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Abstract
The first step in a scale invariant image matching system is scale space generation. Nonlinear scale space generation algo-
rithms such as AKAZE, reduce noise and distortion in different scales while retaining the borders and key-points of the image. 
An FPGA-based hardware architecture for AKAZE nonlinear scale space generation is proposed to speed up this algorithm 
for real-time applications. The three contributions of this work are (1) mapping the two passes of the AKAZE algorithm 
onto a hardware architecture that realizes parallel processing of multiple sections, (2) multi-scale line buffers which can be 
used for different scales, and (3) a time-sharing mechanism in the memory management unit to process multiple sections 
of the image in parallel. We propose a time-sharing mechanism for memory management to prevent artifacts as a result of 
separating the process of image partitioning. We also use approximations in the algorithm to make hardware implementation 
more efficient while maintaining the repeatability of the detection. A frame rate of 304 frames per second for a 1280 × 768 
image resolution is achieved which is favorably faster in comparison with other work.

Keywords AKAZE · FPGA · Nonlinear scale space · Hardware design · Real-time · Image matching

1 Introduction

Feature detection and description are two of the impor-
tant stages in many computer vision algorithms such as 
object recognition, face recognition, image stitching, image 
retrieval, camera localization, and so on. One important cri-
terion in choosing a feature detector is having high repeat-
ability. Repeatability is defined as the capability of finding 
the same feature in different viewpoints and scales. In fea-
ture detection, repeatable points of interest in the image are 
detected, and in feature description, for each detected point, 
a descriptor is defined to be matched to the same key-point 
in other images. An important characteristic of a feature 
detector is invariance to scale changes.

Scale invariant feature transform (SIFT) [1] and speeded 
up robust features (SURF) [2] are two popular multi-scale 
feature detector and descriptor algorithms. Both approaches 
are computationally expensive. Oriented FAST and rotated 
BRIEF (ORB) [3] and binary robust invariant scalable key-
points (BRISK) [4] feature detector and descriptor algo-
rithms were introduced to reduce the computational time of 
the matching algorithm and to increase speed by using the 
features from accelerated segment test (FAST) [5] detector 
and binary robust independent elementary features (BRIEF) 
[6] based binary descriptors.

The KAZE [7] feature detector and descriptor is another 
multi-scale approach that uses nonlinear filtering instead 
of a Gaussian filter, to create scale space and achieve 
improvement in terms of repeatability in comparison with 
other approaches. The main drawback of the KAZE feature 
detector and descriptor is its speed in comparison with other 
approaches, which is due to the nonlinear scale space. The 
accelerated KAZE (AKAZE) [8] approach was introduced 
to speed up the KAZE algorithm by using a mathematical 
framework called fast explicit diffusion (FED) to build a 
nonlinear scale space, and by introducing a new descriptor 
named modified local difference binary (M-LDB) to reduce 
storage requirement. Although it has been demonstrated 
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in the original AKAZE paper [8] that this algorithm out-
performs other algorithms such as SIFT, SURF, ORB, and 
BRISK in terms of repeatability and accuracy, it is still 
slower in comparison with ORB and BRISK due to the non-
linear scale space creation.

As the demand for embedded vision systems has been 
increasing in recent years, implementing real-time algo-
rithms while maintaining accuracy has become more impor-
tant. Although the AKAZE algorithm is less computation-
ally expensive in comparison with the KAZE algorithm due 
to the FED filters, it still has higher computational complex-
ity compared to ORB and BRISK detectors. There are many 
attempts for implementations of image processing and other 
algorithms using Field Programmable Gate Array (FPGA) 
due to its parallel architecture and speed benefits [9–11]. 
In this paper an FPGA-based accelerator for the AKAZE 
feature detector is introduced to achieve higher speed while 
keeping the same repeatability as the original AKAZE.

2  Related work

The SIFT feature detector and descriptor was introduced 
in 2004 and is based on the difference of Gaussians (DoG) 
operator. The detector is applied at different scales of an 
image and for each detected key-point, a 16 × 16 s patch is 
extracted and segmented into 16 sub regions. For each sub 
region, a histogram of gradients is generated. The descriptor 
is the concatenation of these histograms. The main drawback 
of SIFT is its computational cost.

To reduce the computational cost of SIFT, SURF was 
introduced in 2008. SURF uses the determinant of a Hessian 
matrix in its detector and takes advantage of integral images 
to increase the speed of the detection. For each detected 
key-point, the descriptor is defined by using Haar wavelet 
responses of its surrounding patch. In 2011, ORB was intro-
duced. ORB uses FAST as a detector and a modified version 
of BRIEF as its descriptor.

The KAZE algorithm was introduced in 2012 using non-
linear scale space. The detector used in KAZE is based on 
the determinant of a Hessian matrix and the descriptor is 
based on the local difference binary (LDB) descriptor. By 
using non-linear diffusion filtering, the boundaries of the 
regions in different scales are retained, while reducing noise 
in the image. Other previous methods find features using a 
Gaussian scale space which smooths noise and boundaries 
of objects to the same degree which results in the loss of 
detail. The KAZE algorithm is rotation-invariant and scale-
invariant, and has more distinctiveness at various scales, but 
it is slower in comparison with other algorithms.

To overcome this drawback, the accelerated KAZE 
(AKAZE) algorithm was proposed in 2013. AKAZE non-
linear diffusion filtering is based on a fast explicit diffusion 

(FED) framework which is more efficient in comparison 
with KAZE filtering. The AKAZE detector is based on the 
determinant of a Hessian matrix and the AKAZE descriptor 
is the modified local difference binary (MLDB). Although 
AKAZE is faster in comparison with the KAZE algorithm, 
it is still slower than binary descriptors such as ORB and 
BRISK. In this work we propose a hardware design to accel-
erate the AKAZE algorithm.

There are multiple publications that propose accelerators 
for the AKAZE algorithm. Ramkumar et al. [12] propose a 
GPU-based implementation of the KAZE algorithm. Jiang 
et al. [13] describe a hardware architecture for the AKAZE 
algorithm based on application specific integrated circuits. 
They achieve a throughput of 127 frames per second for 
1920 × 1080 images. However, their design does not cover 
the contrast factor calculation which is an essential part of 
the AKAZE algorithm. The AKAZE algorithm requires two 
passes through the image and by not implementing the con-
trast factor, they are eliminating one of the passes which 
contributes to higher throughput.

Kalms et al. [14] introduce a hardware accelerator based 
on FPGAs for extracting AKAZE features. In their initial 
publication, they propose a pipelined architecture for non-
linear scale space generation and they assume that the con-
trast factor is computed in software. In their later work [15], 
they design an architecture for contrast factor computation 
as well. They achieve a frame rate of 98 frames per second 
for a 1024 × 768 image resolution.

Mentzer et al. [16] propose a hardware accelerator for the 
AKAZE algorithm based on application specific instruction-
set processors (ASIP) which is used for an advanced driving 
assistance system. They achieve a frame rate of 20 frames 
per second which is higher than the results obtained from 
a conventional processor and consumes less power than the 
FPGAs.

Li et al. [17] use the AKAZE algorithm for extracting 
descriptors from a video sequence. They use previous frame 
pixels to predict the first octave of the nonlinear scale space 
of the current frame in the AKAZE algorithm to increase 
speed. They achieve 784 frames per second for 640 × 480 
images. They propose using motion estimation to reduce 
the effect of using the previous frame. Still, based on the 
results they published, this method decreases the accuracy 
of the algorithm. Their method is beneficial in applications 
which process high video frame rates in which the amount 
of changes in successive frames is negligible.

In this work, we take advantage of the fact that the algo-
rithm uses two passes through the input image. For the first 
pass, we read the image and store it on the FPGA. In the 
second pass, we process the image in parallel to achieve 
increased speed. In comparison with [17], our method does 
not require the previous frames to process the current frame. 
We achieve a higher frame rate than [15] at the same image 
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resolution and frequency by introducing a memory manage-
ment unit which facilitates the parallel processing of the 
image.

3  A brief introduction to AKAZE nonlinear 
scale space generation

The nonlinear scale space is a set of different scales of the 
input image. These scales are grouped as octaves which each 
of them having four sublevels in the AKAZE algorithm. Fig-
ure 1 shows a pseudocode overview of the algorithm for two 
octaves.

The preprocessing step of the AKAZE algorithm gener-
ates a nonlinear scale space. In this step, the image is Gauss-
ian filtered to reduce noise. Then, since the contrast of the 
image has significant effects on extracting the details of the 
image, a contrast factor is computed (for use in subsequent 
steps). In the second step, which computes diffusivity, a con-
ductivity function [8] is calculated using image gradients 
and a contrast factor found in the preprocessing step. This 
function affects how much detail of the boundaries of the 
image is retained in the filtering process. In this work, we 
use the conductivity function [8] in Eq. (1), as follows:

where K is the contrast factor and Lx and Ly are the gradients 
of the image computed using a Scharr filter in horizontal 
and vertical directions, respectively. We use the Scharr filter 
parameters as shown in Fig. 2.

The output of the diffusivity step is called Lflow which is 
computed for each pixel of the image. In the third and final 
step, which computes the FED, the new sublevel scale is 
generated using Lflow and the previous sublevel. The FED 
process has multiple iterations (N), the number of which 

(1)Lflow(i, j) =
1

1 +
L2
x
(i,j)+L2

y
(i,j)

K2

varies depending on the level of the scale space. The value 
of (N) for each sublevel is determined using a precomputed 
array from the original AKAZE algorithm [8]. In each step, 
a constant step size value is multiplied by the filter.

In each FED process, the summation of the center pixel 
with four adjacent pixels in vertical and horizontal direc-
tions of Lflow are multiplied by the difference between the 
center pixel with four adjacent pixels in vertical and hori-
zontal directions of the previous sublevel. The summation 
of the results of the multiplications is called Lstep . The FED 
calculations are shown in Eqs. (2) and (3):

with k1, k2 ∈ {−1, 1} where Lstep is the output of the FED 
calculation, Lt is the previous sublevel and s is the step size 
constant which is different for each sublevel. The next sub-
level is generated as given in Eq. (3):

where Ltn+1 is the value of the next sublevel in the nonlinear 
scale space.

4  Hardware implementation

Figure 3 is the overall block diagram of AKAZE scale space 
generation. The main contribution of this work is based on 
the fact that this algorithm has two passes through the input 
data. We take advantage of this fact by storing the data in 
the first pass and process it in parallel in the second pass. We 

(2)
Lstep(i, j) = Σ(Lflow(i, j) + Lflow(i + k1, j + k2))+

(Ltn (i, j) − Ltn (i + k1, j + k2))s

(3)Ltn+1 = Lstep + Ltn

Fig. 1  Pseudocode of AKAZE algorithm

Fig. 2  Scharr filter weights

Fig. 3  Block diagram of AKAZE scale space generation with four 
channels
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need two memory units for storing the sublevels ( Lt ) and the 
output of the conductivity function ( Lflow ). Each of these two 
memories has the capacity to store a full image. These two 
memories are implemented in the Block RAMs (BRAM) of 
the FPGA. Each BRAM comprises a group of four smaller 
BRAMs which store a section of an image, divided verti-
cally. The first set of BRAMs contains Lt data and the second 
set of BRAMs stores Lflow data.

This design has three stages. In the first stage (the pre-
processing stage), the 8-bit grey level image enters pixel by 
pixel to the preprocessing unit in which the contrast factor 
of the image is calculated, and the image is filtered using a 
Gaussian blur filter. The contrast factor value is used fur-
ther in the diffusivity unit, which is the second stage of this 
design. Then, we store the filtered image, which is the first 
level of the nonlinear scale space, in Lt memory.

After first stage is completed, the second stage (the dif-
fusivity unit) begins. This unit stores the values in Lflow 
memory in preparation for the third stage, which is FED 
calculation. From there on, stage 2 and stage 3 work simul-
taneously until all sublevels are generated. The output of 
the third stage is the sublevels of the nonlinear scale space 
which are written back to Lt memory for the next iteration. 
Figure 4 shows the data flow of the algorithm at all stages. 
Further details of each stage are explained in the following 
sections.

4.1  Stage 1: the preprocessing unit

The block diagram of the preprocessing unit is shown in 
Fig. 5. This unit has two outputs. The first output is the fil-
tered image, which is the first sublevel and initial value of 
Lt , and is stored in the Lt BRAMs. The second output of 
this unit is the contrast factor of the image, which is used 
in Stage 2 for the calculation of image diffusivity. To cal-
culate the first sublevel, a 9 × 9 Gaussian filter is required. 
The image first enters a line buffer that has a size of W × 9 , 
where W is the image width. The 9 × 9 window at the end 
of the line buffer is connected to a Gaussian filter module, 
in which the filtered value for the center pixel in the 9 × 9 
window is calculated and is stored in the corresponding Lt 
BRAM memory.

To calculate the contrast factor, first, we apply a 5 × 5 
Gaussian filter to the image. The architecture for this filter 
is similar to a 9 × 9 filter and differs only in the size of line 
buffer and filter module. After filtering the image, the gra-
dients of the image in horizontal and vertical directions are 
calculated using Scharr filters. The outputs of the Scharr 
filters are used by the contrast factor calculation module. 
Finally, the result of the contrast factor module is sent to 
the diffusivity calculation unit which is the next stage of the 
algorithm.

The block diagram of the contrast factor module is shown 
in Fig. 6. This module receives the horizontal and vertical 
gradients as input and generates the value of the contrast 
factor as output. The process of computing the contrast fac-
tor value has two phases which is shown in Fig. 6. In the 
first phase, the value of L2

x
+ L2

y
 is computed. In the original 

algorithm, the square root of L2
x
+ L2

y
 is used. However, since 

this value is used as an address for histogram generation, we 
can safely set aside the square root. We map this value to 0 
to 255 by normalization. This value is used as the address 
of a set of 256 registers storing the histogram. At each clock 
cycle, we increment the value of the corresponding register 
to which L2

x
+ L2

y
 is pointing. At the same time, we store the 

maximum of this value in the maximum finder register. After 
this step is finished and the histogram is built, in the second 
phase, we start from the beginning of the histogram and read 

Fig. 4  Data flow of the algorithm. The FED stage starts after the dif-
fusivity stage. The preprocessing stage only processes the data once 
at the beginning of the algorithm while the diffusivity and FED stages 
run in each iteration

Fig. 5  Preprocessing stage architecture. This stage contains two 
Gaussian filter modules. The output of the 9-row line buffer is a  9 × 
9 window and the output of the 5-row line buffer is a 5 × 5 window. 
This stage computes the contrast factor and stores the filtered image 
in the memory

Fig. 6  Block diagram of contrast factor calculation module
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the values of the registers and add them in the accumulator. 
Whenever the value in the accumulator reaches 70% of the 
maximum value of L2

x
+ L2

y
 from phase 1, we store the bin 

number (same as address value) in the contrast factor reg-
ister. The value in the contrast factor register is the output 
of the module.

4.2  Stage 2: diffusivity calculation

After storing the first sublevel Lt0 in the Lt memories in the 
first stage, the second stage, which is the diffusivity stage, 
begins. Figure 7 shows the architecture of a diffusivity chan-
nel. In this stage, we read the data from the Lt BRAMs, and 
the contrast factor value of the image. The contrast factor 
value is fixed for each image and does not change in the next 
steps of the algorithm. The Lt data which we read from the 
BRAM memory enter a 3-row line buffer. The output of the 
line buffer is connected to two Scharr filters. We compute 
the gradients of Lt data in x-direction and y-direction using 
Scharr filters and label them as Lx and Ly , respectively. Then, 
by using Lx value and Ly value and the contrast factor, we 
compute the value of Lflow according to Eq. (4). For com-
puting Lflow , we use a divider IP core provided by Xilinx® 
[18] which has 43 clock cycles delay. The divisor and the 
dividend inputs of the IP core are 24-bit and 16-bit integers, 
respectively. The output of the divider is a fixed-point 40-bit 
number including 19 fractional bits. We scale the output of 
the divider to avoid fractional arithmetic. Finally, we store 
the result of this stage in the Lflow BRAMs.

 

4.3  Stage 3: FED filtering

In the third stage, we combine the data from Lflow and Lt 
BRAMs to compute the sublevels in the scale space. The 
AKAZE algorithm uses FED filters to generate sublevels 
and different octaves. The main processing part of this step 
is the FED cell module which requires a 3 × 3 window of 
Lt data and a 3 × 3 window of Lflow data. To prepare the 
input data for the FED cell in parallel, we use two 3-row line 

(4)Lflow =
1

1 +
L2
x
+L2

y

K2

=
K2

L2
x
+ L2

y
+ K2

.

buffers for Lt data and Lflow data, respectively. We compute 
the output of a FED cell module according to Eq. (2).

The architecture of this module is shown in Fig. 8. Each 
sublevel is generated by the iterative use of FED filters, with 
the number of FED cells required for each sublevel being 
different. In this stage, the FED loop is unwrapped to the 
maximum number of FEDs in the algorithm to achieve a 
pipelined architecture.

We label each package of an FED cell and two line buff-
ers as an FED block. Figure 9 demonstrates an FED block 
which generates the output specified in Eq. (3). For gener-
ating the first octave, we require four of these FED blocks 
sequentially, which means that the output of each one is con-
nected to the input of the next. For each sublevel, we extract 
the output from a specific FED block as shown in Fig. 10. 
A multiplexer is used to select the appropriate output based 
on the sublevel we are currently generating.

We label each group of 8 FED blocks and the multiplexer 
attached to them as an FED channel. Since in this design we 
process the data of the BRAM memories in parallel, 4 FED 
channels work completely in parallel. Figure 11 shows the 

Fig. 7  Diffusivity channel architecture

Fig. 8  FED cell architecture

Fig. 9  FED block architecture which contains two line buffers, an 
FED cell, and an adder

Fig. 10  FED channel architecture which consists of 8 FED blocks
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four FED channels. We store the output of the FED channels, 
which are the sublevel data of the nonlinear scale space, in 
Lt memory. These data overwrite the previous values of the 
memory which contains the data from the previous sublevel. 
At this stage of processing, we have the sublevel data in Lt 
BRAMs. Now, the diffusivity stage can start again to gener-
ate the next Lflow for the next sublevel.

4.4  Memory management unit

The main contribution in this work is represented in the 
memory management unit. We have two memories which 
are dedicated to Lt data and Lflow data. The Lt data are the 
sublevels of the nonlinear scale space and therefore are the 
output of the algorithm while Lflow data are computed as 
the required data in the middle of the processing of each 
sublevel. Each of the memories are divided into n smaller 
BRAMs (in this design we use n = 4 ), which can be inde-
pendently written or read. All of these memories are config-
ured as dual port RAMs.

In the first stage (preprocessing) the filtered pixels of the 
image are written into the four BRAMs of Lt sequentially as 
shown in Fig. 3. The first BRAM is filled and then, the sec-
ond. This continues until all data are completely read. The 
algorithm then waits until the contrast factor is computed.

Then, since we have access to all of the image data in the 
Lt BRAM, we can read from the four BRAMs in parallel. In 
the second stage of the algorithm, diffusivity channels read 
the data from the four Lt BRAMs in parallel. Since four dif-
fusivity channels are working in parallel, we can write the 
data into Lflow BRAMs in parallel as well. In our design, we 
use port A of the Lflow BRAMs to write the Lflow values as the 
outputs of the diffusivity stage. As soon as writing the data is 
started in the Lflow BRAMs, the third stage of the algorithm 
can start working. In the third stage, FED channels read the 
data from the Lflow BRAMs through port B and process them 
in parallel. When the output of this stage is ready, it will 
write back the results into the Lt BRAMs through port B. 
The architecture of this design is illustrated in Fig. 3.

Another key element of the memory management unit 
is the Lt FIFO between the second and third stages. Since 
both ports of each Lt BRAM are being used, to speed up the 
design, we use FIFO memories to send the required Lt data 
from the diffusivity stage to the FED stage. By using a FIFO 
architecture, we can synchronize the flow of the Lt data and 
the Lflow data to have them available at the same time in the 
third stage.

Processing the data in each of the n BRAMs separately 
leads to some undesirable artifacts on the generated output. 
An example of this artifact is shown in Fig. 12 as black 
horizontal lines in the image. The reason for this artifact is 
that the first rows and the last rows of each section require 
the data of the adjacent rows from previous and subsequent 
sections, respectively. To prevent this artifact, we use a time-
sharing mechanism to provide each processing channel with 
the required data.

To prevent the artifacts caused by the border rows in the 
diffusivity stage, we define three phases for processing each 
section. There are 4 channels of processing in the diffusivity 
stage. In the first phase, each channel reads the values from 
the last two rows of the previous section. As a result, the 
initial values of the line buffers will be filled with the data 
from the previous section of the image. In the second phase, 
each channel reads the data from its own corresponding sec-
tion in the memory. This phase, which is the main phase of 
the process, utilizes most of the time of this stage. In the 
third phase, each channel reads two rows of the data from 
the next section of the image from the memory. Therefore, 
the channel has access to the required information from the 
next section. To implement this time-sharing mechanism, 

Fig. 11  4 FED channels working in parallel

Fig. 12  An example of the artifact from processing four sections of 
the image in parallel. Image from  Oxford affine covariant features 
dataset [19]
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we add data multiplexers to the beginning of each diffusivity 
channel. In addition, we use finite state machines to issue the 
required control signals for each phase.

Since the diffusivity stage and FED stage work simultane-
ously, when the process in the second phase reaches the last 
row of a section, the first rows of the next section are already 
updated with the next sublevel values in the memory. There-
fore, we cannot use the current data to prevent the artifact. 
The solution to this problem is to store the first two rows of 
each section in another part of the memory and use it in the 
third phase. We propose a “helping” memory which has the 
capacity of storing two rows of each section. In each itera-
tion of the algorithm, we fill the helping memories when 
reading the first two rows of each section in phase two and 
load from the helping memories of the next section in phase 
three.

Since the first section of the image does not have a previ-
ous stage, the line buffers are filled with zeros in the first 
phase for the first channel. Similarly, we use zeros as the 
input data for the last channel in phase 3 since there is no 
section after that. Therefore, memories 1 and 2 are connected 
to the diffusivity channel 1 using a multiplexer. Memories 1, 
2, and 3 are connected to the diffusivity channel 2 using the 
second multiplexer. Memories 2, 3, 4 are connected to the 
diffusivity channel 3 using the third multiplexer and memo-
ries 3 and 4 are connected to the diffusivity channel 4 using 
the fourth multiplexer. We use the same procedure for FED 
channels and Lflow memory to prevent the artifacts. Figure 13 
demonstrates the time-sharing mechanism for preventing the 
line artifacts in the nonlinear scale space.

4.5  Image resizer

In the original AKAZE algorithm, after each octave is gener-
ated, the size of the image is reduced by half. In our design, 
the image resizer module issues the required signals to store 
only half of the image in the memory to resize the image. 

To do so, this module controls the write enable signals of 
the port B of Lt BRAMs. When we are generating the first 
level of the second octave, the resizer module disables the 
write enable signal when the FED channels are generating 
the outputs of even rows and even columns. Therefore, only 
odd rows and columns are written into Lt BRAM memories 
and the size of the image is thus reduced by half.

After this step, all other parts of the design work with the 
smaller image. To do so, we design each of the line buffers 
in the diffusivity and FED stages to have the capability to 
work with two sizes. The architecture of the line buffers with 
three rows is shown in Fig. 14. If the line buffer has more 
than three rows (for example, 5 or 9 rows) the concept is the 
same and only the number of the registers is different.

The line buffers have two modes. In the first mode, we 
use the full capacity of the line buffers. The input pixels at 
the end of each line are written to the beginning registers 
of the next line. In this mode, the output window is derived 
from the last registers of each line. This mode is used when 
we are processing the first scale of the image. The second 
mode, which is for half scale of the image, the output of the 
registers in the middle of the original line buffer is sent back 
to the next line. Therefore, we need to use multiplexers to 
select the correct input for the first registers of each row. 
In addition, the output window is derived by the registers 
in the middle of the line buffer. Therefore, there is also a 
multiplexer to choose the appropriate window as the output 
of the module. All of the multiplexers in the line buffers are 
controlled using a size mode signal which is generated by 
the level controller module that contains a counter that keeps 
counts of the sublevels being generated.

5  Timing analysis

In this section, we analyze the required timing of the archi-
tecture and calculate the throughput of the design, after each 
line buffer is initialized. This initialization time is needed 
until the output of the line buffers becomes valid and we can 
have access to the data of multiple rows in parallel. We use 
zero padding to process border pixels to avoid reducing the 
part of the image that we are processing (Fig. 15).

Fig. 13  An example of selecting three phases for reading data from 
various sections of the memories. We show the data flow for diffusiv-
ity channel 2 as an example. In phase 1, this channel reads the data 
from the last two rows of the first section of the image. In phase 2, 
data enter channel 2 from the second section and in phase 3, diffusiv-
ity channel 2 reads the first two rows of data from the next section. 
Other channels have a similar data flow. Image from Oxford affine 
covariant features dataset [19]

Fig. 14  The architecture of the 3-row line buffer with multi-scale 
capability
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In the preprocessing stage, we have a 9 × 9 Gaussian filter 
module. Therefore, we need a 9 × W  line buffer where W 
is the width of the image. The initialization time required 
for this stage is 5 ×W  since after 5 rows of the image are 
read, we can have valid output from this module (other rows 
are initially 0s). After 5 ×W  clock cycles, the output of the 
Gaussian filter is valid and after that we need W × H clock 
cycles to process the whole image. In this estimation we did 
not include the contrast factor calculation since it overlaps 
with filtering the data and its overhead is negligible. There-
fore, the required time for preprocessing is

The next stage of the design is the diffusivity stage. In 
this stage, we first have line buffers for generating a 3 × 3 
windows as inputs for the Scharr filters. These line buffers 
require 2 ×W  clock cycles for initialization and is the first 
phase of the time-sharing mechanism. After that, since we 
are processing the image in n different sections in parallel, 
we require ( W × H)∕n clock cycles to read and process n 
sections of the image. In addition, an initial 43 clock cycles 
are required for the divider module. After that, at each clock 
cycle, the divider generates new valid results. Hence, the 
number of required clock cycles for the diffusivity step is 
based on the image width, height, and the number of parallel 
sections according to:

The next stage is the FED module. In this stage, similar 
to the diffusivity stage, we use 3-row line buffers in each 
FED block module. Therefore, we need 2 ×W for initializa-
tion of each FED block module. In addition, W × H∕n clock 
cycles are required for reading and processing the pixels of 
each section of the image. Since for each sublevel we get the 
output from a different FED block, we do not need to wait 
for the data to pass all the FED blocks in an FED channel 
in this stage. The first octave has four sublevels. The first 
sublevel is the filtered image and therefore there is no need 
to compute the result of the FED stage for it. For the second 
and third sublevels, we get the outputs from the second FED 
block and for the fourth sublevel, we get the output from the 
third FED block. In the second octave, for the four sublev-
els of five, six, seven, and eight, we get the output from the 
third, fourth, fifth and sixth FED block, respectively. It is 
important to note that for the second octave, the size of the 
image is reduced to half size and therefore we use W/2 and 
H/2 as width and height of the image. Hence, the number of 
required clock cycles for this stage is:

(5)Tpreprocessing = 5W +WH = W(5 + H)

(6)TDiffusivity = 2W +
WH

n
+ 43 = W(2 +

H

n
) + 43

Summing up the required clock cycles for one frame and 
dividing by the frequency, the total delay of our design is:

The important difference in our work is the parameter n. 
If we use n = 1 , the throughput of our design is similar to 
that of Kalms’ work [15] and the frame rate would be 98 
frames per second. If we use n = 4 , which means having 
4 memory sections, we can achieve 360 frames per second 
for the same image resolution ( 1024 × 768 ) at a maximum 
clock frequency of 102.7 MHz (rounded off to 100 MHz in 
Table 2 for ease of comparison with other work) on the Kin-
tex® Ultrascale™ FPGA. This number is also confirmed by 
our simulation results. We can readily synthesize this design 
for different image resolutions for various applications.

6  Experimental results

In this section, we provide the implementation results and 
evaluation metrics of our work and compare our results with 
other related work. We use the KCU105 FPGA board which 
contains a Xilinx® Kintex® Ultrascale™  FPGA for synthe-
sizing our design. Results demonstrate the performance 
of hardware design which is synthesized and simulated 
using Vivado®  software.

Table 1 shows the resource usage of the stages of the 
design. In this table, LUTs are the Look up tables which are 
the smallest logic blocks in the FPGA. DSP represents the 
number of Digital Signal Processors which are the arith-
metic units in the FPGAs and FF shows the number of Flip 
Flops which represents the number of registers used in the 
design. Figure 16 shows the power consumption of different 

(7)

TFED =

(

2W(2 + 2 + 3) +
WH

n

)

+

(

2W

2
(3 + 4 + 5 + 6) +

WH

4n

)

=W
(

32 +
5H

4n

)

(8)
Tdelay =

1

frequency
×

(

1.25WH

n
+ 32W

)

=
W

frequency
×

(

1.25H

n
+ 32

)

Table 1  Resource consumption of the stages of the algorithm

Algorithm stages LUTs Block RAMs DSP FF

Diffusivity stage 22935 0 0 15016
FED stage 79454 0 29 43714
Preprocess stage 9187 0 0 5378
Memory management unit 620 524 2 805
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stages of the design. The design consumes a total power of 
1095 mW.

Table 2 demonstrates the overall resource usage, fre-
quency and speed of our implementation in comparison with 
other work. In comparison with the work by Jiang et al. [13] 
our work achieves higher frame rate, even though their work 
does not contain the contrast factor calculation. Our frame 
rate is higher than that of Kalms et al. [15], while our frame 
size is bigger. In comparison with Li et al. [17], our resolu-
tion is higher than their work, and still we use less LUTs 
(but more BRAM). If we use the same resolution as their 
work which is 640 × 480 , our frame rate is 862 frames per 
second. Based on the results of Li et al. [17], their method 
affects the final accuracy. Therefore, with the same image 

Table 2  Comparison of design 
metrics

FPGA resources Ours Kalms et al. [15] Jiang et al. [13] Li et al. [17]

FPGA/Platform Kintex®  Ultrascale™ Zynq® ASIC Kintex®-7
LUT 112596 16507 – 196134
LUTRAM 72276 – – 28068
BRAM 524 60 – 291
DSP 31 149 – 228
FF 65028 22738 – 157122
Image resolution 1280 × 720 1024 × 768 1920 × 1080 640 × 480
Frequency 100 MHz 100 MHz 200 MHz 100 MHz
Frame rate 304 fps 98 fps 127 fps 784 fps

Fig. 15  Power consumption. The left diagram shows the portion of 
power consumed by different stages of the algorithm. The right dia-
gram shows the dynamic and static power consumption. Total power 
consumption of the design is 1095 mW
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Fig. 16  Comparison of repeatability between the software implementation and the hardware implementation based on simulation using image 
sets of the Oxford affine covariant features dataset [19]
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resolution, our design achieves the highest frame rate using 
the same frequency.

We designed and synthesized the proposed hardware 
using VHDL in Vivado®  2017 software. We also created a 
software model of the hardware in VHDL in  MATLAB® for 
accuracy evaluation purposes. This software model produces 
identical results as the hardware implementation. Since the 
focus of this paper is on nonlinear scale space generation, 
we do not need a complete matching system to compare 
the results. However, by adding the same key-point detec-
tor to both software implementation and the model of our 
hardware, we can use the repeatability metric to evaluate 
our design.

Other work has used different metrics to demonstrate the 
performance of their design. Jiang et al. [13] introduce a 
descriptor and report the performance of the whole system 
on the Oxford dataset [19]. Li et al. [17] use a self-synthe-
sized dataset for accuracy evaluation. Kalms et al. [15] use 
FREAK descriptor and report the performance of the whole 
system which is also affected by FREAK descriptor. Since 
these work do not use the same metric for evaluation and the 
focus of our work is on nonlinear scale space generation, we 
decided to use repeatability [19] to show the correctness of 
the design. Higher repeatability implies improved perfor-
mance of the feature detector which is the step after non-
linear scale space generation in an image matching system. 
Hence, this is an appropriate metric for demonstrating the 
performance of this design. This metric demonstrates how 
many key-points in the first image are found in the second 
image and is defined in Eq. (9):

We use the Oxford affine covariant features dataset [19] 
for comparing the repeatability of the software and the 
hardware implementation of the AKAZE algorithm. We 
use  MATLAB® for software implementation of the algo-
rithm. The Oxford dataset contains a variety of image sets 
with different transformations such as changes in rotation, 
scale, viewpoint, and illumination. Each set has 6 images 
from which the results of matching key-points of the first 
image with other images, are used in the evaluation. We add 
a Hessian detector to the nonlinear scale space images to find 
the key-points for evaluation. The software implementation 
is based on floating-point and the hardware implementa-
tion uses integer arithmetic which is scaled to improve the 
computations. As shown in Fig. 16, the repeatability of the 
hardware implementation is close to the software implemen-
tation. The small difference is due to the approximations in 
bit-width in hardware design. We observe that for some of 
images, software is better and in other images hardware can 
be better. Since we are focusing on the nonlinear scale space 

(9)Repeatability =

#of correspondences

#of key-points in the first image

filtering, approximations in bit-width have a direct effect on 
the output images. It may cut off some of the details from 
the images in lower bits. This could result in more matches 
in some images depending on the image content.

7  Conclusion

In this work, we propose a design for nonlinear scale space 
generation for the AKAZE algorithm. Using nonlinear scale 
space for image matching leads to a higher accuracy but 
requires more computations.

The first contribution of this work is based on the idea to 
take advantage of the nature of the AKAZE algorithm which 
uses two passes through the image. This gives us an oppor-
tunity to use four parallel channels to generate a nonlinear 
scale space. In previous implementations of the AKAZE 
algorithm [15], the image data are read from an external 
memory in the first step to filter the image and compute 
the contrast factor. Then, the result is written back to the 
memory so that it can be read again for the next stage. We 
take advantage of this fact that in the first step, the image is 
read once from the external memory and we can have access 
to different sections of the image if we store it on chip in 
separate memories. Therefore, we design the memory man-
agement unit to store the image in 4 separate BRAMs so that 
we can generate the sublevels of each section of the image in 
parallel. This, in addition to the fully pipelined architecture 
of each stage of the algorithm, leads to a noticeable speed 
up in our design.

The second contribution of this work is the architecture 
we propose for the second octave line buffers which uses the 
same data path as the first octave, but in a different scale. 
For this part, we introduce multi-scale line buffers which 
have several output windows for parallelizing the image 
input at different scales. Using traditional architecture results 
in consuming twice the number of the line buffer registers 
because each scale requires its own line buffers. However, 
by changing the architecture of the line buffers, we use the 
same hardware resources for both scales.

The third contribution of this work is the time-sharing 
mechanism in the memory management unit which provides 
the opportunity to process different sections of the image in 
parallel without having artifacts in the image. We introduce 
the time-sharing mechanism for this stage which has three 
phases in Sects. 4 and 5. By using this architecture, we can 
process multiple sections of the image which are stored in 
different memories in parallel and provide the border pixel 
values to all processing channels to prevent artifact in the 
images. With these contributions, we achieve 304 frames 
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per second for 1280 × 768 image resolution. We demonstrate 
that the approximations proposed in our hardware imple-
mentation do not have a significant negative impact on the 
repeatability of the algorithm based on the results in Fig. 16.

Possible future avenues of investigation could include 
considering other diffusion algorithms to assess their suit-
ability for hardware implementation and considering differ-
ent detectors and descriptors that can be added to the cur-
rent architecture, following the parallel channel processing 
concept.
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