharing
mechanism in the memory management unit which provides
the opportunity to process different sections of the image in
parallel without having artifacts in the image. We introduce
the time-sharing mechanism for this stage which has three
phases in Sects. 4 and 5. By using this architecture, we can
process multiple sections of the image which are stored in
different memories in parallel and provide the border pixel
values to all processing channels to prevent artifact in the
images. With these contributions, we achieve 304 frames

2133Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

per second for 1280 × 768 image resolution. We demonstrate
that the approximations proposed in our hardware imple-
mentation do not have a significant negative impact on the
repeatability of the algorithm based on the results in Fig. 16.

Possible future avenues of investigation could include
considering other diffusion algorithms to assess their suit-
ability for hardware implementation and considering differ-
ent detectors and descriptors that can be added to the cur-
rent architecture, following the parallel channel processing
concept.

Funding This research was supported by Doctoral Fellowships from
the University of Victoria, and Discovery Grants #36401 and #04787
from the National Sciences and Engineering Research Council of
Canada.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Lowe, D.: Object recognition from local scale-invariant features.
In: Proceedings of the Seventh IEEE International Conference
on Computer Vision, vol. 2, pp. 1150–1157 (1999)

 2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust
features. In: European Conference on Computer Vision, pp.
404–417 (2006)

 3. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An
efficient alternative to SIFT or SURF. In: International Confer-
ence on Computer Vision, pp. 2564–2571 (2011)

 4. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: binary robust
invariant scalable keypoints. In: International Conference on
Computer Vision, pp. 2548–2555 (2011)

 5. Rosten, E., Drummond, T.: Machine learning for high-speed
corner detection. In: Proceedings of the 9th European Confer-
ence on Computer Vision, pp. 430–443 (2006)

 6. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha,
C., Fua, P.: BRIEF: computing a local binary descriptor very
fast. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1281–1298
(2012)

 7. Alcantarilla, P., Bartoli, A., Davison, A.: KAZE features. In:
European Conference on Computer Vision, pp. 214–227 (2012)

 8. Alcantarilla, P., Nuevo, J., Bartoli., A.: Fast explicit diffusion
for accelerated features in nonlinear scale spaces. In: Proceed-
ings of the British Machine Vision Conference, pp. 13.1–13.11
(2013)

 9. Lam, S., Lim, T., Wu, M., Cao, B., Jasani, B.: Data-path unroll-
ing with logic folding for area-time-efficient FPGA-based FAST
corner detector. J. Real Time Image Proc. 16, 2147–2158 (2019)

 10. Joginipelly, A., Charalampidis, D.: Efficient separable convo-
lution using field programmable gate arrays. Microprocess.
Microsyst. 71, 102852 (2019)

 11. Joginipelly, A., Charalampidis, D.: An efficient circuit for error
reduction in logarithmic multiplication for filtering applications.
Int. J. Circuit Theory Appl. 48(5), 809–815 (2020)

 12. Ramkumar, B., Laber, R., Bojinov, H., Hegde, R.: GPU accel-
eration of the KAZE image feature extraction algorithm. J. Real
Time Image Proc. 17, 1169–1182 (2019)

 13. Jiang, G., Liu, L., Zhu, W., Yin, S., Wei, S.: A 127 fps in full
HD accelerator based on optimized AKAZE with efficiency and
effectiveness for image feature extraction. In: Proceedings of the
52nd Annual Design Automation Conference, pp. 1–6 (2015)

 14. Kalms, L., Elhossini, A., Juurlink, B.: FPGA based hardware
accelerator for KAZE feature extraction algorithm. In: Inter-
national Conference on Field-Programmable Technology, pp.
281–284 (2016)

 15. Kalms, L., Mohamed, K., Göhringer, D.: Accelerated embed-
ded AKAZE feature detection algorithm on FPGA. In: Proceed-
ings of the 8th International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies, vol. 10, pp. 1–6
(2017)

 16. Mentzer, N., Mahr, J., Payá-Vayá, G., Blume, H.: Online stereo
camera calibration for automotive vision based on HW-acceler-
ated A-KAZE-feature extraction. J. Syst. Architect. 97, 335–348
(2019)

 17. Li, Y., Du, S., Ikenaga, T.: Temporally forward nonlinear scale
space with octave prediction for high frame rate and ultra-low
delay A-KAZE matching system. In: 16th International Confer-
ence on Machine Vision Applications, pp. 1–4 (2019)

 18. Xilinx technical documents. PG151—Divider Generator v5.1
Product Guide (v5.1). (2016)

 19. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.: A comparison
of affine region detectors. Int. J. Comput. Vis. 65, 43–72 (2005)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Parastoo Soleimani was born in
Gorgan, Iran in 1992. She
received the B.S. degree in elec-
tronic engineering from the Uni-
versity of Tehran, Tehran, Iran,
in 2015 and the M.S. degree in
electrical engineering-integrated
circuis of electronic from K. N.
Toosi University of Technology,
Tehran, Iran, in 2018. She is cur-
rently pursuing a Ph.D. degree in
electrical and computer engi-
neering at the University of Vic-
toria, Victoria, BC, Canada. Her
research interests include com-
puter vision, image processing,

hardware design and machine learning. Ms Soleimani has been
awarded a University of Victoria Doctoral Fellowship.

http://creativecommons.org/licenses/by/4.0/

2134 Journal of Real-Time Image Processing (2021) 18:2123–2134

1 3

David W. Capson received the
B.Sc.Eng. degree from the Uni-
versity of New Brunswick, Fred-
ericton, NB, Canada in 1979,
and the M.Eng. and Ph.D.
degrees from McMaster Univer-
sity, Hamilton, ON, Canada in
1981 and 1985, respectively, all
in electrical engineering. He was
a visiting scientist at the IBM
Almaden Research Center in San
Jose, CA in 1989, and worked
with CRS Robotics (Burlington,
ON) in 1995 and with Gennum
Corporation (Burlington, ON) in
2004/2005. From 1984 to 2012,

he was a professor in the Department of Electrical and Computer Engi-
neering at McMaster University, serving as department chair from 2008
to 2012. In 2007, he was the winner of the McMaster Student Union
Lifetime Teaching Achievement Award. From 2012 to 2020 he served
as the Dean of the Faculty of Graduate Studies at the University of
Victoria, BC and is currently a professor in the Department of Electri-
cal and Computer Engineering at the University of Victoria, BC. His
research interests include computational vision, algorithms and archi-
tectures for accelerated and embedded image analysis, and machine
vision-based applications in robotics, metrology, inspection and servo
systems. Dr. Capson is a registered professional engineer in the prov-
inces of British Columbia and Ontario, a senior member of the IEEE,

and an honorary member of the Golden Key International Honor
Society.

Kin Fun Li is the Director of two
highly sought-after professional
master of engineering programs
in, Telecommunications and
Information Security (MTIS)
and Applied Data Science
(MADS), at the University of
Victoria, Canada, where he
teaches both hardware and soft-
ware courses in the Department
of Electrical and Computer
Engineering. He dedicates his
time to instructing and research-
ing in computer architecture,
hardware accelerators, education
analytics, and data mining appli-

cations. He is actively involved in the organization of many interna-
tional conferences, including the biennial IEEE Pacific Rim in Victoria
and the internationally held IEEE AINA. Dr. Li is also a passionate
supporter and participant in numerous international activities to pro-
mote the engineering profession, education, and diversity. Dr. Li is a
senior member of the IEEE, an honorary member of the Golden Key,
and a registered professional engineer in the province of British
Columbia.

	Real-time FPGA-based implementation of the AKAZE algorithm with nonlinear scale space generation using image partitioning
	Abstract
	1 Introduction
	2 Related work
	3 A brief introduction to AKAZE nonlinear scale space generation
	4 Hardware implementation
	4.1 Stage 1: the preprocessing unit
	4.2 Stage 2: diffusivity calculation
	4.3 Stage 3: FED filtering
	4.4 Memory management unit
	4.5 Image resizer

	5 Timing analysis
	6 Experimental results
	7 Conclusion
	References

