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Abstract

The rapid development of the Internet of Things is affecting the requirements towards wireless vision sensor networks
(WVSN). Future smart camera architectures require battery-operated devices to facilitate deployment for scenarios such
as industrial monitoring, environmental monitoring and smart city, consequently imposing constraints on the node energy
consumption. This paper provides an analysis of the inter-effects between computation and communication energy for a smart
camera node. Based on a people counting scenario, we evaluate the trade-off for the node energy consumption with different
processing configurations of the image processing tasks, and several communication technologies. The results indicate that
the optimal partition between the smart camera node and remote processing is with background modelling, segmentation,
morphology and binary compression implemented in the smart camera, supported by Bluetooth Low Energy (BLE) version
5 technologies. The comparative assessment of these results with other implementation scenarios underlines the energy
efficiency of this approach. This work changes pre-conceptions regarding design space exploration in WVSN, motivating
further investigation regarding the inclusion of intermediate processing layers between the node and the cloud to interlace
low-power configurations of communication and processing architectures.

Keywords Intelligence partitioning - Smart camera - WVSN - Energy-efficiency - IoT - In-sensor processing

1 Introduction the architecture came with high financial costs due to the

constant need for staff to perform visual inspection, as well

Scenarios such as industrial monitoring [1], environmental
monitoring [2], and smart city [3] have to a wide extent
changed the constraints towards wireless vision sensor net-
works (WVSN), requiring several cameras to cover large
areas, while performing image-processing and communi-
cation tasks with real-time performance. Looking back at
the evolution of camera-based networks, many changes
have been introduced through the years in terms of design
and architecture. Initially, such systems consisted mainly of
CCTYV cameras connected either to monitors for constant
visual inspection, or stored to a memory device. As a result,
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as extensive memory requirements. The necessity for the
systems to be more autonomous resulted in the design of
smart camera nodes, which embedded processing capabili-
ties in the camera node itself. However, scenarios such as
industrial or outdoor monitoring bring attention to the com-
plexity of wired vision systems architectures due to camera
deployment limitations and electromagnetic noise. From the
communication perspective, this has been overcome through
the implementation of wireless communication technologies,
i.e. WVSN. To address the problem as a whole, we need to
investigate energy-efficient designs of smart cameras, ena-
bling their implementation as battery-operated devices with
a satisfactory lifetime.

Energy efficiency in the smart camera node is a twofold
problem, highly influenced by the allocation of image-
processing tasks. On the one hand, there are tasks such as
background modelling, segmentation, morphology, detec-
tion and tracking that are computationally demanding. On
the other hand, there are different communication technolo-
gies alternating in terms of energy efficiency and delay for
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different data rate requirements. An overview of state of the
art research on WVSNs indicates that smart camera opti-
misation (either image-processing performance or energy
consumption), and communication networks optimisation
(energy efficient protocols) are analysed as separate enti-
ties. The energy efficiency of the smart camera node through
processing focuses on energy-efficient implementation of
image-processing algorithms [4], or distribution of tasks
between the node and a server/cloud, connected by a com-
munication technology chosen a priori [5]. The presented
architectures consist of three main configurations:

e In-sensor processing: the processing is done in the sen-
sor node, while the configuration between hardware and
software implementation can vary. In [4, 6] the aim is to
optimise such architectures for smart cameras.

e Sensor and remote processing: the processing tasks can
be partitioned between the sensor and the remote pro-
cessor, which can be a server or the cloud. In [7] they
provide an example of outdoor monitoring with the allo-
cation of image-processing tasks chosen a priori.

e Remote processing: the sensor node has no processing
capabilities, and all the data are transferred to the cloud
for processing and analysis.

However, in articles on the analysis of communication
energy efficiency, they implement a predefined image-pro-
cessing design on the node, while the emphasis is on the
optimisation of the energy consumption for the communica-
tion model. As a result, all previously mentioned approaches
provide partial understanding of the variations in the smart
camera node energy consumption, as they omit the inter-
effects of processing and communication configurations.
We use the term intelligence partitioning to refer to a design
exploration approach that analyses the inter-effects of the pro-
cessing and communication component in the WVSN, opti-
mising the node energy consumption and the real-time per-
formance of the system. This approach relies on the analysis
of several partitioning configurations of the image-processing
tasks between the computational entities. The schematic rep-
resentation in Figs. 1 and 2 show that for each configuration,
we select a partition point; the tasks on the left side are allo-
cated in the smart camera, while the tasks on the right side are

Background
modelling

Segmentation | Morphology Tracking

Partition
node point

Smart camera Cloud

Fig. 1 Representation of the image-processing tasks partitioning
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Fig.2 Schematic representation of intelligence partitioning between
the smart camera node and the cloud, including the communication
technologies

executed in the cloud. Furthermore, for the tasks allocated in
the smart camera we also consider the partitioning configura-
tions generated by hardware/software partitioning of the tasks.
The overall energy consumption of the smart camera node, for
each of the task partitioning configurations, is the sum of the
processing energy consumption and the energy consumption
of each of the communication technologies included in the
analysis.

In this paper, we introduce an analysis of the inter-effects
between computation and communication energy consump-
tion in a smart camera node, for different task partitioning
configurations of image processing. We investigate how the
allocation of image-processing tasks on embedded hardware,
software or cloud affects the overall node energy consumption,
for a people counting scenario. Furthermore, we implement
this approach to the scenarios presented by [8] and [9] to
compare the energy efficiency of this method with their results.
The aim of this work is not only to provide an energy-efficient
design for a people counting scenario, but mainly to explore
the trade-off between computation and communication energy
for data-intensive IoT scenarios.

The remainder of this paper is organised as follows. In
Sect. 2 we review WVSN architectures focusing on approaches
for energy-efficient nodes, and their decision-making process
in the design space exploration. Section 3 introduces the mod-
els for intelligence partitioning and communication, while
Sect. 4 provides a detailed analysis of the selected commu-
nication technologies. In Sect. 5 we present the design cases
used for the intelligence partitioning analysis and measure-
ments results for aspects such as communication delay and
the node energy consumption, which are further discussed in
Sect. 6. Section 6 summarises the results and key findings of
this paper.
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2 Related work

The architecture of people counting systems can be
divided into two categories: image based and non-image
based. Several non-image-based methods rely on the use
of passive infrared sensors (PIR) in the region of inter-
est, but with a major drawback due to occlusion handling.
Alternative methods such as analysis of WiFi channel
use [10], or a combination of infrared lasers alongside an
IR camera to detect the IR rays displacement [11] have
been implemented, providing an approximate count, but
without distinguishing between people and other mov-
ing elements that can be present in the region of interest.
Instead, image-based people counting models introduced
in [12—15] rely on depth imagery to overcome occlusion
limitations, while using GPU as processing element. The
emphasis of their approach is on the accuracy of detec-
tion; hence, they propose models that are computation-
ally intensive in devices that cannot be battery operated.
Furthermore, cloud processing for such scenarios would
require high bandwidth and inflict significant delays,
which would affect the real-time performance.

In the last decade, many WVSN architectures have been
developed and further optimised in terms of energy con-
sumption. Several strategies have been introduced through
the years, one of which has been an energy-efficient design
through hardware/software optimisation in the smart cam-
era node. Birem et al. [4] introduced DreamCam, a smart
camera based on low-power Altera-Cyclone III FPGA.
They optimised the design by implementing their own
hardware modules for feature extraction. Another smart
camera architecture is the SENTIOF-CAM designed
by [5], where they implemented a low-complexity back-
ground modelling algorithm and duty cycling to optimise
the energy consumption of the smart camera node. In addi-
tion, they partitioned the image-processing tasks between
the node and a server. However, in their evaluation of a
partitioning point they only considered the reduction of
the data size to be transferred, not including the trade-off
between processing and communication energy.

In several WVSNs, the smart camera node’s duty
cycling and sleep mode have been used to reduce energy
consumption. Hengstler et al. [16] implemented a sleep
mode in the smart camera MeshEye based on a prede-
fined time interval. This resulted in a reduced performance
of the smart camera, as the active intervals are not event
driven. Instead, [7, 17] control the sleep/wake-up mode
by using a passive infrared motion detector for scenarios
of surveillance of restricted areas. However, the perfor-
mance of the proposed system would be affected by two
elements: wake-up delay and non-accurate pre-processing.
The system wake-up delay can be significant in the chosen

scenario, while the background modelling algorithm they
implemented requires several history frames before pro-
viding a robust model to support an accurate detection.

An alternative approach towards the energy optimisation
of WVSN:ss is introduced in the HuSIMS [18] project. They
propose the use of semantic conversion to reduce the frame
size before transferring the information to the server, without
providing an analysis of the energy consumption changes
between the proposed method and in-node processing. In
addition, the model uses mobile communication networks
to transfer full frames to the end user when the alarm is
activated, without considering the resulting high data rate.
Furthermore, Berni et al. [19] designed the WVSN node
Wi-FLIP, based on analogue pixel-level processing. Their
system provides parallelism and energy efficiency, while
penalising detection performance and adaptability of the
design towards alternative vision sensors. Cao et al. [20]
have instead designed a self-optimising IoT WVSN, carrying
out real-time processing and experimental communication
configurations depending on the current energy levels. From
the node architecture perspective, the configuration varies
only in algorithms selection, while the processing allocation
remains constant. Regarding communication, their prototype
is promising for ideal environments, but the results might
differ if implemented with current technology. In [21, 22,
23], they consider optimisation in WSN, and focus on the
distribution of the computational load to optimise resource
utilisation. The framework introduced in [21] optimises the
distribution of computational load and communication from
the server to the processing nodes; the framework in [22]
is implemented on the node itself to provide reliable pro-
cessing, communication and data, while the framework in
[23] focuses on task scheduling for cloud architectures, to
reduce the execution latency for intensive tasks. The three
above-mentioned frameworks provide a limited view of the
problem for battery-operated nodes, as they present no data
regarding the energy consumption and delay for the sensor
to server/cloud communication, or regarding the effects of
implementing the framework in the node itself.

The architectures reviewed present a variety of algorithmic
and architectural methods to optimise the energy consump-
tion of the edge node represented by the smart camera. The
main limitation of the models is the exclusion, or restriction
of the communication component to a single protocol chosen
a priori. Instead, the growth in size and complexity of WVSNs
requires a more inclusive analysis of the energy consumption
in the node, in the IoT context. In this paper, we provide an
analysis of the energy efficiency of the smart camera node
evaluating the trade-off in energy consumption for different
allocations of image-processing tasks between the smart cam-
era node and the cloud. In addition, the model includes the
energy consumption estimation for three categories of commu-
nication technologies (LAN, Cellular, and IoT) related to IoT
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scenarios. The aim is to provide an insight into the inter-effects
of processing allocation and communication technologies in
the overall energy consumption of the WVSN.

One important aspect of distributed smart camera sys-
tems is the interconnection of the different nodes by means
of communication networks. Several networking technol-
ogy options have been suggested for the various systems
described above. However, the focus of designing smart
camera systems is typically on the image-processing features
and their implementation rather than communication tech-
nologies, leading to the selection of communication inter-
faces based on modules availability and data rate require-
ments. As a result, such systems tend to employ energy
hungry communication technologies, such as cellular mobile
communication or WiFi (e.g. [17, 18]) that provide high data
rate. In terms of overall node energy consumption, this is
likely to result in sub-optimal technology selections.

The process of selecting the communication technology
requires application-specific traffic pattern and technology-
specific protocol operation. Previous approaches that do
consider communication costs apply simplistic models of
the interfaces, especially the technology-specific protocol
operation that controls the timing of the communication, and
thus the energy consumed is often omitted (e.g. [20, 24]).
Hence, we developed a model [25] reviewing the available
technology options, including the differences in energy con-
sumption, based on different protocol behaviour. In contrast
to other communication-specific articles with IoT focus, we
target quite opposite assumptions regarding the data rate and
sending intervals. The focus of other publications is on han-
dling many devices in parallel with low data rates and typi-
cally long duty cycles. Based on these assumptions, several
low-rate technologies were developed for both short-range
(e.g. IEEE 802.15.4, Bluetooth) and long-range applications
(e.g. LoRa, NB-IoT, SigFox) [26]. Due to the low data rates
provided by these technologies, they are often not consid-
ered for WVSNs, even if they are designed to provide more
energy-efficient communication and require less power dur-
ing operation. In [26] , Morin et al. present node lifetime
estimations for different ad hoc style IoT communication
candidates based on the behaviour of the protocols. How-
ever, in their analysis they omit scenarios with frequent and
large data transfers, such as WVSN scenarios. In [25], we
provided models allowing this comparison and apply them
in the current study.

3 Methods
3.1 Intelligence partitioning

The evolution of requirements and constraints in WVSN in
terms of energy consumption and delay requires a paradigm

@ Springer

shift in design space exploration. Intelligence partitioning,
providing an insight into the inter-effects of processing and
communication, provides the support needed for the design
of energy-efficient WVSN. A WVSN consists of a set of
tasks, where a specific task ¢; is not bound to a specific geo-
graphical location; as such, it can be mapped to either the
smart camera node or the cloud. The distribution function
F in Eq. (1) has its functionality distributed between the
camera node and the cloud, where the subsets fyqq. and fcjouq
are the different clusters of tasks mapped to different com-
putational elements.

F= {tl’t2’t3’t4}’F:fNode Ufcioua and @

(1
= fNode mfCloud' )

The mapping function of the computational load to the com-
putational elements is referred to as intelligence partitioning
S(F).

S(F) — { {fNode’fClOUd} . 2)

D Node— Cloud

Computational latency is defined in Eq. (3) as the time for
processing each set of tasks {fNode’fCI()ud} on the respec-
tive computational platform at each computational layer

{PNode’ PCloud }

= ¥

p€{Node,Cloud}

Lp(fp’Pp) + 2

ce{Node—Cloud}

Lc(fc’Pc)’ (3)

Communication latency is defined as the need to com-
municate data between the different computational levels
Dyode—sCloug ©0 the communication link Cyoge cioud> DEIWEED
the layers. From these definitions, the latency for the intel-
ligence partitioning function J(F) is derived as in Eq.
(3), where Lp and L are the measurements or estimation
function for the processing and communication latency,
respectively.

Another limiting resource is the node energy consump-
tion, which can also be expressed as battery life or energy
harvesting resource. The node energy Ey,4. can be formu-
lated as:

ENode = Ep (fNode’ PNode) + Ec (DNode—>Cloud’ CNode—»Cloud) .
“
Ep and E refer to estimation functions of the energy con-
sumption for processing and communication, respectively.
The objective is to find the lowest energy per sample Ey4.

under the constraint of a minimum latency L,,;,,.

ENnde

min s.t. L < L,,. (&)
7()
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The constraints can also be formulated as in Eq. (6) where
the aim is to find the lowest latency L under the constraint
that the node energy consumption Ey. is below the node
energy per sample available E,.

L

min s.t. ENode < Ea' (6)
7(r)

In Sects. 5 and 6, we provide the results and analysis of the
effects of intelligence partitioning in three deployment sce-
narios, with consideration regarding latency in Eq. (5) and
energy consumption constraints in Eq. (6). Table 1 presents
the resulting configurations of image-processing tasks allo-
cation based on Eq. (2).

3.2 Communication energy

The focus of this paper is on partitioning image-processing
tasks between the smart camera node and the cloud, with
regard to the inter-effects in processing and communica-
tion energy consumption. Hence, the communication has to
reflect the impact on the sending node only for a complete
picture of the trade-off between different configurations of
task partitioning. We simplified the communication model
by analysing a two-node system in Fig. 3 with point-to-point
communication between the peer nodes. Even though we
consider only the sending node for the energy consumption
analysis, two nodes are required to describe the correct tim-
ing constraints of the communication, as the node will also
receive control information from the peer. Furthermore, we
assume that the nodes are already connected to each other
and the sensor node can send its data, as soon as the image
processing requires it. The model is based on ideal commu-
nication conditions with no transmission errors. In addition,
the interference by other nodes/technologies has been omit-
ted, assuming ideal resource assignment for the transmitting
sensor node. To transfer larger amounts of data, subsequent
transmissions take place until the required data amount is
transferred, depending on the technology-specific aspects.
To model the energy consumed by the communication
module or interface of the node, we calculate the required
transmission time for the given data amount for each tech-
nology based on its physical and medium access layer

€ .
Comm. J L Comm.

Module Module

Node A Node B

Fig.3 Two-node representation of the node-cloud communication
model

operation. Higher layers of the communication stack are not
considered. This assumes that fragmentation at the network
layer is available, if the data to be transferred is larger than a
single packet. To ensure reliable data transmission, acknowl-
edgements are used as feedback from the receiver, according
to the protocol specification of the given technology. The
overhead considered includes all training and synchronisa-
tion sequences on the physical layer as well as any overhead
due to header information at the MAC layer. The model uses
a typical communication cycle according to Fig. 4, which is
repeated multiple times, if more than one packet is needed
to transfer the given data amount. This model follows the
approach in [27] for subsequent packet transmissions. Based
on this, we are able to describe how long each transmission
stage (e.g. sending tx, receiving rx, or waiting idle) takes
for a single transmission of the given data amount. We then
derive the overall energy consumption of the communication
module P, of the node based on the time it spends in the
different states as well as current consumption taken from
the data sheets of corresponding transceiver chips for each
technology and the data amount d according to this equation:

PC(tech) (d) = tfx (drx)Plx + trx (dtx)Prx

+ tidlePidle + tsleepPsleep'

@)

P. P, P

s Pres Pigie and Py, are the different power consump-

tion levels per state of the given transceiver. t,,, t,., t4. and
Igeep are the protocol-specific durations spent in each state
to transfer the data amount d. It should be noted that not all
generic states will be used, depending on the actual opera-
tional specification of the given technology. The proposed
communication model provides an estimation of commu-
nication specific energy consumption, required for the task
partitioning analysis. Energy consumption and delay esti-
mation results are optimistic compared to real-world imple-
mentation, as the systems are considered isolated, and any
re-transmission of packets is not included. However, this
model provides the fundamentals upon which to analyse the

tx

Fig.4 Activity cycle of data transmission

@ Springer



1874

Journal of Real-Time Image Processing (2020) 17:1869-1882

Table 1 Configurations

. > N Config. t t, ty Data size (B) After data Reduction type
resu.lt}ng. from intelligence reduction (B)
partitioning for the people
counting scenario ¢ Nyw Nyw Nyw New 1 0.05 A

¢ Npw Nyw Nyw C 1117.5 91 CCITT
3 Npw Nyw Ngw Ngw 1 0.05 A

¢y Npw Nyw Ngw C 1117.5 91 CCITT
cs Npw Npw C 1117.5 91 CCITT
s Npw Ngw Ngw Ngw 1 0.05 A

¢y Npw Ngw Ngw C 1117.5 91 CCITT
g Npw Ngw C 1117.5 91 CCITT
Co Npw C C 8940 3179 PNG
Cro Ngw Ngw Ngw Ngw 1 0.05 A

ch Ngw Ngw Ngw C 1117.5 91 CCITT
Ciy Ngw Ngw C 1117.5 91 CCITT
C13 Ngw C C 8940 3179 PNG
Cla C C C 8940 3179 PNG

inter-effects of communication and processing energy con-
sumption regarding the allocation of image processing tasks
between the camera node and the cloud.

3.2.1 Compression and data aggregation

In current literature, the addition of image compression
techniques is considered a priori as a method to reduce the
smart camera node energy consumption, because of the
reduction in communication workload. Data rate require-
ments vary significantly amongst them due to the differ-
ent configurations of tasks partitioning, resulting from the
application of intelligence partitioning. Considering this
data rate variation, and the inclusion in the analysis of
several communication technologies, we decided to inves-
tigate how the inter-effects of processing and communi-
cation energy consumption would be affected by image
compression techniques. Initially, we implemented loss-
less greyscale image compression on embedded software.
The results motivated us to investigate further, hence we
implemented CCITT group 4 binary image compression
in both embedded hardware and software. The software
implementations are based on the OpenCV library, while
the hardware implementation is from the work of Imran
et al. [28]. Another method to reduce communication
workload is data aggregation. For partitioning configu-
rations where all the processing is done locally in the
node and only the counting result is sent to the cloud,
data transfers for each frame would be redundant. Instead,
we transfer the data in predefined time intervals, without
affecting the statistics of people counting, while optimis-
ing the communication workload.

@ Springer

4 Communication technologies

There is a wide range of communication technologies that
could be suitable for IoT systems. However, the suitability of
a technology mainly depends on the constraints of the spe-
cific user case [29-32]. In the case of battery-operated smart
camera systems, these constraints are energy consumption;
relatively high data amount compared to traditional IoT
systems with low duty cycle; and real-time performance.
The latter two result in high data rate requirements, if nodes
exchange raw image data. Despite the need for high data
rates, previous approaches on smart camera systems also
considered traditional communication for wireless sensor
networks such as Bluetooth Low Energy (BLE) or, 802.15.4
with rather low data rates [29, 33]. Therefore, we introduce
the following categories for communication technologies.

4.1 Local area network communication

This category contains Bluetooth and WiFi as two technolo-
gies that are able to provide higher data rates and are avail-
able in various devices other than traditional sensors. The
achievable communication range is approximately 100 m,
and thus rather short. Out of these, we selected two versions
of Bluetooth Low Energy (BLE): version 4.2 with a data
rate of 1 Mbps and version 5 with 2 Mbps as well as WiFi
according to the IEEE 802.11n standard.

4.2 Cellular communication

This category contains traditional public land mobile net-
working technologies that were developed for mobile phone
communication, which are mainly used for server to user
communication, rather than communication between the
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sensor nodes and the server (e.g. in [18]). In this category,
different technologies support a wide range of data rates,
which are asymmetric between up- and downlink. Hence, the
sensor node has different rates for receiving (downlink) and
sending (uplink) data. The exact rate of a user will depend
on the current state of the network and the resources that
are assigned to the device in question. All technologies
have long-range capabilities with ranges over 1 km and
mainly require more energy than technologies designed for
low-power IoT applications. However, for long-range IoT
applications that require a high data rate, employing cellular
communication technologies can be the optimal choice. In
this study, we consider GPRS, HSPA and LTE Cat4 in this
category.

4.3 loT-specific communication

This category covers both traditional communication for low
data rate wireless sensor networks and long-range technolo-
gies designed for the IoT context. The IEEE 802.15.4 stand-
ard represents the traditional low-rate communication in its
conventional specification. BLE can also be a candidate in
this category, but we chose to add it to the LAN category as
it is also used there and supports higher data rates. Among
the recently developed IoT-specific technologies, we con-
sider NB-IoT, an LTE extension for machine-to-machine
communication [34], and LoRa, but we omit SigFox from
our analysis due to its significantly low data rate for WVSN
applications. Furthermore, we added LTE Cat. 1 devices
to this group, which were designed as intermediate tech-
nology between LTE devices of the previous category and
NB-IoT, in terms of low power consumption requirements.
Both NB-IoT and LTE Cat1 belong to the group of cellular
technologies.

With this selection, we are able to cover the complete
data rate of currently available technologies for WVSN com-
munication. Table 2 gives an overview of the considered

technologies. It also indicates which transceiver hardware
was used to evaluate the energy consumption of the tech-
nologies. We based this analysis on the capabilities of suit-
able embedded transceiver chips that might result in lower
data rates than expected for each technology, especially in
the case of WiFi.

5 Results
5.1 Design examples
5.1.1 People counting

Applications such as surveillance systems, or environmen-
tal monitoring, consist of outdoor deployment of the cam-
era node, with public spaces captured within the field of
view. The main complexity of such systems is to provide a
robust application despite the abrupt illumination changes
throughout the day/night cycle. In addition, in many coun-
tries, including Sweden, there are law restrictions prohibit-
ing installation of cameras in public spaces; hence, privacy
concerns become a major constraint in the design of the
system.

To overcome these complexities, we used a low-res-
olution thermal sensor that gives a generic temperature
profile of the region/object of interest while providing a
low-weight system compared to RGB cameras [45]. For
the people counting scenario, we created our own dataset
from a setup installed in Harnosand, Sweden. The camera
sensor used is the FLIR Lepton 3, a long-wave infrared sen-
sor with wavelength 8—14 ym. The analysis is based on the
processing of a video of 1:45 hours recorded from a sta-
tionary camera, with a frame rate of 9 fps, and frame size
60 x 149 pixels. The processing platform used for the smart
camera is the TE0726-03M Raspberry Pi with a System on
Chip module that includes the Xilinx Zynq-7010 FPGA. The

Table 2 Configurations of

N . Category Technology Max. data rate Range Chip Ploting order
communication technologies
Downlink  Uplink Name Energy Energy
Rx (mA) Tx (mA)

LAN BLE 4.2 1 Mbps ~100m  [35] 64 53 (1)
BLE 5 2 Mbps ~100m  [36] 54 53 )
802.11n 72.2 Mbps ~100m  [37] 61 287 3)

Cellular  GPRS 80 kbps 40 kbps >1 km [38] 300 )
HSPA 72Mbps 576 Mbps >1 km [39] 425 o)
LTE Cat.4 150 Mbps 50Mbps >1 km [40] 610 (6)

IoT 802.15.4 250 kbps ~100m  [41] 59 6.1 @)
NB-IoT 272kbps 62.5kbps >1 km [42] 46 220 (8)
LoRa 37.5 kbps >1 km [43] 13.8 28 )
LTECat.1 103 Mbps 52Mbps >1 km [44] 540 (10)
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image-processing tasks used in the people counting scenario
are listed below:

e Background modelling and subtraction use low-pass IIR
filter due to energy efficiency and accuracy in the back-
ground model [45].

e Segmentation is based on a global threshold defined
experimentally.

e Morphology relies on erosion and dilation operations
with a 3 X 3 mask.

e Detection uses the bounding box method for each fore-
ground element, while tracking relies on Kalman filter.

e Image compression uses CCITT group 4 and PNG com-
pression for the binary and greyscale images, respec-
tively, with more implementation details in Sect. 3.2.1.

Tasks such as background modelling, segmentation, mor-
phology and image compression were implemented in both
the programmable logic and the ARM Cortex A9 proces-
sor; the remaining were only implemented on embedded
software [46]. Software implementation of the image-pro-
cessing tasks is based on OpenCV libraries. To estimate the
energy consumption of the different configurations of task
partitioning included in our analysis, we used the Xilinx
Power Estimation tool with an error margin of 20% [47] and
the post-synthesis hardware description.

5.1.2 Pedestrian and particle detection

Besides the people counting scenario, we also evaluate the
effects of intelligence partitioning in the node energy con-
sumption for the smart camera nodes introduced by Imran
et al. [8] and Maggiani et al. [9].

The energy consumption results regarding the computa-
tion are, respectively, based on the Xilinx Power Estimation
tool and PowerPlay Early Power Estimator tool [48] with a
20% error margin. The flowcharts in Fig. 5 show the com-
putational tasks considered for intelligence partitioning in
each of the implementation cases analysed.

5.2 Measurement results

The analysis of the overall energy consumption in the smart
camera node for the three scenarios is based on the com-
bined results of image-processing task partitioning and com-
munication technologies. The computational tasks in Fig. 5
are allocated among the processing elements in the node
and cloud, resulting in several configurations for the peo-
ple counting scenario as shown in Table 1. In the following
analysis, the communication technologies will be referred
to according to the plotting order in Table 2, while all the
calculations for delays and energy consumption in the smart
camera node are frame based.
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Fig.5 Flowchart representation of computational tasks for: a people
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5.2.1 Delay and channel usage

Scenarios such as environmental monitoring, industrial
monitoring, or surveillance system are highly dependent
on the timing constraint to maintain the performance of
the system. Task partitioning configurations result in data
rate requirements ranging from 8940 down to 0.5 bytes per
frame for the people counting scenario and 964, 608 down
to 259 bytes per frame for the other two scenarios. Subse-
quently, this affects the performance of the communication
technologies considered, especially IoT communication
technologies, as they have been designed for long duty
cycles and low data rate operations. To define the delay
constraint for each scenario, we referred to the frame rate
of the smart cameras and compared it to the communica-
tion delay. We omit from our consideration the processing
delay in the smart camera node, as it is in the range of ns to
ps. Table 3 summarises the effects of the delay constraints
in the ten communication technologies considered, based
on the data rate requirements resulting from intelligence
partitioning in each scenario.

As expected, the IoT communication group is the most
affected by the delay constraint. For the people counting
scenario, LoRa supports only transfers of a few bytes per
second resulting from full in-node implementation of the
image-processing tasks, while NB-IoT and 802.15.4 sup-
port data rates up to binary image transfer (compressed
and non-compressed, respectively). Instead, for the par-
ticle and pedestrian detection cases, the support of IoT
technologies is highly restricted due to higher data rate
requirements, and a three times shorter delay interval.
The LTE Cat. 1 technology is an exception to the group
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Table 3 Delay constraints in the

b . Communication 1 2 3 4 5 6 7 8 9 10 Monthly data rate

communication tecbnologles technologies

for data rates resulting from

intelligence partitioning People counting
0.5 v v v v v v v v v v 1.23 MB
1 v v v v v v v v v v 22.2 MB
75 v v v v v v v v X v 1.6 GB
91 v v v v v v v v X v 1.98 GB
1117.5 v v v X v v v X X v 24.3 GB
3179 v v v X v v X X X v 69.1 GB
8940 v v v X v v X X X v 194 GB
Particle detection [8]
259 v v v X v v v X X v 18.8 GB
500 v v v X v v v X X v 36.2 GB
680 v v v X v v v X X v 49.24 GB
7217 X X v X v v X X X v 522.6 GB
32,000 X X v X v v X X X X 226 TB
256,000 X X X X X X X X X X 18.1 TB
Pedestrian detection [9]
11,264 X X v X v v X X X v 815.7 GB
119,808 X X v X X v X X X X 8.47TB
964,608 X X X X X X X X X X 68.2 TB

performance, as it meets the delay requirements for data
rates up to 11, 264 bytes per frame.

In the cellular communication group, HSPA and LTE
Cat. 4 technologies meet delay requirements for data rates
up to 119, 808 bytes per frame, while GPRS only supports
data rates up to 91 bytes per frame for the people count-
ing scenario. The LAN communication group provides
support for all the data rates resulting from intelligence
partitioning in the people counting scenario. However, for
the particle and pedestrian detection scenarios, Bluetooth
Low Energy devices are restricted to only three configu-
rations, with data rates up to 680 bytes per frame, unlike
802.11n technologies that support up to 119, 808 bytes
per frame.

One of the three communication technology groups
included in our analysis is cellular technologies. In this
case, the communication channel is owned by a third
party, and its utilisation results in additional monetary
costs for the smart camera node. Hence, we need to take
such costs into consideration in terms of subscription
costs, which subsequently limits the amount of data to be
transferred. As a result, cellular technologies would not
be an optimal choice for the pedestrian detection scenario
with monthly data rates in the range of terabytes. In the
remaining two scenarios, the monthly data rate require-
ments are significantly reduced for task partitioning con-
figurations with image compression, enabling the use of
cellular technologies.

5.2.2 Datareduction

The constraints in terms of delay and channel utilisation
showed a significant reduction in the number of commu-
nication technologies capable of meeting the requirements
as the data rate increases. For the people counting and par-
ticle detection scenarios, the task partitioning configura-
tions with the most restrictions were the ones without any
data reduction method implemented. However, the focus
is on exploring the energy efficiency of the smart camera
node; hence, we analyse how the implementation of image
compression affects the overall node energy consumption
for the people counting scenario.

Table 4 shows the resulting energy consumption in
the smart camera with and without greyscale image com-
pression for configuration 9 of the task partitioning. The
results from configuration 13 and 14 of task partitioning
have been omitted; all three showed the same behaviour.
Contrary to expectations, the overall energy consumption
of the smart camera is higher for the case with image com-
pression. From a comparison of the points with the lowest
energy consumption, consisting of BLE 5 communication,
the energy consumption is 24 times higher for the scenario
with greyscale compression. This shows that processing
the image compression algorithm on embedded software
increases the processing energy consumption much more
than the reduction in communication energy due to data
rate reduction.
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Table 4 Energy consumption per frame for greyscale compression

Communication Uncompressed Compressed (mJ) Energy

technology (mJ) Software variation
(ratio)

1 1.6 20.8 13

2 0.8 20.5 25.6

3 1.3 20.7 16

4 - - -

5 22.6 29.9 1.3

6 4.6 22.5 4.9

7 - - -

8 - - -

9 - - -

10 31 325 1.05

Table 5 Energy consumption per frame for binary image compression

Communica- Uncom-  Compressed (mJ) Energy variation
tion technol- pressed (ratio)
ogy (mJ)

Hardware Software Hardware Software
1 0.2 0.04 20 0.2 100
2 0.1 0.03 20 0.3 200
3 0.3 0.2 20 0.67 66.7
4 - 9.4 29 - -
5 32 32 23 1 7.2
6 2.3 2.3 22 1 9.6
7 5.1 0.9 21 0.18 4.1
8 - 7.4 27 - -
9 — — — — —
10 4.1 2 22 0.49 54

Considering the high impact of the processing energy
consumption for the compression algorithm, we investi-
gated into hardware/software partitioning, this time for
the lossless binary image compression with CCITT G4. In
addition, we omitted the frame header from the compressed
packets, considering an already acknowledged communica-
tion between the node and the cloud. The task partitioning
configurations resulting in binary frames are 2,4, 5,7, 8, 11
and 12, all showing similar behaviour; hence, the results in
Table 5 are only for configuration 2. Similarly to the previ-
ous case, the software implementation of the compression
algorithm increased the overall energy consumption of the
smart camera, with a difference of up to 200 times higher
than the case with no compression. Instead, due to the fine-
grained use of computational and memory requirements for
the hardware implementation, the overall energy consump-
tion is five times lower than for the non-compressed case.

Among the several task partitioning configurations con-
sidered in this analysis, configurations 1, 3, 6 and 10 rely on

@ Springer

full in-node implementation of the image-processing tasks.
For the people counting scenario, this would result in trans-
ferring only the counted number to the cloud for further
statistical analysis of the data. Hence, we considered the use
of data aggregation to avoid redundant information regard-
ing the people count, while optimising the communication
energy consumption. Figure 6 shows the energy consump-
tion per frame for all the task partitioning configurations,
including those with full in-node implementation with and
without data aggregation. The effects of applying data aggre-
gation vary for the different communication groups, with
minimal effects in the LAN technologies, and a maximum
reduction of 50%. The cellular group shows moderate results
with a reduction of 14-29 times energy consumption, while
the IoT group has the highest reduction for the cases with
NB-IoT and LoRa communication, resulting in a reduction
of 33 and 124 times, respectively, compared to the case
without data aggregation. This is due to the design of such
communication technologies, optimised for low-data rate
transfers and long duty cycles.

5.2.3 Node energy consumption

The aim of this paper is to analyse how the overall energy
consumption in the smart camera node is affected by pro-
cessing allocation and communication technology choice.
The results in Fig. 6 show the energy consumption per frame
for the people counting scenario, based on the combination
of task partitioning configurations, communication technolo-
gies and data reduction approaches introduced above. We
begin the analysis of the results from left to right, with the
two data rate groups related to full in-node implementation
with and without data aggregation. The variation in energy
consumption among the communication technologies is
about one order of magnitude, while all the communica-
tion technologies support the resulting data rate. This is fol-
lowed by the data rate groups resulting from binary image
compression after and before morphology, respectively. The
variation in the overall node energy consumption is of about
two orders of magnitude, representing the variations due to
hardware/software partitioning of the tasks within the smart
camera, but most importantly representing the variation in
energy consumption between the different communication
technologies. The results show that LAN technologies pro-
vide a lower energy consumption compared to the remaining,
while LoRa and NB-IoT have been omitted due to the delay
constraint. The following data rate groups consist of binary
frame transfer, compressed greyscale and non-compressed
greyscale. The results show high energy consumption, while
the number of communication technologies that support
the data rates is reduced. The minimum energy consump-
tion among all the configurations considered is achieved
when we implement background modelling, segmentation,
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Fig.6 Energy consumption per frame in the smart camera node resulting from intelligence partitioning in the people counting scenario

morphology and image compression on embedded hardware
in the smart camera, supported by BLE 5 communication.
Similarly to the people counting scenario, the results in
Fig. 7a for the particle detection scenario show reduction
of the node energy consumption as we distribute the pro-
cessing tasks between the node and the cloud. As the data
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(a) Particle detection

size increases, the number of communication technologies
supporting it decreases, with cases of full cloud process-
ing becoming obsolete due to communication delay. The
optimal configuration consists of capturing, pre-processing,
segmenting and compressing the images before transferring
the data to the cloud with BLE 5 communication.
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Fig. 7 Energy consumption per frame in the smart camera node resulting from intelligence partitioning
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A contrast to the previously introduced results is the
energy consumption of the smart camera node in the pedes-
trian detection scenario. The data in Fig. 7b shows that the
optimal node energy consumption is achieved for full in-
node processing, while supported by 802.11n communi-
cation. The high data rates resulting from the partitioning
configurations of this scenario exclude most of the commu-
nication technologies due to the delay constraint.

6 Discussion on intelligence partitioning
in WVSNs

In this paper, we have analysed the effects of intelligence
partitioning in the energy efficiency of the smart camera
node. The combination of three processing environments
and ten communication technologies provided a broader
perspective of the problem of design space exploration for
smart camera architecture. Traditional architectures focus on
either full in-node implementation of the processing tasks or
remote processing of the captured frames. The results from
intelligence partitioning challenge such views, proving that
the distribution of the image-processing tasks between the
node and the cloud optimises the node energy consumption
due to inter-effects of processing and communication energy
consumption. The processing energy consumption for the
node is generated by power estimation tools with a 20% error
margin. This uncertainty from the processing component
leaves the results of intelligence partitioning introduced
above unchanged, as the difference between intelligence
partitioning groups is much higher than 20%.

Performing intelligence partitioning in the three design
examples provided configurations with data rates varying
from 0.5 to 964,608 bytes per frame, which has a major
effect on constraints regarding delay and channel utilisation.
The results showed that partitioning configurations with no
data reduction methods implemented have a limited choice
of communication technologies. Furthermore, the cases
with fully remote processing of the data in the particle and
pedestrian detection scenarios cannot be supported by any
of the communication technologies considered due to the
delay and channel utilisation costs. To summarise on the
performance of communication technologies, BLE 4 and 5
are the two better performing technologies of the communi-
cation technologies analysed for all the configurations in the
people counting scenario. Furthermore, for the particle and
pedestrian detection scenarios, BLE provides the best energy
performance for data below 1 kB, while for the remaining
configurations, the 802.11n and LTE Cat. 4 provide better
energy efficiency.

The use of data reduction techniques not only affects the
choice of communication technologies, but also the overall
node energy consumption. The results obtained from the
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analysis on greyscale and binary image compression for the
people counting scenario disproved the general assumption
that image compression a priori reduces the node energy
consumption. Fine-grained use of computational and mem-
ory resources for the hardware implementation of the com-
pression algorithm reduces the processing energy consump-
tion compared to the software implementation. Therefore,
hardware/software partitioning of the compression algorithm
influences the outcome due to the trade-off between process-
ing and communication energy consumption.

A comparative assessment of the energy consumption
results obtained from intelligence partitioning in the three
scenarios shows that intelligence partitioning can improve
the overall node energy consumption, while satisfying the
constraints of real-time performance. However, the results
also show that the effects of intelligence partitioning are
affected by the relationship between additional processing
load and the resulting data rate reduction, which can be the
product of image-processing tasks or data reduction tech-
niques. For the people counting and particle detection sce-
narios, this enables the allocation of the partitioning point
in between the image-processing tasks. However, for the
pedestrian detection scenario, there is a negative trade-off
between the processing and data reduction, resulting in an
energy-efficient partitioning at the end of the image-pro-
cessing pipeline.

7 Conclusion

The results presented show that to improve the energy effi-
ciency of WSNs, we should review preconceptions regard-
ing design space exploration. Energy-efficient distribution
of image-processing tasks between the smart camera node
and the cloud, as well as the selection of the communication
technology, can improve the longevity of battery-operated
nodes, compared to full in-node or remote processing sce-
narios. Therefore, these results can motivate future work that
investigates in the introduction of intermediate processing
layers between the camera node and the cloud for further
node energy efficiency.
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