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Abstract
In this paper, a self-tuning version of the newly introduced Fast Adaptive Switching Trimmed Arithmetic Mean Filter, 
which is a very efficient technique for impulsive noise suppression, is elaborated. Most of the methods presented in the rich 
literature have numerous parameters, whose proper settings are crucial for efficient noise suppression. Although researchers 
often provide recommended values for their algorithms’ parameters, the actual choice remains in the hands of the user. Our 
goal is to free the operator from parameter selection dilemma and to propose an algorithm which includes required expert 
knowledge within itself. The only obligatory inputs of the proposed algorithm (from the user perspective) are the image 
itself and the size of the operating window.

Keywords  Impulsive noise reduction · Color image enhancement and restoration · Image quality · Adaptive algorithm · 
Switching filter

1  Introduction

Rapid development of miniaturized high-resolution, low-
cost image sensors, dedicated to operate in various light-
ing conditions, makes image enhancement and noise sup-
pression to be very important operations of digital image 
processing.

There are various types of noise which affect acquisition 
and processing of digital color images. The disturbances 
may be introduced by [1–6]:

•	 electric signal instabilities,
•	 physical imperfections in sensors,
•	 corrupted memory locations,
•	 transmission errors,
•	 aging of the storage material,
•	 natural or artificial electromagnetic interferences.

Therefore, noise suppression is one of the most frequently 
performed low-level image processing tasks [1, 2, 5, 6]. 
There are plentiful different techniques tailored for suppres-
sion of distinct type of noise, but most of them are vulner-
able to occurrence of a impulsive noise, which introduces 
significant deviations of color image channel values [7–9]. 
Therefore, the suppression of the impulsive noise is a critical 
step of image preprocessing.

Impulsive noise removal techniques are contextual pro-
cessing schemes which estimate the channels of the pro-
cessed pixel using information obtained from its neighbor-
hood, represented by a sliding operational window. Many of 
them are based on a vector-ordering scheme [10–14], and 
use cumulative distances between samples in a window as 
dissimilarity estimates. Those accumulated distances are 
then sorted and constitute the basis for further processing in 
various filtering algorithms.

One of the most basic filtering techniques, utilizing this 
ordering scheme, is the vector median filter (VMF) [10, 15]. 
The output of VMF is the pixel from operational window 
for which the sum of distances to other samples from the 
window is minimized. Although this filter does not introduce 
any new colors to the processed image, there is no guarantee 
that the output pixel is itself noise-free, and thus, numerous 
solutions were developed to solve this problem and improve 
filtering performance [16–21].
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The main reason, that the efficiency of vector-ordering 
schemes is limited, lies in processing of every image pixel, 
regardless whether it is corrupted or not. Unnecessary pro-
cessing of noise-free pixels results in inevitable degrada-
tion of the image quality. To address this issue, a signifi-
cant improvement has been made by introduction of more 
sophisticated switching filters [22–31], which focus on the 
restoration of corrupted pixels only.

The switching techniques use various approaches to 
determine if the processed pixel is corrupted or not. Then, 
only those classified as noisy are further processed by the 
output estimation algorithm. This way, not only the quality 
of output of restored image is preserved, but also a signifi-
cant reduction of the computational cost is often achieved.

There are numerous techniques of noisy pixel detection 
to be found in the literature [32–34]. Those schemes can be 
categorized by the following families:

•	 schemes based on reduced vector ordering [14, 35–38];
•	 techniques using peer group concept [39–42];
•	 filters utilizing quaterions [43–45];
•	 methods based on fuzzy set theory [46–53].

The Fast Adaptive Switching Trimmed Arithmetic Mean 
Filter (FASTAMF), concerned in this paper, has been pro-
posed recently [54] and is a very efficient technique from 
both noise suppression efficiency and computational cost 
point of view. The main practical drawback of the algorithm 
(which is common among alternatives) is the necessity of 
manual parameter adjustment to image noise contamination 
severity, to achieve its optimal performance. Therefore, the 
main goal of the research presented here is the introduction 
of a self-tuning mechanism, so that manual experimental 
choice of the main filter parameter (threshold) will no longer 
be required.

1.1 � Notation

For the purpose of better readability of subsequent sections 
describing the concerned algorithm design, the following 
notations are introduced:

•	 X—input image (corrupted),
•	 xu,v—input image pixel located at spatial coordinates (u, 

v),
•	 X̂—output image (restored),
•	 x̂u,v—output image pixel located at (u, v),
•	 O—original image (reference image),
•	 ou,v—original image pixel located at (u, v),
•	 M—original map of noise acquired using artificial image 

contamination.
•	 mu,v—real state of pixel corruption located at (u, v) (0—

noisy; 1—noise-free),

•	 M̂—final estimated map of noise acquired during 
noise detection phase.

•	 m̂u,v—classification of pixel contamination located at 
u, v (0—noisy; 1—noise-free).

•	 W—local operating window centered at xu,v , containing 
pixels from direct 8–neighborhood,

•	 xi—ith pixel of the local operating window W (the pixel 
x1 is the central pixel in W),

•	 w—size of W (odd integer),
•	 n—number of pixels in W ( n = w × w = w2),
•	 d(xi, xj)—distance between two pixels from W,
•	 �i—distance between central pixel x1 and xi ∈ W,
•	 �(r)—rth smallest distance among all �i computed for 

the same W,
•	 cu,v—sum of � smallest distances, representing raw 

impulsiveness of particular xu,v,
•	 Wc—window containing values of raw impulsiveness 

computed for every pixel from local neighborhood of 
currently processed pixel xu,v,

•	 cmin—smallest accumulated distance in Wc representing 
simple estimate of image structure,

•	 su,v—corrected impulsiveness measure of pixel at posi-
tion u, v,

•	 k—iteration number in self-tuning (ST) procedure,
•	 l—iteration number in multiple run test,
•	 t—threshold value (filter parameter),
•	 tk—threshold value adjusted in the kth iteration of the 

self-tuning,
•	 AMF(W)—output of the Arithmetic Mean Filter,
•	 �—true noise density used in artificial image contami-

nation.
•	 𝜌̂—estimated noise density obtained through noise 

detection phase,
•	 𝜌̂k—estimated noise density obtained in the kth itera-

tion of self- tuning procedure,
•	 �R, �G, �B—probability of contamination of channels in 

RGB color space,
•	 �A—probability of contamination of all pixel channels 

at once,
•	 M̂k—estimated map of noise obtained during kth itera-

tion of self-tuning,
•	 �,� —height and width of the image (in pixels),
•	 �—number of pixels in X ( � = � × �),
•	 nk—number of pixels designated as noisy during kth 

iteration of self-tuning,
•	 p—probability of error in statistical reasoning (result 

of statistical test which allows to hold or reject a null 
hypothesis).

•	 kF—final number of iterations of self-tuning procedure, 
required to satisfy the convergence condition.
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In above, three-dimensional arrays (e.g., images, operating 
windows) are denoted using emboldened capital letters, two-
dimensional arrays (e.g., map of noise) are indicated as nor-
mal capital letters, vectors (like single pixel) are presented 
as emboldened lowercase characters, and, finally, scalars are 
represented in normal lowercase manner.

1.2 � Impulsive noise models

In this paper, four different noise models are considered [55, 
56]. In all of those models, the main parameter is the noise 
density ( � ) expressed by the percentage of corrupted pixels 
in the processed image:

•	 Channel Together Random Impulse (CTRI)—if a pixel 
is noisy, all of its RGB channels are corrupted.

•	 Channel Independent Random Impulse (CIRI)—if a pixel 
is contaminated, the alteration of every channel is inde-
pendent.

•	 Channel Correlated Random Impulse (CIRI)—if a pixel 
is contaminated, then the corruption of channels is cor-
related with fixed correlation coefficient.

•	 Custom Probability Random Impulse (CPRI)—if a 
pixel is contaminated, there is a fixed set of prob-
abilities that single RGB channels are corrupted 
( �R, �G, �B ) or that all channels are corrupted together 
( �A = 1 − (�R + �G + �B) ). The model does not take into 
account the corruption of two channels at once.

In all above models, contaminated pixel channel is repre-
sented by a random value taken from full encoding range: 
⟨0, 255⟩ (for 8-bit RGB image coding).

1.3 � Performance measures

The noise detection efficiency alone can be evaluated 
using binary classification. The result of noise detection, 
represented by estimated noise map M̂ , is compared to the 
original noise map M, established during artificial image 
corruption, which is treated as true information of noise 
occurrence. After comparison, each pixel can be assigned 
to one of the following classes:

•	 True positive (TP)—pixel was correctly recognized as 
being contaminated.

•	 False positive (FP)—pixel was falsely classified as 
noisy—also known as Type-I error.

•	 True negative (TN)—pixel was correctly recognized as 
not corrupted.

•	 False negative (FN)—pixel was incorrectly classified as 
not noisy—also known as Type-II error.

After an assignment of above states to every pixel in the 
image, the detection performance can be measured using 
accuracy:

where |TP|, |TN|, |FP| and |FN| are cardinalities of pixels 
assigned to particular categories.

The overall noise suppression efficiency can be evaluated 
using many different performance measures. In this paper, 
we consider the following:

where oqu,v and Z = {R,G,B} are the channels of the original 
image pixels, and x̂qu,v are the pixels of the restored image:

where L, a, b are the coordinates of the original and L̂, â, b̂ 
of restored image pixels, both in CIE Lab color space [1].

In addition, the Feature-SIMilarity index for color images 
(FSIMc), [57] was used to provide additional information 
about noise suppression performance. In contrast to Peak 
Signal-to-Noise Ratio (PSNR), Mean Absolute Error 
(MAE), and Normalized Color Difference (NCD), which 
operate on individual pixels, thus compare images in con-
text-free manner, the FSIMc index, is based on the proper-
ties of the human visual system.

2 � Original FASTAMF algorithm

The FASTAMF [54] algorithm is composed of two main 
processing phases (Fig. 1):

1.	 noise detection—the noise map ( M̂ ) is estimated upon 
input image ( X ), using reduced ordering scheme and 
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two parameters provided by the user: operating window 
size (w) and threshold (t).

2.	 pixel replacement—the output image ( X̂ ) is obtained 
using input image ( � ), and noise map ( M̂ ) provided by 
noise detection phase. Only pixels classified as noisy are 
processed by AMF with operating window size w.

The filter operates on every pixel of input image X located 
at coordinates (u, v), denoted as xu,v , using operational win-
dow W containing n = w2 samples. Pixels in W are denoted 
x1 … , xn , and x1 = xu,v is the center pixel of W (Fig. 2).

2.1 � Noise detection

The noise detection phase is composed of the following 
steps:

	 I.	 Evaluation of pixels impulsiveness begins with com-
putation of dissimilarity measure d(x1, xj) between 
the central pixel and every other pixel contained in 

W, denoted as �i . Originally, the Euclidean distance 
was used, but many other dissimilarity measures 
can be used instead [11]. For example, in [58], the 
authors show that the use of Chebyshev distance ( L∞ ) 
improves detection performance, because this way 
algorithm is then more sensitive to outliers occurring 
on individual channels. Next, distances �i (excluding 
�1 which is equal to 0) are sorted in ascending order: 
�2,… , �n ⟶ �(1),… , �(n−1), and the trimmed sum of 
� = 2 smallest distances is computed for pixel xu,v : 

 The cu,v can be interpreted as raw impulsiveness of 
the pixel (Fig. 3).

	 II.	 Adaptation to local image variation is performed. 
For every cu,v , a window Wc , containing n values ci , is 
taken, so that c1 = cu,v is in the center of that window. 
The final corrected measure of corrected pixel impul-
siveness (Fig. 4) assigned to pixel xu,v is obtained: 

 where cmin = min{c ∈ Wc} . This correction normal-
izes impulsiveness based on the local image varia-
tion. In homogeneous image regions cmin is close to 0 

(7)cu,v =

�∑

r=1

�(r).

(8)su,v = cu,v − cmin,

Operating Window Size (w) Threshold (t) Input Image (X)

Noise
detection

Noise map (M̂)

Pixel
replacement

Output Image (X̂)

Fig. 1   Block diagram of original FASTAMF

xu,v

x1

x2 x3 x4

x5 x6

x7 x8 x9

Fig. 2   Notation of the pixels in the filtering window

Fig. 3   Computation of pixel raw impulsiveness c (for two exemplary 
operating windows: W

1
 and W

2
)
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and it rises together with variation in local neighbor-
hood. As a result, the pixels of high raw impulsive-
ness in harsh regions of the image are less likely to be 
classified as noisy pixels of the same raw impulsive-
ness in smooth areas.

	 III.	 Noise map acquisition finalizes the noise detection 
phase, during which the estimated noise map M̂ is 
obtained. It is achieved by the comparison of su,v to 
the threshold t, provided by the user, for every pixel 
in the image X as follows: 

 The labeling of noisy pixels as 0 in M̂ is needed for 
the subsequent pixel replacement phase.

2.2 � Pixel replacement

In the pixel replacement phase, the output image is obtained 
according to the following rule:

where AMF(W ) is the arithmetic mean computed only on 
members of W , which were designated as noise-free. In rare 
occasions (occurring for very high noise densities), when 
there is no noise-free pixels in W , the output is determined 
using the VMF scheme.

3 � Self‑tuning

As it has been shown in Fig. 1, there are three inputs for the 
algorithm: processed image ( X ), threshold (t), and opera-
tional window size (w). As long as w is intuitive parameter 
to adjust, the proper choice of t may be a difficult one. It 
was shown in [54, 58] that optimal choice of t is dependent 
on impulsive noise density ( � ), which is mostly unknown in 
real-case scenarios, so the operator is forced to experimental 
search of adequate value of t.

To free the user from manual adjusting of this parameter, 
a self-tuning modification is introduced. The main concept 
of this improvement is to use the estimated noise map M̂ 
(obtained during noise detection phase) to compute the 
estimated noise density 𝜌̂ . Combining 𝜌̂ with proper tuning 
characteristics like provided in [58] enables to adjust the t 
value, which can be used to obtain more accurate noise map.

3.1 � Algorithm

Based on the aforementioned idea, the self-tuning mod-
ification is introduced (Fig. 5). Before execution of the 
algorithm, the input t is set to initial value t1 = 60 (rec-
ommended value for t in FASTAMF using Chebyshev 

(9)m̂u,v =

{
0 if su,v > t,

1 otherwise.

(10)x̂u,v =

{
AMF(W) if m̂u,v = 0,

xu,v otherwise,

Fig. 4   Transition from raw impulsiveness to estimated map of noise 
(using estimate of the image structure for impulsiveness correction)
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distance, obtained experimentally). Then, the noise detec-
tion is performed until corrected impulsiveness measure is 
obtained for every pixel in the input image X.

Next, the recursive procedure of automatic t adjustment 
is performed by the following steps:

(a)	 The estimated map of noise for the current iteration M̂k 
is obtained by (9) using tk.

(b)	 The estimated noise density for the current iteration 
𝜌̂k is evaluated: 𝜌̂k = nk∕𝜃 , where nk is the number of 
pixels designated as corrupted (in kth iteration) and � 
is the number of pixels in image X.

(c)	 tk+1 value is interpolated (simple linear interpolation 
between two closest values) using tuning tables (see 
Table 4), which were obtained using procedure pre-
sented in Sect. 3.2.

Steps (a)–(c) are repeated in a loop until desired conver-
gence |tk+1 − tk| < 𝜖 is achieved, where � regulates the con-
vergence. In all experiments presented in this paper, � = 1 
was used.

Final estimated map of noise, denoted as M̂ , is then 
taken as an input to the pixel replacement phase. It 
is important that only the final step of the entire noise 
detection phase (9) has to be recursively repeated, so the 
increase in computational cost is not significant.

Although it might be tempting to design a similar solu-
tion for the adaptive tuning of operation window size w, it is 
pointless to do so due to the following reasons:

•	 It is very intuitive to choose w value, and using windows 
larger than 3 × 3 is reasonable for high noise intensities 
only ( 𝜌 > 50%).

•	 Window size w has a critical impact on computational 
cost of the algorithm, so its automatic on-the-fly tuning 
certainly makes its execution time extremely unpredict-
able.

•	 Alteration of the w during algorithm’s execution requires 
repetition of the entire noise detection phase, which is 
very costly form computational point of view. Therefore, 
such tuning algorithm would be inapplicable for real-
time image processing tasks.

•	 Preliminary tests (omitted in the paper) revealed that 
w has stronger impact on noise detection phase perfor-
mance than on pixel replacement phase. Therefore, par-
tial solution, assuming the use of altered on-the-fly w for 
pixel replacement phase only, resulted in lack of restored 
image quality improvement.

3.2 � Tuning tables

The core of the self-adjusting threshold t modification is the 
tuning Table 4 which provides the t values for interpolation 
step (c). Originally, this table was proposed for CTRI and 
CIRI noise models in [58]; however, in this paper, more thor-
ough experiments were performed, to obtain more general 
insight into the problem.

The set of 100 color images has been taken as the 
training set (Fig. 6) [59]. Each of those images was arti-
ficially contaminated with CIRI, CCRI (correlation coef-
ficient set to 0.5) and CTRI model for noise densities 

Operating Window Size (w)

Threshold
(t1 = 60)

Initial Value

Input Image (X)

Noise
detection

Noise map (M̂k)

Noise density
estimation

Threshod
tuning

Pixel
replacement

Output Image (X̂)

Fig. 5   Block diagram of self-tuning FASTAMF

Fig. 6   Training image set
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� ∈ {0.1, 1, 5, 10, 15,… , 80%} . Finally, for each contami-
nated image, the optimization has been performed to find 
optimal value of t for which ACC, PSNR, and FSIMc are 
maximal and MAE and NCD is minimal.

The mean values (and standard deviations) of optimal t, 
computed upon entire set of training images for a chosen 
performance measure, noise model, and noise density are 
presented in Tables 1, 2, and 3. The final proposition of 
general tuning values obtained as an average of results 
from all experiments is shown in Table 4.

Table 1   Optimal and 
recommended t values for CIRI 
noise model

� (%) Mean (standard deviation) of optimal t obtained using t

ACC​ PSNR MAE NCD ( 10−4) FSIMc

0.1 111.82 (29.95) 114.57 (38.26) 117.88 (36.22) 100.57 (28.85) 110.63 (36.86) 111
1 79.73 (21.57) 82.10 (24.91) 85.61 (23.58) 68.75 (19.59) 78.13 (24.55) 79
5 56.87 (15.77) 63.92 (18.25) 65.65 (17.60) 50.04 (13.51) 62.29 (17.57) 60
10 47.73 (13.11) 56.99 (15.44) 58.75 (15.19) 43.11 (11.58) 56.10 (14.85) 53
15 42.51 (11.07) 53.34 (14.33) 54.29 (14.45) 39.26 (9.60) 52.59 (13.81) 48
20 39.22 (10.06) 49.90 (12.83) 51.39 (12.75) 36.70 (9.24) 49.88 (12.38) 45
25 36.43 (8.90) 47.44 (12.28) 49.00 (12.07) 34.58 (8.18) 48.21 (11.97) 43
30 34.52 (8.21) 45.50 (11.40) 46.97 (11.11) 32.77 (7.38) 46.20 (11.95) 41
35 32.70 (7.25) 43.12 (10.30) 44.98 (10.60) 31.10 (6.75) 44.21 (11.18) 39
40 31.04 (6.79) 41.10 (9.73) 43.17 (9.72) 29.56 (6.28) 42.27 (10.67) 37
45 29.73 (6.09) 38.28 (9.39) 41.32 (9.44) 27.63 (5.91) 40.02 (10.72) 35
50 28.43 (5.40) 35.44 (8.64) 38.74 (9.00) 25.38 (5.46) 37.07 (10.38) 33
55 26.99 (4.72) 31.83 (8.40) 36.08 (8.46) 22.69 (5.25) 33.87 (10.56) 30
60 25.24 (4.00) 27.65 (8.38) 32.52 (8.73) 19.41 (4.80) 29.74 (10.65) 27
65 22.60 (3.31) 22.25 (7.77) 27.78 (8.45) 15.66 (4.54) 25.67 (10.53) 23
70 19.10 (2.63) 17.56 (7.03) 23.12 (7.87) 12.19 (4.06) 21.44 (10.57) 19
75 14.45 (2.09) 12.90 (6.24) 18.42 (7.29) 9.55 (3.45) 17.06 (9.89) 14
80 9.24 (1.57) 9.07 (4.68) 14.25 (6.44) 7.49 (2.78) 13.54 (9.33) 11

Table 2   Optimal and 
recommended t values for CCRI 
noise model

� (%) Mean (standard deviation) of optimal t obtained using t

ACC​ PSNR MAE NCD ( 10−4) FSIMc

0.1 111.19 (29.58) 115.77 (38.76) 119.12 (36.95) 100.27 (29.95) 109.24 (37.77) 111
1 78.33 (21.76) 82.59 (24.95) 84.97 (23.81) 66.86 (18.62) 77.47 (24.69) 78
5 54.62 (15.90) 63.08 (18.69) 65.42 (18.34) 47.88 (13.56) 61.22 (17.73) 58
10 44.80 (12.70) 55.26 (15.60) 57.06 (15.67) 40.81 (10.95) 54.54 (15.19) 50
15 39.58 (10.96) 51.05 (14.56) 53.09 (14.58) 36.98 (9.78) 50.92 (14.01) 46
20 36.23 (9.75) 47.86 (13.38) 49.94 (13.35) 34.34 (9.02) 48.69 (13.05) 43
25 33.33 (8.74) 45.53 (12.14) 47.63 (12.42) 32.08 (7.93) 45.96 (12.46) 41
30 31.07 (7.69) 42.49 (11.53) 45.30 (11.79) 30.04 (6.93) 43.65 (11.78) 39
35 29.14 (6.82) 40.28 (10.63) 43.13 (11.12) 28.62 (6.63) 41.78 (11.58) 37
40 27.56 (6.25) 38.17 (10.30) 41.49 (10.69) 26.83 (6.23) 39.54 (11.20) 35
45 26.04 (5.65) 35.96 (9.97) 39.58 (9.94) 25.18 (5.56) 37.84 (10.59) 33
50 24.56 (5.06) 33.15 (9.10) 37.06 (9.46) 23.01 (5.18) 35.18 (10.96) 31
55 23.14 (4.50) 30.12 (8.89) 34.97 (8.97) 20.61 (4.88) 32.80 (10.61) 28
60 21.56 (3.62) 27.18 (8.50) 32.18 (8.75) 18.17 (4.69) 29.91 (10.91) 26
65 19.30 (3.04) 23.34 (8.12) 29.12 (8.74) 15.72 (4.65) 26.41 (10.89) 23
70 16.41 (2.50) 19.31 (7.34) 25.56 (8.28) 12.86 (4.17) 23.41 (10.74) 20
75 12.57 (1.88) 15.43 (6.83) 22.16 (8.30) 10.53 (3.71) 20.33 (10.98) 16
80 8.27 (1.35) 11.77 (5.78) 18.78 (7.85) 8.39 (3.16) 17.39 (10.64) 13
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4 � Noise suppression performance

Our aim was to provide the most objective noise suppres-
sion performance test; therefore, a new set of ten images 
was taken as validation set (Fig. 7) [60]. In addition, all 
of those validation images were contaminated with CPRI 
noise ( pR = pG = pB = pA = 0.25 ), which has not been used 
for obtaining the tuning Table 4. This way, we provided an 
independent test input, further minimizing the possibility 
that the tuning values are optimized for particular image set 
or noise model.

4.1 � FASTAMF compared with state‑of‑the‑art 
algorithms

While original FASTAMF algorithm [54] was operating 
on Euclidean distance, the new version uses its Chebyshev 
counterpart. Therefore, a new comparison to state-of-the-
art filters is required. This time, we decided to restrict the 
state-of-the-art algorithm base to four filters, which were 
found to be the most competitive using the recommended 
parameter settings:1 

•	 FASTAMF with recommended t = 60.
•	 ACWVMF [61] with � = 2 and Tol = 80.
•	 FAPGF [42] with d = 0.1 and � = 0.8.
•	 FFNRF [48] with K = 1024 and � = 3.5.
•	 FPGF [41] with m = 3 and d = 45.

For all tested algorithms, the operating window size was 
set to w = 3 and the comparison was performed for noise 
densities � ∈ {10, 20,… , 50%} . For each corrupted image 
from validation set and for each tested algorithm, the noise 

Table 3   Optimal and 
recommended t values for CTRI 
noise model

� (%) Mean (standard deviation) of optimal t obtained using t

ACC​ PSNR MAE NCD ( 10−4) FSIMc

0.1 114.48 (29.20) 115.07 (34.46) 115.96 (32.98) 104.66 (26.34) 110.09 (33.29) 112
1 87.78 (19.69) 85.11 (22.69) 87.03 (21.39) 76.35 (18.30) 81.69 (22.64) 84
5 68.94 (14.99) 68.53 (16.50) 69.89 (15.53) 60.62 (13.01) 66.30 (15.47) 67
10 61.22 (12.57) 61.71 (13.63) 62.60 (12.98) 54.39 (11.36) 60.90 (13.85) 60
15 57.18 (11.21) 57.87 (12.01) 58.95 (11.70) 50.66 (9.61) 56.67 (11.66) 56
20 54.24 (9.93) 54.38 (10.23) 55.74 (10.16) 47.90 (8.95) 53.69 (10.73) 53
25 52.10 (8.88) 51.83 (9.15) 53.48 (9.37) 46.03 (7.43) 51.35 (9.87) 51
30 50.58 (8.25) 49.74 (8.36) 51.38 (8.25) 44.13 (7.23) 49.02 (9.20) 49
35 49.49 (7.27) 46.84 (8.28) 49.05 (8.06) 42.01 (6.66) 46.63 (9.23) 47
40 48.58 (6.61) 43.01 (7.56) 46.00 (7.81) 39.15 (6.30) 43.14 (9.36) 44
45 47.91 (5.35) 37.86 (8.48) 42.05 (8.13) 34.57 (6.14) 38.01 (10.30) 40
50 46.89 (4.81) 30.52 (8.83) 36.15 (8.48) 28.72 (6.53) 31.71 (10.34) 35
55 44.54 (4.21) 22.62 (7.83) 28.61 (8.59) 21.78 (5.89) 24.26 (9.87) 28
60 39.82 (4.78) 15.16 (5.74) 20.22 (7.42) 15.37 (4.62) 17.63 (8.46) 22
65 31.72 (4.73) 9.81 (3.81) 13.43 (5.11) 10.70 (3.25) 12.27 (6.01) 16
70 22.66 (4.48) 6.29 (2.16) 8.93 (3.17) 7.59 (2.10) 8.36 (4.51) 11
75 14.52 (3.14) 4.47 (1.29) 6.42 (1.92) 5.89 (1.42) 5.73 (3.18) 7
80 8.20 (1.83) 3.46 (0.78) 4.96 (1.20) 4.65 (1.03) 3.00 (2.64) 5

Table 4   Tuning values for 
threshold t 

� (%) 0.1 1 5 10 20 25 30 35 40 45 50 55 60 65 70 75 80

t 111 80 61 54 50 47 45 43 41 38 36 33 28 25 20 16 12

Fig. 7   Validation image set. The images are numbered from 1 (top 
left) to 10 (bottom right)

1  The notation of parameters used in the respective papers was 
adopted.
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suppression was performed, and PSNR, MAE, NCD, and 
FSIMc measures were calculated. The results were grouped 
by each measure and noise density and compared using sta-
tistical tests.

For all results in the test group, the Friedman’s test [62] 
was performed. Two opposite hypotheses were taken under 
consideration:

•	 H0: There is no evidence that results for all algorithms 
are significantly heterogeneous.

•	 H1: There is evidence that results for all algorithms are 
significantly heterogeneous.

For each group for which H0 has been discarded in favor 
of the H1, the set of Friedman—Post hoc tests proposed by 
Nemenyi [62]—was performed comparing FASTAMF to 
each other algorithm. For those tests, the following hypoth-
eses were stated:

•	 H2: There is no evidence that FASTAMF performs sig-
nificantly better than the compared algorithm.

•	 H3: There is evidence that FASTAMF performs signifi-
cantly better than compared algorithm.

The results of above tests are summarized in Table 5 
(Friedman’s tests) and in Table  6 (Post hoc tests). All 
emboldened values in the tables do not support the superi-
ority of the FASTAMF (as those are in minority). In case of 
PSNR and FSIMc measures, the better value is the higher 
one, so the higher mean rank values support the superiority 
of particular algorithm. The opposite situation is for MAE 
and NCD measures which are better if smaller.

The following conclusions can be drawn:

•	 The results obtained from all algorithms (represented by 
quality measures) were always heterogeneous (H0 was 
discarded in favor of H1 in every case). In addition, p in 

Fig. 8   Algorithm’s performance 
in subsequent iterations for 
validation images 1 and 8 (for 
which STF performs better)
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each Friedman’s test was very low, so the differences in 
results are unquestionably significant.

•	 For every measure and noise density, the best mean ranks 
were observed for FASTAMF algorithm, which means 
that it was the best or almost the best for every tested 
image.

•	 Only very few of Post hoc tests resulted in favor of H2 
hypothesis. For those rare cases, we can state that FAS-
TAMF is not significantly better than the compared 
algorithm. For each other case, however, it is the best 
performing algorithm among tested.

•	 For low-noise densities, the ACWVMF tends to be a 
competitive choice for FASTAMF, while, for higher 
noise contamination ratios, the FAPGF provides the most 
similar results.

4.2 � Self‑tuning FASTAMF against original FASTAMF

The main goal of self-tuning feature is to free the user 
from experimental threshold selection, which is optimal 
for a given noise density. Therefore, self-tuning FASTAMF 
(further denoted as STF) is compared to the original FAS-
TAMF (further denoted as OF from Original Filter) with 
recommended t = 60 . This time, only two algorithms were 

compared, so Wilcoxon’s test [62] was used (not every sam-
ple has normal distribution, so t test cannot be preformed). 
The following hypotheses were formulated:

•	 H0: There is not enough evidence that STF provides sig-
nificantly better results.

•	 H1: There is enough evidence that STF provides signifi-
cantly better results.

The results are presented in Table 7. This time, all embold-
ened values support the superiority of STF algorithm). The 
results can be summarized as follows:

•	 Larger Positive Sums of Ranks for PSNR ad FSIMc qual-
ity measures indicate that STF algorithm performs bet-
ter (values of measure are more frequently higher). Such 
outcome can be observed for � ≥ 20% , for both measures.

•	 Smaller Positive Sums of Ranks for NCD and MAE 
measures indicate that STF algorithm performs better 
(values of measure are more frequently lower). Such out-
come can be observed for MAE when � ≥ 40% and for 
all results evaluated with NCD.

•	 For � ≥ 40% the STF algorithm performs significantly 
better than OF form NCD and PSNR point of view.

Table 5   Friedman’s test 
results—FASTAMF compared 
with state-of-the-art filters

� ( %) Mean ranks for H1

FASTAMF ACWVMF FAPGF FFNRF FPGF

Friedman’s test for PSNR
  10 5.0 3.8 2.9 1.5 1.8 p < 0.001

  20 4.9 3.0 3.0 1.4 2.7 p < 0.001

  30 4.9 2.0 3.1 1.7 3.3 p < 0.001

  40 5.0 1.4 3.7 2.0 2.9 p < 0.001

  50 4.9 1.2 4.0 2.0 2.9 p < 0.001

Friedman’s test for MAE
  10 1.1 2.0 3.4 3.7 4.8 p < 0.001

  20 1.0 2.2 3.7 3.5 4.6 p < 0.001

  30 1.0 3.5 3.6 2.9 4.0 p < 0.001

  40 1.0 4.2 3.2 2.8 3.8 p < 0.001

  50 1.0 4.4 2.8 2.7 4.1 p < 0.001

Friedman’s test for NCD
  10 1.1 2.1 3.5 4.2 4.1 p < 0.001

  20 1.0 2.8 3.6 4.3 3.3 p < 0.001

  30 1.0 4.2 3.1 3.8 2.9 p < 0.001

  40 1.0 4.7 2.9 3.6 2.8 p < 0.001

  50 1.0 4.9 2.8 3.6 2.7 p < 0.001

Friedman’s test for FSIMc
  10 5.0 3.3 3.5 1.5 1.7 p < 0.001

  20 4.9 2.7 3.5 1.6 2.3 p < 0.001

  30 4.9 1.7 3.3 2.3 2.8 p < 0.001

  40 5.0 1.6 3.3 2.5 2.6 p < 0.001

  50 4.9 1.1 3.4 3.1 2.5 p < 0.001
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The results obtained are very satisfactory. It is obvious that 
ST modification is not significantly better for lower � values 
due to the recommended fixed t being suitable for such sce-
narios. In addition, while � becomes higher, the better per-
formance of STF becomes more noticeable, as this algorithm 
automatically adjusts its optimal threshold value.

4.3 � Multi‑run and visual comparison

One of the common approaches to achieve good noise sup-
pression performance is to repeat the processing of the noisy 
picture several times, using output image as an input for next 
algorithm’s execution. This way noisy pixels omitted during 
first filtering may be detected and restored during subsequent 
runs. However, this approach may lead to stronger degrada-
tion of image details, especially if the algorithm has adaptive 
features.

The noise suppression scheme (further referenced 
as multi-run or MR) was performed for three iterations 
( l = 1, 2, 3 ) upon all the validating images for noise densities 

� ∈ {10, 30, 50} , and the four representative images were 
selected for detailed comparison (validation images 1, 7, 
8, and 9).

To provide fair comparison, two images for which OF 
algorithm achieved a better performance in the MR test 
(validation images 7 and 9) were opposed to two images for 
which ST provided better results (validation images 1 and 
8). The OF scheme was applied for three iterations with the 
same recommended t = 60 , while STF algorithm calculated 
threshold value automatically in each iteration.

The efficiency of both algorithms in terms of PSNR and 
FSIMc measures is presented in Table 8. In addition, the 
visual comparison of performance for both filtering schemes 
for l = 1 , l = 3 and � = 30% is depicted in Figs. 10, 11, 12, 
and 13.

As can be seen, the STF algorithm performs better for 
“easier” tasks (validation images 1 and 8)—which are 
meager in detail and have large homogeneous regions 
(Figs. 10 and 12). The threshold value t is well adjusted in 
the first execution (Fig. 8), and then, it is set automatically 
to higher value in subsequent runs. This is caused by low 
estimated noise density after first noise suppression and 
is beneficial for the purpose of detail preservation. The 
STF algorithm does not try to repair less explicit outliers, 
which might be the image details.

For harder tasks, however (validation images 7 and 9)—
images rich in small details (Figs. 11 and 13)—a large 
value of ST might be too high to enable the restoration of 
omitted noisy pixels (Fig. 9). The OF algorithm with fixed 
t shows higher efficiency, while it tends to restore pixels 
with the same impulsiveness.

We can observe that although the self-tuning feature of 
the algorithm is very convenient and may achieve a better 
statistical performance, especially if the noise density is 
unknown or non-stationary, it may achieve slightly inferior 
efficiency than fixed t value version for more complicated 
images.

A more detailed analysis of zoomed regions on images 1 
and 8 (Figs. 10, 11, 12, 13) shows that:

•	 the OF removes less noisy pixels for l = 1 than its STF 
counterpart (Fig. 10c, d), due to higher value of t. If the 
reason behind those leftovers is high variance of the local 
area, those are mostly removed in subsequent iterations 
(Fig. 10e). If a too high t value caused this omission, 
those will not be restored, no matter how many iterations 
will be performed. In addition, fixed t value makes OF 
completely insensitive to less explicit noisy pixels, which 
is reflected in numerical (PSNR) and structural (FSIMc) 
measures;

•	 the STF scheme removes more noisy pixels in the first 
execution (Fig. 10d), strongly decreasing the local vari-
ance of the image. Consequently, it is easier to remove 

Table 6   Post hoc test results—FASTAMF compared with state-of-
the-art filters (emboldened results speak against FASTAMF superior-
ity)

� ( %) Hypothesis (p) for

ACWVMF FAPGF FFNRF FPGF

Post hoc tests for PSNR
  10 H2 ( > 0.05) H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.01)
  20 H3 ( < 0.05) H3 ( < 0.05) H3 ( < 0.01) H3 ( < 0.01)
  30 H3 ( < 0.01) H3 ( < 0.05) H3 ( < 0.01) H3 ( < 0.05)
  40 H3 ( < 0.01) H2 ( > 0.05) H3 ( < 0.01) H3 ( < 0.01)
  50 H3 ( < 0.01) H2 ( > 0.05) H3 ( < 0.01) H3 ( < 0.01)

Post hoc tests for MAE
  10 H2 ( > 0.05) H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.01)
  20 H2 ( > 0.05) H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.01)
  30 H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.05) H3 ( < 0.01)
  40 H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.05) H3 ( < 0.01)
  50 H3 ( < 0.01) H3 ( < 0.05) H3 ( < 0.05) H3 ( < 0.01)

Post hoc tests for NCD
  10 H2 ( > 0.05) H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.01)
  20 H3 ( < 0.05) H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.01)
  30 H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.01) H3 ( < 0.05)
  40 H3 ( < 0.01) H3 ( < 0.05) H3 ( < 0.01) H3 ( < 0.05)
  50 H3 ( < 0.01) H3 ( < 0.05) H3 ( < 0.01) H3 ( < 0.05)

Post hoc tests for FSIMc
  10 H3 ( < 0.05) H2 ( > 0.05) H3 ( < 0.01) H3 ( < 0.01)
  20 H3 ( < 0.01) H2 ( > 0.05) H3 ( < 0.01) H3 ( < 0.01)
  30 H3 ( < 0.01) H3 ( < 0.05) H3 ( < 0.01) H3 ( < 0.01)
  40 H3 ( < 0.01) H3 ( < 0.05) H3 ( < 0.01) H3 ( < 0.01)
  50 H3 ( < 0.01) H2 ( > 0.05) H3 ( < 0.05) H3 ( < 0.01)
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omitted noisy pixels in subsequent iterations (Fig. 10f), 
and there is also lower count of less explicit noisy pixels 
due to lower t in the first run;

•	 the STF scheme tends to remove more details (Fig. 11d, 
f) from the image (it is more blurry), than OF (Fig. 11c, 
e). As long as it is hard to be noticed visually without 
zoom, it clearly affects numerical (PSNR) and also struc-
tural (FSIMc) measures;

•	 undetected by OF noisy pixels during the first execu-
tion (Fig. 12c), may cause low-level distortions around 
them, which will not be repaired in subsequent itera-
tions (Fig. 12e). Such phenomenon is far less notice-
able if STF scheme is used (Fig. 12d, f).

•	 STF scheme tends to remove more details in the most 
difficult cases (Fig. 13d, f), which is reflected mostly 
by the PSNR measure.

It has to be pointed out that images 1 and 8 contain large 
homogeneous regions which makes the adjustment of 
t easier. In contrast, the high local variance of regions 
occurring in images 7 and 9 makes t tuning harder. As 
long as very large number of distinct images was used as 
training set for obtaining the tuning Table 4, the local vari-
ance of the image has not been taken into account, nor it is 
measured in any way during t adjustment. Such approach 
was considered and tested in the early stages of STF devel-
opment, but it was very computationally expensive, so not 
applicable for real-time implementations.

The visual comparison shows that STF algorithm seems 
to always achieve a better noise suppression efficiency 
(less explicit leftovers can be noticed). Therefore, lower 
PSNR values might be caused by very subtle differences, 
which can be detected on the numerical level only.

Fig. 9   Algorithm’s performance 
in subsequent iterations for 
validation images 7 and 9 (for 
which OF performs better)
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5 � Efficiency

5.1 � Computational complexity

A detailed analysis of computational complexity of algo-
rithm is presented in [54]; therefore, in this paper, it has 
been performed for ST modification only. Self-tuning begins 

after the computation of corrected impulsiveness and in each 
iteration k requires:

1.	 Estimation of map of noise M̂k which needs � × � com-
parisons (COMPS). This step has linear complexity.

Fig. 10   Visual comparison of OF and STF performance for � = 30% and validation image 1
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2.	 Estimation of noise density 𝜌̂k for which � × � additions 
(ADDS) and one division (DIVS) are necessary. This 
step also has linear complexity.

3.	 Linear interpolation of t: 

(11)tk =
tA − tB

𝜌A − 𝜌B
𝜌̂k +

(
tA −

tA − tB

𝜌A − 𝜌B
𝜌A

)
,

where A and B are the nearest indicates of values in 
Table 4 for which 𝜌A ≤ 𝜌̂k ≤ 𝜌B . It demands 5 subtrac-
tions (SUBS), 2 divisions (DIVS), 2 multiplications 
(MULTS), and 1 addition (ADDS) and up to 18 COMPS 
(required for determination for A and B). This step is not 
image size-dependent, so it can be treated as step with 
constant computational complexity.

Fig. 11   Visual comparison of OF and STF performance for � = 30% and validation image 7
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4.	 Convergence condition check which also has constant 
computational complexity and requires one subtraction, 
and two comparisons.

The remaining issue is the number of iterations required 
to achieve desired convergence. For every image in train-
ing image set, noise models: CTRI, CIRI, and CCRI, and 

noise densities � ∈ {0.1, 1, 5, 10, 15,… , 80%} STF algorithm 
has been executed and the number of iterations (denoted as 
kF ) needed to satisfy the convergence condition has been 
obtained. The results are presented in Table 9. It can bee 
seen that the kF is very stable and has almost deterministic 
value.

Fig. 12   Visual comparison of OF and STF performance for � = 30% and validation image 8
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The computational cost of single iteration of ST modifi-
cation is not very heavy and is linearly dependent on image 
size. The number of iteration required to archive final t val-
ues is fairly low and predictable, so this modification is a 
suitable addition to FASTAMF algorithm in terms of real-
time image processing requirements.

5.2 � Experimental comparison

The execution time and noise suppression efficiency of 
FASTAMF with ST modification has been compared to the 
original FASTAMF (with recommended t = 60 ). In tests, all 
ten images’ validation set (Fig. 7) contaminated with CPRI 
model and noise densities � ∈ {10, 20, 30%} is used.

Fig. 13   Visual comparison of OF and STF performance for � = 30% and validation image 9
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The noise suppression efficiency has been evaluated by 
PSNR, MAE, NCD, and FSIMc measures. Since the tuning 
tables were obtained as the trade-off between those meas-
ures, in Fig. 14, the most favorable (NCD) and most adverse 
(PSNR) outcomes of using ST modification were presented. 
On vertical axis, the difference in particular measure is pre-
sented, while, on horizontal one, the change of execution 
time (in percentages) is exhibited. The point (100,0) refers 
to all results obtained using original FASTAMF algorithm, 
and marked points represent results obtained for ST version 
using ten test images.

Interestingly, in individual cases for � = 10% , the ST ver-
sion might be even faster than original algorithm, because 
the threshold value is calculated to be higher then t = 60 . 
As a consequence, fewer pixels are recognized as noisy, and 
noise suppression (AMF) has less work to do.

Also the major conclusion is that results for ST modifi-
cation become better, along with increasing noise density.

6 � Summary

The achieved denoising results are very satisfactory, since 
the reduction of the number of FASTAMF parameters and 
a better overall performance have been the main goal of this 
research. The new self-tuning FASTAMF, achieves slightly 
better or at least not worse overall performance than the 
original algorithm, yet it has no parameters which require 
experimental adjustment.

Also the computational cost of the self-tuning is not sig-
nificantly higher, since it works after the most computation-
ally expensive part of the algorithm (estimation of the pixel 
impulsiveness).

The major virtue of the self-tuning FASTAMF is its 
adaptability to noise density. As it can be useful for filter-
ing of images contaminated by impulsive noise of unknown 
density, it might be even more advantageous for processing 
of video sequences distorted by noise with time-dependent 
parameters. The initial value of t (for self-tuning mecha-
nism) can be carried out from frame to frame, in such 
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Fig. 14   Execution time and performance of ST version in comparison to the original FASTAMF algorithm
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Table 7   Wilcoxon’s tests 
for STF and OF comparison 
(emboldened results denotes a 
significant superiority of ST)

� ( %) Sum of ranks Hypothesis (p)

Positive Negative

Wilcoxon’s test for PSNR
  10 18 37 H0 ( > 0.05)
  20 31 24 H0 ( > 0.05)
  30 39 16 H0 ( > 0.05)
  40 46 9 H1 ( < 0.05)
  50 51 4 H1 ( < 0.05)

Wilcoxon’s test for MAE
  10 43 12 H0 ( > 0.05)
  20 36 19 H0 ( > 0.05)
  30 31 24 H0 ( > 0.05)
  40 25 30 H0 ( > 0.05)
  50 21 34 H0 ( > 0.05)

Wilcoxon’s test for NCD
  10 26 29 H0 ( > 0.05)
  20 19 36 H0 ( > 0.05)
  30 11 44 H0 ( > 0.05)
  40 2 53 H1 ( < 0.05)
  50 0 55 H1 ( < 0.05)

Wilcoxon’s test for FSIMc
  10 16 39 H0 ( > 0.05)
  20 28 27 H0 ( > 0.05)
  30 32 23 H0 ( > 0.05)
  40 39 16 H0 ( > 0.05)
  50 43 12 H0 ( > 0.05)

Table 8   Multi-run test (emboldened results are superior in each contamination rate)

Bold values indicate to the best results acquired for particular image and noise ratio

l Filter Image 1 Image 7 Image 8 Image 9

t PSNR FSIMc t PSNR FSIMc t PSNR FSIMc t PSNR FSIMc

�=10%
  1 OF 60.0 37.90 0.9975 60.0 26.99 0.9849 60.0 40.09 0.9979 60.0 24.05 0.9645
  2 37.83 0.9976 26.50 0.9824 40.40 0.9981 23.34 0.9571
  3 37.73 0.9975 26.37 0.9818 40.41 0.9981 23.12 0.9548
  1 STF 56.3 38.01 0.9976 52.8 26.37 0.9822 56.3 40.31 0.9980 52.3 23.41 0.9597
  2 111.0 38.06 0.9977 111.0 26.29 0.9817 111.0 40.55 0.9982 109.1 23.20 0.9573
  3 111.0 38.04 0.9977 111.0 26.29 0.9817 111.0 40.55 0.9982 111.0 23.16 0.9569

�=30%
  1 OF 60.0 31.19 0.9862 60.0 24.05 0.9672 60.0 32.25 0.9848 60.0 21.51 0.9378
  2 32.16 0.9886 23.96 0.9661 34.11 0.9898 21.21 0.9332
  3 32.18 0.9887 23.90 0.9654 34.15 0.9898 21.10 0.9312
  1 STF 44.7 31.90 0.9883 42.9 23.32 0.9596 44.7 33.89 0.9905 42.4 20.68 0.9256
  2 111.0 32.37 0.9894 109.6 23.33 0.9595 111.0 35.04 0.9925 108.0 20.62 0.9243
  3 111.0 32.38 0.9894 111.0 23.33 0.9596 111.0 35.05 0.9926 111.0 20.61 0.9242

�=50%
  1 OF 60.0 26.31 0.9562 60.0 21.45 0.9374 60.0 26.84 0.9375 60.0 19.63 0.9049
  2 27.96 0.9656 21.86 0.9397 29.16 0.9583 19.70 0.9050
  3 28.07 0.9661 21.87 0.9393 29.34 0.9594 19.66 0.9044
  1 STF 36.4 27.74 0.9640 33.2 21.16 0.9265 36.3 29.42 0.9674 32.5 19.07 0.8902
  2 105.7 28.52 0.9676 100.9 21.27 0.9271 105.4 30.80 0.9742 101.9 19.09 0.8900
  3 111.0 28.54 0.9677 111.0 21.28 0.9272 111.0 30.84 0.9744 111.0 19.10 0.8901
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implementations, decreasing the number of potential itera-
tions, required to achieve required convergence. The applica-
tion of proposed filtering scheme to the video enhancement 
will be the subject of future work.
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