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Abstract
The rapid development of the Internet of Things is affecting the requirements towards wireless vision sensor networks 
(WVSN). Future smart camera architectures require battery-operated devices to facilitate deployment for scenarios such 
as industrial monitoring, environmental monitoring and smart city, consequently imposing constraints on the node energy 
consumption. This paper provides an analysis of the inter-effects between computation and communication energy for a smart 
camera node. Based on a people counting scenario, we evaluate the trade-off for the node energy consumption with different 
processing configurations of the image processing tasks, and several communication technologies. The results indicate that 
the optimal partition between the smart camera node and remote processing is with background modelling, segmentation, 
morphology and binary compression implemented in the smart camera, supported by Bluetooth Low Energy (BLE) version 
5 technologies. The comparative assessment of these results with other implementation scenarios underlines the energy 
efficiency of this approach. This work changes pre-conceptions regarding design space exploration in WVSN, motivating 
further investigation regarding the inclusion of intermediate processing layers between the node and the cloud to interlace 
low-power configurations of communication and processing architectures.

Keywords Intelligence partitioning · Smart camera · WVSN · Energy-efficiency · IoT · In-sensor processing

1 Introduction

Scenarios such as industrial monitoring  [1], environmental 
monitoring  [2], and smart city [3] have to a wide extent 
changed the constraints towards wireless vision sensor net-
works (WVSN), requiring several cameras to cover large 
areas, while performing image-processing and communi-
cation tasks with real-time performance. Looking back at 
the evolution of camera-based networks, many changes 
have been introduced through the years in terms of design 
and architecture. Initially, such systems consisted mainly of 
CCTV cameras connected either to monitors for constant 
visual inspection, or stored to a memory device. As a result, 

the architecture came with high financial costs due to the 
constant need for staff to perform visual inspection, as well 
as extensive memory requirements. The necessity for the 
systems to be more autonomous resulted in the design of 
smart camera nodes, which embedded processing capabili-
ties in the camera node itself. However, scenarios such as 
industrial or outdoor monitoring bring attention to the com-
plexity of wired vision systems architectures due to camera 
deployment limitations and electromagnetic noise. From the 
communication perspective, this has been overcome through 
the implementation of wireless communication technologies, 
i.e. WVSN. To address the problem as a whole, we need to 
investigate energy-efficient designs of smart cameras, ena-
bling their implementation as battery-operated devices with 
a satisfactory lifetime.

Energy efficiency in the smart camera node is a twofold 
problem, highly influenced by the allocation of image-
processing tasks. On the one hand, there are tasks such as 
background modelling, segmentation, morphology, detec-
tion and tracking that are computationally demanding. On 
the other hand, there are different communication technolo-
gies alternating in terms of energy efficiency and delay for 
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different data rate requirements. An overview of state of the 
art research on WVSNs indicates that smart camera opti-
misation (either image-processing performance or energy 
consumption), and communication networks optimisation 
(energy efficient protocols) are analysed as separate enti-
ties. The energy efficiency of the smart camera node through 
processing focuses on energy-efficient implementation of 
image-processing algorithms [4], or distribution of tasks 
between the node and a server/cloud, connected by a com-
munication technology chosen a priori   [5]. The presented 
architectures consist of three main configurations:

• In-sensor processing: the processing is done in the sen-
sor node, while the configuration between hardware and 
software implementation can vary. In  [4, 6] the aim is to 
optimise such architectures for smart cameras.

• Sensor and remote processing: the processing tasks can 
be partitioned between the sensor and the remote pro-
cessor, which can be a server or the cloud. In  [7] they 
provide an example of outdoor monitoring with the allo-
cation of image-processing tasks chosen a priori.

• Remote processing: the sensor node has no processing 
capabilities, and all the data are transferred to the cloud 
for processing and analysis.

However, in articles on the analysis of communication 
energy efficiency, they implement a predefined image-pro-
cessing design on the node, while the emphasis is on the 
optimisation of the energy consumption for the communica-
tion model. As a result, all previously mentioned approaches 
provide partial understanding of the variations in the smart 
camera node energy consumption, as they omit the inter-
effects of processing and communication configurations.

We use the term intelligence partitioning to refer to a design 
exploration approach that analyses the inter-effects of the pro-
cessing and communication component in the WVSN, opti-
mising the node energy consumption and the real-time per-
formance of the system. This approach relies on the analysis 
of several partitioning configurations of the image-processing 
tasks between the computational entities. The schematic rep-
resentation in Figs. 1 and 2 show that for each configuration, 
we select a partition point; the tasks on the left side are allo-
cated in the smart camera, while the tasks on the right side are 

executed in the cloud. Furthermore, for the tasks allocated in 
the smart camera we also consider the partitioning configura-
tions generated by hardware/software partitioning of the tasks. 
The overall energy consumption of the smart camera node, for 
each of the task partitioning configurations, is the sum of the 
processing energy consumption and the energy consumption 
of each of the communication technologies included in the 
analysis.

In this paper, we introduce an analysis of the inter-effects 
between computation and communication energy consump-
tion in a smart camera node, for different task partitioning 
configurations of image processing. We investigate how the 
allocation of image-processing tasks on embedded hardware, 
software or cloud affects the overall node energy consumption, 
for a people counting scenario. Furthermore, we implement 
this approach to the scenarios presented by  [8] and  [9] to 
compare the energy efficiency of this method with their results. 
The aim of this work is not only to provide an energy-efficient 
design for a people counting scenario, but mainly to explore 
the trade-off between computation and communication energy 
for data-intensive IoT scenarios.

The remainder of this paper is organised as follows. In 
Sect. 2 we review WVSN architectures focusing on approaches 
for energy-efficient nodes, and their decision-making process 
in the design space exploration. Section 3 introduces the mod-
els for intelligence partitioning and communication, while 
Sect. 4 provides a detailed analysis of the selected commu-
nication technologies. In Sect. 5 we present the design cases 
used for the intelligence partitioning analysis and measure-
ments results for aspects such as communication delay and 
the node energy consumption, which are further discussed in 
Sect. 6. Section 6 summarises the results and key findings of 
this paper.

Fig. 1  Representation of the image-processing tasks partitioning

Fig. 2  Schematic representation of intelligence partitioning between 
the smart camera node and the cloud, including the communication 
technologies
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2  Related work

The architecture of people counting systems can be 
divided into two categories: image based and non-image 
based. Several non-image-based methods rely on the use 
of passive infrared sensors (PIR) in the region of inter-
est, but with a major drawback due to occlusion handling. 
Alternative methods such as analysis of WiFi channel 
use [10], or a combination of infrared lasers alongside an 
IR camera to detect the IR rays displacement  [11] have 
been implemented, providing an approximate count, but 
without distinguishing between people and other mov-
ing elements that can be present in the region of interest. 
Instead, image-based people counting models introduced 
in  [12–15] rely on depth imagery to overcome occlusion 
limitations, while using GPU as processing element. The 
emphasis of their approach is on the accuracy of detec-
tion; hence, they propose models that are computation-
ally intensive in devices that cannot be battery operated. 
Furthermore, cloud processing for such scenarios would 
require high bandwidth and inflict significant delays, 
which would affect the real-time performance.

In the last decade, many WVSN architectures have been 
developed and further optimised in terms of energy con-
sumption. Several strategies have been introduced through 
the years, one of which has been an energy-efficient design 
through hardware/software optimisation in the smart cam-
era node. Birem et al.  [4] introduced DreamCam, a smart 
camera based on low-power Altera-Cyclone III FPGA. 
They optimised the design by implementing their own 
hardware modules for feature extraction. Another smart 
camera architecture is the SENTIOF-CAM designed 
by  [5], where they implemented a low-complexity back-
ground modelling algorithm and duty cycling to optimise 
the energy consumption of the smart camera node. In addi-
tion, they partitioned the image-processing tasks between 
the node and a server. However, in their evaluation of a 
partitioning point they only considered the reduction of 
the data size to be transferred, not including the trade-off 
between processing and communication energy.

In several WVSNs, the smart camera node’s duty 
cycling and sleep mode have been used to reduce energy 
consumption. Hengstler et al. [16] implemented a sleep 
mode in the smart camera MeshEye based on a prede-
fined time interval. This resulted in a reduced performance 
of the smart camera, as the active intervals are not event 
driven. Instead,  [7, 17] control the sleep/wake-up mode 
by using a passive infrared motion detector for scenarios 
of surveillance of restricted areas. However, the perfor-
mance of the proposed system would be affected by two 
elements: wake-up delay and non-accurate pre-processing. 
The system wake-up delay can be significant in the chosen 

scenario, while the background modelling algorithm they 
implemented requires several history frames before pro-
viding a robust model to support an accurate detection.

An alternative approach towards the energy optimisation 
of WVSNs is introduced in the HuSIMS  [18] project. They 
propose the use of semantic conversion to reduce the frame 
size before transferring the information to the server, without 
providing an analysis of the energy consumption changes 
between the proposed method and in-node processing. In 
addition, the model uses mobile communication networks 
to transfer full frames to the end user when the alarm is 
activated, without considering the resulting high data rate. 
Furthermore, Berni et al.  [19] designed the WVSN node 
Wi-FLIP, based on analogue pixel-level processing. Their 
system provides parallelism and energy efficiency, while 
penalising detection performance and adaptability of the 
design towards alternative vision sensors. Cao et al.  [20] 
have instead designed a self-optimising IoT WVSN, carrying 
out real-time processing and experimental communication 
configurations depending on the current energy levels. From 
the node architecture perspective, the configuration varies 
only in algorithms selection, while the processing allocation 
remains constant. Regarding communication, their prototype 
is promising for ideal environments, but the results might 
differ if implemented with current technology. In   [21, 22, 
23], they consider optimisation in WSN, and focus on the 
distribution of the computational load to optimise resource 
utilisation. The framework introduced in  [21] optimises the 
distribution of computational load and communication from 
the server to the processing nodes; the framework in [22] 
is implemented on the node itself to provide reliable pro-
cessing, communication and data, while the framework in 
[23] focuses on task scheduling for cloud architectures, to 
reduce the execution latency for intensive tasks. The three 
above-mentioned frameworks provide a limited view of the 
problem for battery-operated nodes, as they present no data 
regarding the energy consumption and delay for the sensor 
to server/cloud communication, or regarding the effects of 
implementing the framework in the node itself.

The architectures reviewed present a variety of algorithmic 
and architectural methods to optimise the energy consump-
tion of the edge node represented by the smart camera. The 
main limitation of the models is the exclusion, or restriction 
of the communication component to a single protocol chosen 
a priori. Instead, the growth in size and complexity of WVSNs 
requires a more inclusive analysis of the energy consumption 
in the node, in the IoT context. In this paper, we provide an 
analysis of the energy efficiency of the smart camera node 
evaluating the trade-off in energy consumption for different 
allocations of image-processing tasks between the smart cam-
era node and the cloud. In addition, the model includes the 
energy consumption estimation for three categories of commu-
nication technologies (LAN, Cellular, and IoT) related to IoT 
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scenarios. The aim is to provide an insight into the inter-effects 
of processing allocation and communication technologies in 
the overall energy consumption of the WVSN.

One important aspect of distributed smart camera sys-
tems is the interconnection of the different nodes by means 
of communication networks. Several networking technol-
ogy options have been suggested for the various systems 
described above. However, the focus of designing smart 
camera systems is typically on the image-processing features 
and their implementation rather than communication tech-
nologies, leading to the selection of communication inter-
faces based on modules availability and data rate require-
ments. As a result, such systems tend to employ energy 
hungry communication technologies, such as cellular mobile 
communication or WiFi (e.g. [17, 18]) that provide high data 
rate. In terms of overall node energy consumption, this is 
likely to result in sub-optimal technology selections.

The process of selecting the communication technology 
requires application-specific traffic pattern and technology-
specific protocol operation. Previous approaches that do 
consider communication costs apply simplistic models of 
the interfaces, especially the technology-specific protocol 
operation that controls the timing of the communication, and 
thus the energy consumed is often omitted (e.g.  [20, 24]). 
Hence, we developed a model  [25] reviewing the available 
technology options, including the differences in energy con-
sumption, based on different protocol behaviour. In contrast 
to other communication-specific articles with IoT focus, we 
target quite opposite assumptions regarding the data rate and 
sending intervals. The focus of other publications is on han-
dling many devices in parallel with low data rates and typi-
cally long duty cycles. Based on these assumptions, several 
low-rate technologies were developed for both short-range 
(e.g. IEEE 802.15.4, Bluetooth) and long-range applications 
(e.g. LoRa, NB-IoT, SigFox)  [26]. Due to the low data rates 
provided by these technologies, they are often not consid-
ered for WVSNs, even if they are designed to provide more 
energy-efficient communication and require less power dur-
ing operation. In  [26] , Morin et al. present node lifetime 
estimations for different ad hoc style IoT communication 
candidates based on the behaviour of the protocols. How-
ever, in their analysis they omit scenarios with frequent and 
large data transfers, such as WVSN scenarios. In  [25], we 
provided models allowing this comparison and apply them 
in the current study.

3  Methods

3.1  Intelligence partitioning

The evolution of requirements and constraints in WVSN in 
terms of energy consumption and delay requires a paradigm 

shift in design space exploration. Intelligence partitioning, 
providing an insight into the inter-effects of processing and 
communication, provides the support needed for the design 
of energy-efficient WVSN. A WVSN consists of a set of 
tasks, where a specific task ti is not bound to a specific geo-
graphical location; as such, it can be mapped to either the 
smart camera node or the cloud. The distribution function 
F in Eq. (1) has its functionality distributed between the 
camera node and the cloud, where the subsets fNode and fCloud 
are the different clusters of tasks mapped to different com-
putational elements.

The mapping function of the computational load to the com-
putational elements is referred to as intelligence partitioning 
ℑ(F).

Computational latency is defined in Eq. (3) as the time for 
processing each set of tasks 

{

fNode, fCloud
}

 on the respec-
tive computational platform at each computational layer 
{

PNode,PCloud

}

.

Communication latency is defined as the need to com-
municate data between the different computational levels 
DNode→Cloud on the communication link CNode→Cloud , between 
the layers. From these definitions, the latency for the intel-
ligence partitioning function ℑ(F) is derived as in Eq. 
(3), where LP and LC are the measurements or estimation 
function for the processing and communication latency, 
respectively.

Another limiting resource is the node energy consump-
tion, which can also be expressed as battery life or energy 
harvesting resource. The node energy ENode can be formu-
lated as:

EP and EC refer to estimation functions of the energy con-
sumption for processing and communication, respectively. 
The objective is to find the lowest energy per sample ENode 
under the constraint of a minimum latency Lmin.

(1)
F =

{

t1, t2, t3, t4
}

,F = fNode ∪ fCloud and ∅

= fNode ∩ fCloud.

(2)ℑ
(

F
)

=

{{

fNode, fCloud
}

DNode→Cloud

.

(3)L =
∑

p∈{Node,Cloud}

Lp
(

fp,Pp

)

+
∑

c∈{Node→Cloud}

Lc
(

fc,Pc

)

.

(4)
ENode = Ep

(

fNode,PNode

)

+ Ec

(

DNode→Cloud,CNode→Cloud

)

.

(5)
ENode

min
f

(

F

)

s.t. L < Lmax.
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The constraints can also be formulated as in Eq. (6) where 
the aim is to find the lowest latency L under the constraint 
that the node energy consumption ENode is below the node 
energy per sample available Ea.

In Sects. 5 and 6, we provide the results and analysis of the 
effects of intelligence partitioning in three deployment sce-
narios, with consideration regarding latency in Eq. (5) and 
energy consumption constraints in Eq. (6). Table 1 presents 
the resulting configurations of image-processing tasks allo-
cation based on Eq. (2).

3.2  Communication energy

The focus of this paper is on partitioning image-processing 
tasks between the smart camera node and the cloud, with 
regard to the inter-effects in processing and communica-
tion energy consumption. Hence, the communication has to 
reflect the impact on the sending node only for a complete 
picture of the trade-off between different configurations of 
task partitioning. We simplified the communication model 
by analysing a two-node system in Fig. 3 with point-to-point 
communication between the peer nodes. Even though we 
consider only the sending node for the energy consumption 
analysis, two nodes are required to describe the correct tim-
ing constraints of the communication, as the node will also 
receive control information from the peer. Furthermore, we 
assume that the nodes are already connected to each other 
and the sensor node can send its data, as soon as the image 
processing requires it. The model is based on ideal commu-
nication conditions with no transmission errors. In addition, 
the interference by other nodes/technologies has been omit-
ted, assuming ideal resource assignment for the transmitting 
sensor node. To transfer larger amounts of data, subsequent 
transmissions take place until the required data amount is 
transferred, depending on the technology-specific aspects.

To model the energy consumed by the communication 
module or interface of the node, we calculate the required 
transmission time for the given data amount for each tech-
nology based on its physical and medium access layer 

(6)
L

min
f

(

F

)

s.t. ENode < Ea.

operation. Higher layers of the communication stack are not 
considered. This assumes that fragmentation at the network 
layer is available, if the data to be transferred is larger than a 
single packet. To ensure reliable data transmission, acknowl-
edgements are used as feedback from the receiver, according 
to the protocol specification of the given technology. The 
overhead considered includes all training and synchronisa-
tion sequences on the physical layer as well as any overhead 
due to header information at the MAC layer. The model uses 
a typical communication cycle according to Fig. 4, which is 
repeated multiple times, if more than one packet is needed 
to transfer the given data amount. This model follows the 
approach in  [27] for subsequent packet transmissions. Based 
on this, we are able to describe how long each transmission 
stage (e.g. sending tx, receiving rx, or waiting idle) takes 
for a single transmission of the given data amount. We then 
derive the overall energy consumption of the communication 
module PC(tech) of the node based on the time it spends in the 
different states as well as current consumption taken from 
the data sheets of corresponding transceiver chips for each 
technology and the data amount d according to this equation:

Ptx , Prx , Pidle and Psleep are the different power consump-
tion levels per state of the given transceiver. ttx , trx , tidle and 
tsleep are the protocol-specific durations spent in each state 
to transfer the data amount d. It should be noted that not all 
generic states will be used, depending on the actual opera-
tional specification of the given technology. The proposed 
communication model provides an estimation of commu-
nication specific energy consumption, required for the task 
partitioning analysis. Energy consumption and delay esti-
mation results are optimistic compared to real-world imple-
mentation, as the systems are considered isolated, and any 
re-transmission of packets is not included. However, this 
model provides the fundamentals upon which to analyse the 

(7)
P
C

(

tech

)

(

d
)

= ttx
(

drx
)

Ptx + trx
(

dtx
)

Prx

+ tidlePidle + tsleepPsleep.

Fig. 3  Two-node representation of the node-cloud communication 
model Fig. 4  Activity cycle of data transmission
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inter-effects of communication and processing energy con-
sumption regarding the allocation of image processing tasks 
between the camera node and the cloud.

3.2.1  Compression and data aggregation

In current literature, the addition of image compression 
techniques is considered a priori as a method to reduce the 
smart camera node energy consumption, because of the 
reduction in communication workload. Data rate require-
ments vary significantly amongst them due to the differ-
ent configurations of tasks partitioning, resulting from the 
application of intelligence partitioning. Considering this 
data rate variation, and the inclusion in the analysis of 
several communication technologies, we decided to inves-
tigate how the inter-effects of processing and communi-
cation energy consumption would be affected by image 
compression techniques. Initially, we implemented loss-
less greyscale image compression on embedded software. 
The results motivated us to investigate further, hence we 
implemented CCITT group 4 binary image compression 
in both embedded hardware and software. The software 
implementations are based on the OpenCV library, while 
the hardware implementation is from the work of Imran 
et al.    [28]. Another method to reduce communication 
workload is data aggregation. For partitioning configu-
rations where all the processing is done locally in the 
node and only the counting result is sent to the cloud, 
data transfers for each frame would be redundant. Instead, 
we transfer the data in predefined time intervals, without 
affecting the statistics of people counting, while optimis-
ing the communication workload.

4  Communication technologies

There is a wide range of communication technologies that 
could be suitable for IoT systems. However, the suitability of 
a technology mainly depends on the constraints of the spe-
cific user case [29–32]. In the case of battery-operated smart 
camera systems, these constraints are energy consumption; 
relatively high data amount compared to traditional IoT 
systems with low duty cycle; and real-time performance. 
The latter two result in high data rate requirements, if nodes 
exchange raw image data. Despite the need for high data 
rates, previous approaches on smart camera systems also 
considered traditional communication for wireless sensor 
networks such as Bluetooth Low Energy (BLE) or, 802.15.4 
with rather low data rates  [29, 33]. Therefore, we introduce 
the following categories for communication technologies.

4.1  Local area network communication

This category contains Bluetooth and WiFi as two technolo-
gies that are able to provide higher data rates and are avail-
able in various devices other than traditional sensors. The 
achievable communication range is approximately 100 m, 
and thus rather short. Out of these, we selected two versions 
of Bluetooth Low Energy (BLE): version 4.2 with a data 
rate of 1 Mbps and version 5 with 2 Mbps as well as WiFi 
according to the IEEE 802.11n standard.

4.2  Cellular communication

This category contains traditional public land mobile net-
working technologies that were developed for mobile phone 
communication, which are mainly used for server to user 
communication, rather than communication between the 

Table 1  Configurations 
resulting from intelligence 
partitioning for the people 
counting scenario

Config. t
1

t
2

t
3

t
4

Data size (B) After data 
reduction (B)

Reduction type

c
1

N
HW

N
HW

N
HW

N
SW

1 0.05 A
c
2

N
HW

N
HW

N
HW

C 1117.5 91 CCITT
c
3

N
HW

N
HW

N
SW

N
SW

1 0.05 A
c
4

N
HW

N
HW

N
SW

C 1117.5 91 CCITT
c
5

N
HW

N
HW

C C 1117.5 91 CCITT
c
6

N
HW

N
SW

N
SW

N
SW

1 0.05 A
c
7

N
HW

N
SW

N
SW

C 1117.5 91 CCITT
c
8

N
HW

N
SW

C C 1117.5 91 CCITT
c
9

N
HW

C C C 8940 3179 PNG
c
10

N
SW

N
SW

N
SW

N
SW

1 0.05 A
c
11

N
SW

N
SW

N
SW

C 1117.5 91 CCITT
c
12

N
SW

N
SW

C C 1117.5 91 CCITT
c
13

N
SW

C C C 8940 3179 PNG
c
14

C C C C 8940 3179 PNG
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sensor nodes and the server (e.g. in [18]). In this category, 
different technologies support a wide range of data rates, 
which are asymmetric between up- and downlink. Hence, the 
sensor node has different rates for receiving (downlink) and 
sending (uplink) data. The exact rate of a user will depend 
on the current state of the network and the resources that 
are assigned to the device in question. All technologies 
have long-range capabilities with ranges over 1 km and 
mainly require more energy than technologies designed for 
low-power IoT applications. However, for long-range IoT 
applications that require a high data rate, employing cellular 
communication technologies can be the optimal choice. In 
this study, we consider GPRS, HSPA and LTE Cat4 in this 
category.

4.3  IoT‑specific communication

This category covers both traditional communication for low 
data rate wireless sensor networks and long-range technolo-
gies designed for the IoT context. The IEEE 802.15.4 stand-
ard represents the traditional low-rate communication in its 
conventional specification. BLE can also be a candidate in 
this category, but we chose to add it to the LAN category as 
it is also used there and supports higher data rates. Among 
the recently developed IoT-specific technologies, we con-
sider NB-IoT, an LTE extension for machine-to-machine 
communication  [34], and LoRa, but we omit SigFox from 
our analysis due to its significantly low data rate for WVSN 
applications. Furthermore, we added LTE Cat. 1 devices 
to this group, which were designed as intermediate tech-
nology between LTE devices of the previous category and 
NB-IoT, in terms of low power consumption requirements. 
Both NB-IoT and LTE Cat1 belong to the group of cellular 
technologies.

With this selection, we are able to cover the complete 
data rate of currently available technologies for WVSN com-
munication. Table  2 gives an overview of the considered 

technologies. It also indicates which transceiver hardware 
was used to evaluate the energy consumption of the tech-
nologies. We based this analysis on the capabilities of suit-
able embedded transceiver chips that might result in lower 
data rates than expected for each technology, especially in 
the case of WiFi.

5  Results

5.1  Design examples

5.1.1  People counting

Applications such as surveillance systems, or environmen-
tal monitoring, consist of outdoor deployment of the cam-
era node, with public spaces captured within the field of 
view. The main complexity of such systems is to provide a 
robust application despite the abrupt illumination changes 
throughout the day/night cycle. In addition, in many coun-
tries, including Sweden, there are law restrictions prohibit-
ing installation of cameras in public spaces; hence, privacy 
concerns become a major constraint in the design of the 
system.

To overcome these complexities, we used a low-res-
olution thermal sensor that gives a generic temperature 
profile of the region/object of interest while providing a 
low-weight system compared to RGB cameras  [45]. For 
the people counting scenario, we created our own dataset 
from a setup installed in Härnösand, Sweden. The camera 
sensor used is the FLIR Lepton 3, a long-wave infrared sen-
sor with wavelength 8–14 � m. The analysis is based on the 
processing of a video of 1:45 hours recorded from a sta-
tionary camera, with a frame rate of 9 fps, and frame size 
60 × 149 pixels. The processing platform used for the smart 
camera is the TE0726-03M Raspberry Pi with a System on 
Chip module that includes the Xilinx Zynq-7010 FPGA. The 

Table 2  Configurations of 
communication technologies

Category Technology Max. data rate Range Chip Ploting order

Downlink Uplink Name Energy 
Rx (mA)

Energy 
Tx (mA)

LAN BLE 4.2 1 Mbps ~100m [35] 6.4 5.3 (1)
BLE 5 2 Mbps ~100m [36] 5.4 5.3 (2)
802.11n 72.2 Mbps ~100m [37] 61 287 (3)

Cellular GPRS 80 kbps 40 kbps > 1   km [38] 300 (4)
HSPA 7.2 Mbps 5.76 Mbps >1   km [39] 425 (5)
LTE Cat. 4 150 Mbps 50 Mbps > 1   km [40] 610 (6)

IoT 802.15.4 250 kbps ~100m [41] 5.9 6.1 (7)
NB-IoT 27.2 kbps 62.5 kbps > 1   km [42] 46 220 (8)
LoRa 37.5 kbps > 1   km [43] 13.8 28 (9)
LTE Cat. 1 10.3 Mbps 5.2 Mbps > 1   km [44] 540 (10)
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image-processing tasks used in the people counting scenario 
are listed below:

• Background modelling and subtraction use low-pass IIR 
filter due to energy efficiency and accuracy in the back-
ground model [45].

• Segmentation is based on a global threshold defined 
experimentally.

• Morphology relies on erosion and dilation operations 
with a 3 × 3 mask.

• Detection uses the bounding box method for each fore-
ground element, while tracking relies on Kalman filter.

• Image compression uses CCITT group 4 and PNG com-
pression for the binary and greyscale images, respec-
tively, with more implementation details in Sect. 3.2.1.

Tasks such as background modelling, segmentation, mor-
phology and image compression were implemented in both 
the programmable logic and the ARM Cortex A9 proces-
sor; the remaining were only implemented on embedded 
software  [46]. Software implementation of the image-pro-
cessing tasks is based on OpenCV libraries. To estimate the 
energy consumption of the different configurations of task 
partitioning included in our analysis, we used the Xilinx 
Power Estimation tool with an error margin of 20%  [47] and 
the post-synthesis hardware description.

5.1.2  Pedestrian and particle detection

Besides the people counting scenario, we also evaluate the 
effects of intelligence partitioning in the node energy con-
sumption for the smart camera nodes introduced by Imran 
et al.  [8] and Maggiani et al.  [9].

The energy consumption results regarding the computa-
tion are, respectively, based on the Xilinx Power Estimation 
tool and PowerPlay Early Power Estimator tool  [48] with a 
20% error margin. The flowcharts in Fig. 5 show the com-
putational tasks considered for intelligence partitioning in 
each of the implementation cases analysed.

5.2  Measurement results

The analysis of the overall energy consumption in the smart 
camera node for the three scenarios is based on the com-
bined results of image-processing task partitioning and com-
munication technologies. The computational tasks in Fig. 5 
are allocated among the processing elements in the node 
and cloud, resulting in several configurations for the peo-
ple counting scenario as shown in Table 1. In the following 
analysis, the communication technologies will be referred 
to according to the plotting order in Table 2, while all the 
calculations for delays and energy consumption in the smart 
camera node are frame based.

5.2.1  Delay and channel usage

Scenarios such as environmental monitoring, industrial 
monitoring, or surveillance system are highly dependent 
on the timing constraint to maintain the performance of 
the system. Task partitioning configurations result in data 
rate requirements ranging from 8940 down to 0.5 bytes per 
frame for the people counting scenario and 964, 608 down 
to 259 bytes per frame for the other two scenarios. Subse-
quently, this affects the performance of the communication 
technologies considered, especially IoT communication 
technologies, as they have been designed for long duty 
cycles and low data rate operations. To define the delay 
constraint for each scenario, we referred to the frame rate 
of the smart cameras and compared it to the communica-
tion delay. We omit from our consideration the processing 
delay in the smart camera node, as it is in the range of ns to 
μ s. Table 3 summarises the effects of the delay constraints 
in the ten communication technologies considered, based 
on the data rate requirements resulting from intelligence 
partitioning in each scenario.

As expected, the IoT communication group is the most 
affected by the delay constraint. For the people counting 
scenario, LoRa supports only transfers of a few bytes per 
second resulting from full in-node implementation of the 
image-processing tasks, while NB-IoT and 802.15.4 sup-
port data rates up to binary image transfer (compressed 
and non-compressed, respectively). Instead, for the par-
ticle and pedestrian detection cases, the support of IoT 
technologies is highly restricted due to higher data rate 
requirements, and a three times shorter delay interval. 
The LTE Cat. 1 technology is an exception to the group 

Fig. 5  Flowchart representation of computational tasks for: a people 
counting; b particle detection  [8]; c pedestrian detection  [9]
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performance, as it meets the delay requirements for data 
rates up to 11, 264 bytes per frame.

In the cellular communication group, HSPA and LTE 
Cat. 4 technologies meet delay requirements for data rates 
up to 119, 808 bytes per frame, while GPRS only supports 
data rates up to 91 bytes per frame for the people count-
ing scenario. The LAN communication group provides 
support for all the data rates resulting from intelligence 
partitioning in the people counting scenario. However, for 
the particle and pedestrian detection scenarios, Bluetooth 
Low Energy devices are restricted to only three configu-
rations, with data rates up to 680 bytes per frame, unlike 
802.11n technologies that support up to 119, 808 bytes 
per frame.

One of the three communication technology groups 
included in our analysis is cellular technologies. In this 
case, the communication channel is owned by a third 
party, and its utilisation results in additional monetary 
costs for the smart camera node. Hence, we need to take 
such costs into consideration in terms of subscription 
costs, which subsequently limits the amount of data to be 
transferred. As a result, cellular technologies would not 
be an optimal choice for the pedestrian detection scenario 
with monthly data rates in the range of terabytes. In the 
remaining two scenarios, the monthly data rate require-
ments are significantly reduced for task partitioning con-
figurations with image compression, enabling the use of 
cellular technologies.

5.2.2  Data reduction

The constraints in terms of delay and channel utilisation 
showed a significant reduction in the number of commu-
nication technologies capable of meeting the requirements 
as the data rate increases. For the people counting and par-
ticle detection scenarios, the task partitioning configura-
tions with the most restrictions were the ones without any 
data reduction method implemented. However, the focus 
is on exploring the energy efficiency of the smart camera 
node; hence, we analyse how the implementation of image 
compression affects the overall node energy consumption 
for the people counting scenario.

Table 4 shows the resulting energy consumption in 
the smart camera with and without greyscale image com-
pression for configuration 9 of the task partitioning. The 
results from configuration 13 and 14 of task partitioning 
have been omitted; all three showed the same behaviour. 
Contrary to expectations, the overall energy consumption 
of the smart camera is higher for the case with image com-
pression. From a comparison of the points with the lowest 
energy consumption, consisting of BLE 5 communication, 
the energy consumption is 24 times higher for the scenario 
with greyscale compression. This shows that processing 
the image compression algorithm on embedded software 
increases the processing energy consumption much more 
than the reduction in communication energy due to data 
rate reduction.

Table 3  Delay constraints in the 
communication technologies 
for data rates resulting from 
intelligence partitioning

Communication 
technologies

1 2 3 4 5 6 7 8 9 10 Monthly data rate

People counting
0.5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 1.23 MB
1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 22.2 MB
75 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ 1.6 GB
91 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ X ✓ 1.98 GB
1 117.5 ✓ ✓ ✓ X ✓ ✓ ✓ X X ✓ 24.3 GB
3 179 ✓ ✓ ✓ X ✓ ✓ X X X ✓ 69.1 GB
8940 ✓ ✓ ✓ X ✓ ✓ X X X ✓ 194 GB
Particle detection  [8]
259 ✓ ✓ ✓ X ✓ ✓ ✓ X X ✓ 18.8 GB
500 ✓ ✓ ✓ X ✓ ✓ ✓ X X ✓ 36.2 GB
680 ✓ ✓ ✓ X ✓ ✓ ✓ X X ✓ 49.24 GB
7 217 X X ✓ X ✓ ✓ X X X ✓ 522.6 GB
32,000 X X ✓ X ✓ ✓ X X X X 2.26 TB
256,000 X X X X X X X X X X 18.1 TB
Pedestrian detection  [9]
11,264 X X ✓ X ✓ ✓ X X X ✓ 815.7 GB
119,808 X X ✓ X X ✓ X X X X 8.47 TB
964,608 X X X X X X X X X X 68.2 TB
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Considering the high impact of the processing energy 
consumption for the compression algorithm, we investi-
gated into hardware/software partitioning, this time for 
the lossless binary image compression with CCITT G4. In 
addition, we omitted the frame header from the compressed 
packets, considering an already acknowledged communica-
tion between the node and the cloud. The task partitioning 
configurations resulting in binary frames are 2, 4, 5, 7, 8, 11 
and 12, all showing similar behaviour; hence, the results in 
Table 5 are only for configuration 2. Similarly to the previ-
ous case, the software implementation of the compression 
algorithm increased the overall energy consumption of the 
smart camera, with a difference of up to 200 times higher 
than the case with no compression. Instead, due to the fine-
grained use of computational and memory requirements for 
the hardware implementation, the overall energy consump-
tion is five times lower than for the non-compressed case.

Among the several task partitioning configurations con-
sidered in this analysis, configurations 1, 3, 6 and 10 rely on 

full in-node implementation of the image-processing tasks. 
For the people counting scenario, this would result in trans-
ferring only the counted number to the cloud for further 
statistical analysis of the data. Hence, we considered the use 
of data aggregation to avoid redundant information regard-
ing the people count, while optimising the communication 
energy consumption. Figure 6 shows the energy consump-
tion per frame for all the task partitioning configurations, 
including those with full in-node implementation with and 
without data aggregation. The effects of applying data aggre-
gation vary for the different communication groups, with 
minimal effects in the LAN technologies, and a maximum 
reduction of 50% . The cellular group shows moderate results 
with a reduction of 14–29 times energy consumption, while 
the IoT group has the highest reduction for the cases with 
NB-IoT and LoRa communication, resulting in a reduction 
of 33 and 124 times, respectively, compared to the case 
without data aggregation. This is due to the design of such 
communication technologies, optimised for low-data rate 
transfers and long duty cycles.

5.2.3  Node energy consumption

The aim of this paper is to analyse how the overall energy 
consumption in the smart camera node is affected by pro-
cessing allocation and communication technology choice. 
The results in Fig. 6 show the energy consumption per frame 
for the people counting scenario, based on the combination 
of task partitioning configurations, communication technolo-
gies and data reduction approaches introduced above. We 
begin the analysis of the results from left to right, with the 
two data rate groups related to full in-node implementation 
with and without data aggregation. The variation in energy 
consumption among the communication technologies is 
about one order of magnitude, while all the communica-
tion technologies support the resulting data rate. This is fol-
lowed by the data rate groups resulting from binary image 
compression after and before morphology, respectively. The 
variation in the overall node energy consumption is of about 
two orders of magnitude, representing the variations due to 
hardware/software partitioning of the tasks within the smart 
camera, but most importantly representing the variation in 
energy consumption between the different communication 
technologies. The results show that LAN technologies pro-
vide a lower energy consumption compared to the remaining, 
while LoRa and NB-IoT have been omitted due to the delay 
constraint. The following data rate groups consist of binary 
frame transfer, compressed greyscale and non-compressed 
greyscale. The results show high energy consumption, while 
the number of communication technologies that support 
the data rates is reduced. The minimum energy consump-
tion among all the configurations considered is achieved 
when we implement background modelling, segmentation, 

Table 4  Energy consumption per frame for greyscale compression

Communication 
technology

Uncompressed 
(mJ)

Compressed (mJ) 
Software

Energy 
variation 
(ratio)

1 1.6 20.8 13
2 0.8 20.5 25.6
3 1.3 20.7 16
4 − − −

5 22.6 29.9 1.3
6 4.6 22.5 4.9
7 − − −

8 − − −

9 − − −

10 31 32.5 1.05

Table 5  Energy consumption per frame for binary image compression

Communica-
tion technol-
ogy

Uncom-
pressed 
(mJ)

Compressed (mJ) Energy variation 
(ratio)

Hardware Software Hardware Software

1 0.2 0.04 20 0.2 100
2 0.1 0.03 20 0.3 200
3 0.3 0.2 20 0.67 66.7
4 − 9.4 29 − −

5 3.2 3.2 23 1 7.2
6 2.3 2.3 22 1 9.6
7 5.1 0.9 21 0.18 4.1
8 − 7.4 27 − −

9 − − − − −

10 4.1 2 22 0.49 5.4
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morphology and image compression on embedded hardware 
in the smart camera, supported by BLE 5 communication.

Similarly to the people counting scenario, the results in 
Fig. 7a for the particle detection scenario show reduction 
of the node energy consumption as we distribute the pro-
cessing tasks between the node and the cloud. As the data 

size increases, the number of communication technologies 
supporting it decreases, with cases of full cloud process-
ing becoming obsolete due to communication delay. The 
optimal configuration consists of capturing, pre-processing, 
segmenting and compressing the images before transferring 
the data to the cloud with BLE 5 communication.

Fig. 6  Energy consumption per frame in the smart camera node resulting from intelligence partitioning in the people counting scenario

Fig. 7  Energy consumption per frame in the smart camera node resulting from intelligence partitioning
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A contrast to the previously introduced results is the 
energy consumption of the smart camera node in the pedes-
trian detection scenario. The data in Fig. 7b shows that the 
optimal node energy consumption is achieved for full in-
node processing, while supported by 802.11n communi-
cation. The high data rates resulting from the partitioning 
configurations of this scenario exclude most of the commu-
nication technologies due to the delay constraint.

6  Discussion on intelligence partitioning 
in WVSNs

In this paper, we have analysed the effects of intelligence 
partitioning in the energy efficiency of the smart camera 
node. The combination of three processing environments 
and ten communication technologies provided a broader 
perspective of the problem of design space exploration for 
smart camera architecture. Traditional architectures focus on 
either full in-node implementation of the processing tasks or 
remote processing of the captured frames. The results from 
intelligence partitioning challenge such views, proving that 
the distribution of the image-processing tasks between the 
node and the cloud optimises the node energy consumption 
due to inter-effects of processing and communication energy 
consumption. The processing energy consumption for the 
node is generated by power estimation tools with a 20% error 
margin. This uncertainty from the processing component 
leaves the results of intelligence partitioning introduced 
above unchanged, as the difference between intelligence 
partitioning groups is much higher than 20%.

Performing intelligence partitioning in the three design 
examples provided configurations with data rates varying 
from 0.5 to 964,608 bytes per frame, which has a major 
effect on constraints regarding delay and channel utilisation. 
The results showed that partitioning configurations with no 
data reduction methods implemented have a limited choice 
of communication technologies. Furthermore, the cases 
with fully remote processing of the data in the particle and 
pedestrian detection scenarios cannot be supported by any 
of the communication technologies considered due to the 
delay and channel utilisation costs. To summarise on the 
performance of communication technologies, BLE 4 and 5 
are the two better performing technologies of the communi-
cation technologies analysed for all the configurations in the 
people counting scenario. Furthermore, for the particle and 
pedestrian detection scenarios, BLE provides the best energy 
performance for data below 1 kB, while for the remaining 
configurations, the 802.11n and LTE Cat. 4 provide better 
energy efficiency.

The use of data reduction techniques not only affects the 
choice of communication technologies, but also the overall 
node energy consumption. The results obtained from the 

analysis on greyscale and binary image compression for the 
people counting scenario disproved the general assumption 
that image compression a priori reduces the node energy 
consumption. Fine-grained use of computational and mem-
ory resources for the hardware implementation of the com-
pression algorithm reduces the processing energy consump-
tion compared to the software implementation. Therefore, 
hardware/software partitioning of the compression algorithm 
influences the outcome due to the trade-off between process-
ing and communication energy consumption.

A comparative assessment of the energy consumption 
results obtained from intelligence partitioning in the three 
scenarios shows that intelligence partitioning can improve 
the overall node energy consumption, while satisfying the 
constraints of real-time performance. However, the results 
also show that the effects of intelligence partitioning are 
affected by the relationship between additional processing 
load and the resulting data rate reduction, which can be the 
product of image-processing tasks or data reduction tech-
niques. For the people counting and particle detection sce-
narios, this enables the allocation of the partitioning point 
in between the image-processing tasks. However, for the 
pedestrian detection scenario, there is a negative trade-off 
between the processing and data reduction, resulting in an 
energy-efficient partitioning at the end of the image-pro-
cessing pipeline.

7  Conclusion

The results presented show that to improve the energy effi-
ciency of WSNs, we should review preconceptions regard-
ing design space exploration. Energy-efficient distribution 
of image-processing tasks between the smart camera node 
and the cloud, as well as the selection of the communication 
technology, can improve the longevity of battery-operated 
nodes, compared to full in-node or remote processing sce-
narios. Therefore, these results can motivate future work that 
investigates in the introduction of intermediate processing 
layers between the camera node and the cloud for further 
node energy efficiency.
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