
SPECIAL ISSUE PAPER

Advances in real-time object tracking

Extensions for robust object tracking with a Monte Carlo particle filter

Thomas Mörwald • Johann Prankl •

Michael Zillich • Markus Vincze

Received: 13 May 2013 / Accepted: 27 November 2013 / Published online: 20 December 2013

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The huge amount of literature on real-time

object tracking continuously reports good results with

respect to accuracy and robustness. However, when it

comes to the applicability of these approaches to real-world

problems, often no clear statements about the tracking

situation can be made. This paper addresses this issue and

relies on three novel extensions to Monte Carlo particle

filtering. The first, confidence dependent variation, together

with the second, iterative particle filtering, leads to faster

convergence and a more accurate pose estimation. The

third, fixed particle poses removes jitter and ensures con-

vergence. These extensions significantly increase robust-

ness and accuracy, and further provide a basis for an

algorithm we found to be essential for tracking systems

performing in the real world: tracking state detection.

Relying on the extensions above, it reports qualitative

states of tracking as follows. Convergence indicates if the

pose has already been found. Quality gives a statement

about the confidence of the currently tracked pose. Loss

detects when the algorithm fails. Occlusion determines the

degree of occlusion if only parts of the object are visible.

Building on tracking state detection, a model completeness

scheme is proposed as a measure of which views of the

object have already been learned and which areas require

further inspection. To the best of our knowledge, this is the

first tracking system that explicitly addresses the issue of

estimating the tracking state. Our open-source framework

is available online, serving as an easy-access interface for

usage in practice.

Keywords Tracking � Detection � Modelling � Pose
estimation � Robotic perception

1 Introduction

This work is placed in the field of visual, model-based

object tracking. It performs in real-time and is formulated

as full 6 degree-of-freedom (DOF) pose estimation prob-

lem. Given the colour information of commonly available

cameras, the task is to find the position and orientation

(pose) of an object in space. To this end, the projection of a

geometric model (i.e. triangle mesh), optionally together

with texture information, is compared to the current image

(frame). This comparison yields a measure, which is min-

imised with respect to the pose by applying a Monte Carlo

particle filter (MCPF).

For a sequence of images, the trajectory of an object is

observed, which is useful for various applications in the

field of robotics, computer vision, augmented reality, sur-

veillance, and so forth. In this work, we focus on autono-

mous robotics for several reasons. First, it requires real-

time performance. Second, it relies on robust algorithms or

statements about the current state of tracking. Third, it

allows to test the tracker for real-world applications with

all its difficulties and requirements. The goal is to provide a

robot with all the information required to perform within

real-world scenarios, such as grasping, object detection,

tracking, learning physical object behaviour and so forth.

Another requirement in robotics is computational effi-

ciency to react to observed situations in time. Consider a

grasping scenario, where we want to use visual servoing to

Electronic supplementary material The online version of this
article (doi:10.1007/s11554-013-0388-4) contains supplementary
material, which is available to authorized users.

T. Mörwald (&) � J. Prankl � M. Zillich � M. Vincze

Vienna University of Technology, Gusshausstr. 25–29,

1040 Vienna, Austria

e-mail: moerwald@acin.tuwien.ac.at

123

J Real-Time Image Proc (2015) 10:683–697

DOI 10.1007/s11554-013-0388-4

http://dx.doi.org/10.1007/s11554-013-0388-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-013-0388-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-013-0388-4&domain=pdf

adapt the grasping movement on-line. Hence, we require

real-time performance, i.e. processing time within the

frame rate of a typical camera (25–50 Hz). Presently, we

are using RGB data only, since we do not want to depend

on sensors that also provide additional information such as

depth as they might not be available for the user of our

framework.

To meet all these requirements, we propose to tackle the

core problem of detecting tracking failure and take

advantage of supervisory knowledge to achieve automatic

object tracking using texture mapping, pose recovery and

online learning. Hence, the approach is based on the fol-

lowing methods:

– Tracking-state-detection (TSD) To know whether we

are tracking correctly, whether the object is occluded or

whether we lost track we employ our novel TSD

method. The knowledge of the tracking state, including

speed and confidence of tracking, allows for triggering

online learning or pose recovery.

– Texture mapping We take advantage of texture, if

available, to boost robustness of tracking, especially in

cluttered scenes.

– Pose recovery To initialise tracking and recover lost

tracks, we use distinctive features placed on the surface

of the object model.

– Online learning We learn these feature points and

surface texture of the object automatically while

tracking.

– Model completeness A probabilistic formulation allows

to reason if sufficient information of the object has been

gathered.

The paper proceeds as follows. Section 2 gives an

overview of related work on visual tracking algorithms. In

Sect. 3, we formulate tracking as particle filtering using a

modified version of the Bootstrap filter by [10] and show

how to draw observations by projecting the model into

image space. Section 4 introduces TSD which allows to

reason about the current tracking quality, convergence and

whether tracking has lost the object or is occluded. We

show how surface texture and scale-invariant feature

transform (SIFT) points, introduced by [19], of a tracked

object can be learned online and how they are used for re-

detection. In Sect. 5, we evaluate our approach with respect

to the requirements established above and in Sect. 6 we

conclude and discuss the methods proposed.

2 Related work

For a robot operating in a complex unpredictable envi-

ronment, the challenge is to develop a tracking method that

is robust to different lighting conditions, partial occlusion,

and motion blur. Today, this is achieved best by model-

based tracking of objects and numerous solutions using

different feature types, models and mathematical frame-

works have been developed, where today’s computational

power allows for several real-time solutions. However,

practical application of these methods is often limited for

various reasons. For example, some methods report good

results, without giving actual numbers on accuracy, such as

[1, 14, 21, 22]. Approaches described by [21, 23, 34, 35]

are capable of handling partial occlusion or changing

lighting conditions but cannot differentiate between dete-

riorating tracking conditions and lost tracks. Some methods

are restricted in their degrees of freedom, e.g. 2.4 radians of

rotation as suggested by [23], require off-line learning (e.g.

[34]) or are limited to either textured (e.g. [28, 33]) or low-

textured objects (e.g. [36]). Also recovery from lost tracks

is rarely handled with a few exceptions given by [28, 33],

which are tracking-by-detection approaches.

Recently, the results reported by tracking-by-detection

approaches are quite promising, especially with respect to

speed. In the work of [11, 29] templates are exploited to

achieve real-time performance. Using information about

the 3D shape and taking advantage of depth sensing

increase robustness as stated in [6, 12, 17, 33]. Local pat-

ches lead to a sparse representation of the model and allow

for pose estimation without any prior pose. For initialisa-

tion and re-detection, we exploit this property using SIFT.

To track and verify the pose by the TSD, we use a dense

representation, in particular, a textured 3D CAD model.

The appearance information is encoded in the colour map

embedded in the domain of the object surface. This allows

us to robustly identify the respective tracking states (e.g.

occlusion). However, it would be interesting to see a

method similar to TSD for approaches based on template

matching.

Also use edges and textures for tracking [21]. Their

approach extracts point features from surface texture and

uses them, together with edges, to calculate the object pose.

This turns out to be very fast as well as robust against

occlusion. Our approach not only uses patches but the

whole texture, which usually lets the pose converge very

quickly to the accurate pose. Since the algorithm runs on

the GPU, it is as fast as the method by [21]. The work

presented by [36] uses edge features to track but does not

take into account texture information. This makes it less

robust against occlusion. Since the search area in that

approach is very small, it is also less robust against fast

movement and gets caught in local minima.

Other approaches aim to solve most of the problems of

tracking, such as [35] where the authors are matching the

camera image with pre-trained key-frames and then mini-

mizing the squared distance of feature points taking into

account neighbouring frames. The approach described by

684 J Real-Time Image Proc (2015) 10:683–697

123

[23] uses a modified version of the Active Appearance

Model which allows for partial and self occlusion of the

objects and for high accuracy and precision. Minimize the

optical flow resulting from the projection of a textured

model and the camera image [31]. To compensate for

shadows and changing lighting, they apply an illumination

normalisation technique.

In [16], the authors introduce real-time tracking to

robotic manipulation. They use the method proposed in

[20], where they project the CAD model into image space,

and try to minimize a cost functional for the distance to

image edges found along the gradients of the edges of the

model. The work presented in [8] describes an approach for

real-time visual servoing using a binocular camera setup to

estimate the pose by triangulating a set of feature points.

Similar to our approach, Sánchez et al. [33] take advantage

of robust Monte Carlo particle filtering to determine the

pose of the camera with respect to SIFT features, which are

localised in 3D using epipolar geometry.

Eextend visual tracking with a particle filtering by an

initialisation based on key-point correspondences in a

RANSAC scheme [2]. For re-initialisation, they propose to

identify lost tracks by the efficient number of particles as

given by [4], which we also use in our work.

Our approach builds on the work of [25, 37], and

extends and improves the methods given by [27] (Fig. 1).

3 Pose estimation

The full 6 DOF pose of the object is identified using colour

and edge information from shape and texture. We project a

model, typically consisting of triangles or quads with

attached texture, into image space and compare it with the

camera image. The pose is estimated using a modified

version of the sequential importance resampling (SIR)

particle filter as detailed by [5]. Image processing methods

such as Gaussian smoothing and edge extraction as well as

pixel-wise comparison of the projected model are accel-

erated using a typical graphics processing unit (GPU).

Figure 2 shows our implementation of pose estimation.

The pose is refined using iterative particle filtering until new

data arrive from the image capturing pipeline. If this happens,

the image edges are updated. Otherwise, the model is trans-

formed according to the particles at frame t - 1. The edges of

the model are extracted and matched with the current image

edges. Subsequently, theweights are updated and the particles

are re-sampled with replacement.

3.1 Transformations on the SO(3)

Visual observation of the trajectory of the object is the

problem of finding the transformations Tt given a sequence

of images It, sampled over the time. Since we constrain the

tracking approach to rigid objects, the trajectory can be

described as transformations on the rotation group SO(3).

These are represented as

TðxÞ ¼ R t
0 1

� �
; ð1Þ

where RðhÞ is a rotation matrix and t ¼ ½x; y; z�T a

translation, respectively. Rotations are realised using unit

quaternions q with jjqjj ¼ 1; which constrains R to be an

element of the SO(3). They provide a simple way to

represent uniform axis-angle rotations and avoid the

gimbal lock which occurs when trying to model rotations

by Euler angles. Quaternions are extensions to the complex

numbers,

q :¼ r þ hxiþ hyjþ hzk ð2Þ

conveniently written as

q :¼ r þ h ð3Þ

i; j; k are imaginary units satisfying i2 ¼ j2 ¼ k2 ¼ ijk ¼
�1: A rotation by a radians about the axis u is defined as

quaternion by

q :¼ cosða=2Þ þ u sinða=2Þ

Fig. 1 Tracking for robotic applications. Left grasping; middle

learning about object motion; right grasp stability

Fig. 2 Tracking by iterative particle filtering. The pose is refined

using our modified MCPF until a new image is provided by the

camera. Together with the confidence dependent variation, this

improves robustness and accuracy

J Real-Time Image Proc (2015) 10:683–697 685

123

Let a be an ordinary vector in R
3 represented as

quaternion with its real value r = 0, then a rotation of this

vector is simply the quaternion product.

~a ¼ qaq�1 ð4Þ

Since the squared coefficients of unit quaternions sum

up to 1, r is given by hx, hy and hz. Together with the

translation t; this results in a state vector of 6 DOF:

x ¼ ½x; y; z; hx; hy; hz�T

3.2 Monte Carlo particle filtering (MCPF)

A particle filter, such as the sequential importance resam-

pling (SIR) or the Bootstrap filter, explained in [4] and

more detailed in [5], estimates the current state xt based on

the previous state xt�1 and the current observation yt:

xt ¼ f ðxt�1; ut�1Þ þ N t�1

yt ¼ gðxtÞ:
ð5Þ

We assume a static motion model, without taking into

account external forces ut�1; yielding f ðxt�1; ut�1Þ ¼ xt�1:

The observation gðxtÞ is based on the image gradients and

colour values.

Figure 3 and Algorithm 1 show the behaviour of a Monte

Carlo particle filterwhich sequentially resamples and replaces

the particles depending on their weights. In the initial phase

(1a), the particle distribution is initialised using a pose x0
given by user input or by a feature-based object detection

system as described in Sect. 4.2. The particles are sampled

from the normal distributionNðx0; rbÞ:The confidence value
c0 is set to 1. According to Eq. (7), this leads to an initial

variance of r0 ¼ 0 and, therefore, to no perturbation at all in

step (2a). Note, that during tracking (i.e. t C 1) the confidence

value ct is typically below 1.

Given the observations fytjt 2 N [f0gg; our aim is to

estimate the posterior distribution pðxtjytÞ: yt corresponds to
the current image given by a camera sensor. In step (2b) for all

poses xit; the importance weights are evaluated, approxi-

mating the probability distribution of observations pðytjxtÞ:
The posterior distribution is given by the Bayes’ theorem.

The key idea of the MCPF lies in the approximation of

pðxtjytÞ with a discrete distribution PNðxtjytÞ: Particles

with low weights are eliminated, whereas the ones with

high weights are multiplied. The final pose reported by the

tracker is the weighted mean of the best N\N particles, xt:

This is the classical , introduced by [10], which is typically

applied for visual tracking as it has several advantages.

First, it is very easy to implement. Second, the algorithm

can be efficiently executed in parallel which we exploit

using the GPU. And third, it is to a large extent modular

which allows to replace certain steps by more sophisticated

methods as follows.

Fig. 3 (1a) The classical MCPF starts with a uniformly weighted

distribution of particles. (2b) The weight for each particle is

evaluated, which results in an approximated distribution. (3a)

According to the importance weights, the selection step assigns weak

particles (grey) to the fittest (green). (2a) In our extension of the

MCPF, all particles are perturbed using Gaussian noise except one,

whose pose is fixed (red). Afterwards, the weights are evaluated again

closing the loop. (The labels correspond to Algorithm 1.)

686 J Real-Time Image Proc (2015) 10:683–697

123

Confidence dependent variation In the sampling step

(2a) of Algorithm 1, we adjust the amount of system noise

N according to the confidence of the previous tracking step

ct-1. This means that as the confidence of the particles

increases, their degree of distribution decreases, leading to

faster convergence and less jitter. Given the requirements for

tracking accuracy and speed for a typical table top scenario,

we chose a basic standard deviation rb ¼ ½rx; ry; rz; rhx ;
rhy ; rhz �

T
with rx,y,z = 0.03 m for the translational and

rh = 0.5 rad for the rotational degrees of freedom.

Iterative particle filtering As proposed in previous

works by [24, 31], iterative particle filtering increases

responsiveness to rapid pose changes. Therefore, steps 2

and 3 of Algorithm 1 are performed several times on the

same image. This means that the poses of the particles are

iteratively shifted to the peak of the distribution. In con-

trast to pure one-time re-weighting of the existing parti-

cles, this leads to a better approximation of the

distribution pðxtjytÞ per image. Consider the situation

where the time between two consecutive frames allows

for evaluation of a total of 800 particles: Fig. 4 shows the

improvement over conventional particle filtering when

using 1 iteration with 800 particles versus 8 iterations

with 100 particles. The latter, iterative version follows the

object motion much faster.

Fixed particle poses Since we want to perform in real-

time, we use a limited number of particles which causes

jitter of the final pose xt: At the same time, rt is never 0
(ct\ 1). This means that the best N particles will disperse

around the true pose. With a sufficiently large number of

particles, this would not be a problem, but due to our small

number of particles it results in visible jitter. Instead of

increasing the number of particles, sacrificing real-time

performance, we use the following heuristic. The idea is to

keep the pose of the best particles fixed instead of sampling

from N : In detail, for each set of particles, with the same

prior ~xit; one is chosen where no noise is applied (Step 3a to

2a in Fig. 3). Obviously, this only makes sense if there are

more than one particles in the set. The red particles in

Fig. 3 indicate the set where the pose is fixed which we

denote by Xf
t : This ensures convergence, efficiently redu-

ces jitter and increases robustness of tracking as shown in

Fig. 5.

3.3 Image processing and confidence evaluation

At time-step t for each particle i, we project the model of

the object into the image space using the transformation Ti:

For simplicity, we skip t in the mathematical formulations

since the following equations are computed in the same

time-step. The geometry of the model is defined by vertices

and faces. The texture, i.e. colour of the model is aligned to

the faces by employing UV mapping, a standard technique

of computer graphics. In image space, we compute the

colour gradients of the model giM and of the image captured

by the camera giI ; where g 2 R
2: For each point (u, v) on

the model M in image space, we can compute the differ-

ence between both of the gradients at that position, by

superimposing the projected model over the image. The

match mg
i of a particle is defined as the sum of the differ-

ences of the gradients, and sg
i is a normalising constant

given by the sum over all model gradients.

frame

x-
po

si
tio

n
of

 x
 (

cm
)

t

-1 0 1 2 3 4 5

0

1

2

3

4

5

Fig. 4 Step response showing the faster convergence of iterative-

(red, 8 9 100 per frame) against conventional particle filtering (blue,

1 9 800 per frame). Both are using the same total number of particles

frame

x-
po

si
tio

n
of

 x
 (

m
m

)
t

0 20 40 60 80 100

-6

-4

-2

0

2

4

6

Fig. 5 Visible jitter of the pose xt (blue) and improvement when

fixing the pose of the best particles (red)

J Real-Time Image Proc (2015) 10:683–697 687

123

mi
g ¼

X
ðu;vÞ2M jgiM u; vð Þ � giI u; vð Þj

sig ¼
X

ðu;vÞ2M jgiM u; vð Þj
ð9Þ

Additionally to the difference of gradients, the colour

defined in hue, saturation, value (HSV) space is used for

matching. Analogous to Eq. (9), the match for colour mh
i

and its normalising constant sh
i are defined as

mi
h ¼

X
ðu;vÞ2M jhiM u; vð Þ � hiI u; vð Þj

sih ¼
X

ðu;vÞ2M jhiM u; vð Þj
ð10Þ

To achieve invariance with respect to brightness the hue

values are used for matching the projected model hM
i and

the image hI
i. The advantage of using colour-based tracking

is the increase of robustness against edge-based clutter. Of

course it is less robust against changing lighting, but the

combination of both kinds of cues can significantly

improve the overall performance. The confidence of a

particle xi for matching gradients cg
i and colour ch

i is

defined as

cig ¼
1

2

mi
g

sig
þ

mi
g

1
N

PN
j¼1 s

j
g

 !

cih ¼
1

2

mi
h

sih
þ mi

h

1
N

PN
j¼1 s

j
h

 ! ð11Þ

where the first term is the match normalised with respect to

si. The second term is normalised with respect to the mean

over all particles, de-weighting particles with a low number

of pixels. This prevents the system from getting stuck in

poses with a small number of pixels. The combined

confidence of a particle is the product of the gradient- and

colour confidence.

ci ¼ cigc
i
h ð12Þ

The overall confidence of the current observation t is

defined by the mean of the confidences of all particles i in

the distribution.

ct ¼
1

N

XN
i¼1

ci ð13Þ

4 Tracking-state-detection (TSD)

Starting from a purely geometric representation of the

object to track, robustness is improved by adding colour

texture and feature-based information. Considering a

cognitive robotic scenario, with as little user-input as

possible, the key to automatically update the object

representation is to detect the current state of tracking.

This allows to identify good views for updating and

improving the model representation. Furthermore, a

quantitative measure of completeness of the model

is necessary to determine views that have not been

learned so far or where enough information is already

available.

Observing the current state of the tracker is important

for assessing the validity of the output as well as allowing

to trigger recovery from lost tracks. TSD is a mechanism

that indicates convergence, quality and overall state. It

requires to reliably detect, whether the object is moving or

the algorithm converged. For learning object detectors or

classifiers, it might be necessary to know if a good view

has been reached, or the object is occluded. But most

important TSD has to distinguish between correct track-

ing, tracking failure or if the algorithm got caught in a

local maximum. Therefore, TSD not only allows for

learning about the object, but is also beneficial for tasks

like pose recovery, robotic manipulation, visual servoing,

learning physical behaviour from visual observations and

so forth.

Convergence rate The convergence rate is important to

determine if the object is moving or still. This measure

must be independent from the quality of the current

observations which might be influenced by occlusion,

lighting or sensor noise. This means that just looking at the

confidence value ct is not enough. Observing the speed of

the trajectory is not satisfying for three reasons. First, the

first derivative of the position amplifies noise. Second, it

depends on the size of the object and the point of view.

And third, the elements of the speed vector derived from

the position vector xt are not of the same scale (translations

versus rotations). Instead the fixed particles described in

Sect. 3.2 are analysed. In more detail, the intersection and

union of the set of fixed particles Xf at frame t and t - 1

are computed.

X̂f ¼ Xf
t \ Xf

t�1

�Xf ¼ Xf
t [Xf

t�1

ð14Þ

The intersection represents the particles that were not

perturbed from one frame to the other. Then, the mean of

the weights of the particles in X̂f normalised with respect to

the weights of the particles in �Xf is an indicator of

convergence.

v ¼ 1P �N
j¼1 w

j

X̂N
i¼1

wi

with wiðxijxi 2 X̂f Þ
and wjðxjjxj 2 �Xf Þ:

ð15Þ

Figure 6 illustrates convergence in the case of no

(static), slow- and fast movement of the underlying

distribution.

688 J Real-Time Image Proc (2015) 10:683–697

123

Quality To give a statement about the quality of the

current pose, we use the overall confidence ct which cor-

responds to the match of a pose hypothesis to the image

evidence. We classify this measure to obtain qualitative

statements by applying thresholds to distinguish if tracking

is good, fair or bad (ct[0.5, 0.5 C ct C 0.3 and ct\ 0.3,

respectively).

Loss Another task of TSD is to determine if the algo-

rithm is tracking the object correctly or has been lost and

got stuck in a wrong local maximum of the probability

distribution. For Monte Carlo methods, the effective par-

ticle size Neff is introduced by [5]. Typically, it is

approximated by

N̂eff ¼
1PN

i¼1ðwi
tÞ
2

ð16Þ

leading to the definition of loss as

L :¼ 1� N̂eff =N ð17Þ

and pose recovery is triggered when L exceeds the

threshold 0.5, i.e. when N̂eff\N=2:

Occlusion A little more tricky is to observe whether the

object is occluded or not. Therefore, a global histogram

descriptor, taking into account edge- and colour informa-

tion, is introduced. Similar to SIFT, gradients and hue

values are sampled and accumulated into orientation his-

tograms summarizing the contents over 5 9 5 partitions

(Fig. 7). This is done for the camera image and the pro-

jection of the model. Figure 8 shows the histograms of all

the subregions and their intersection values, respectively.

This allows to determine how much of the object is

(a) static (b) slow (c) fast

Fig. 6 Convergence rate for a

static (left), slow- (middle) and

fast (right) moving distribution.

Green particles are the fittest.

Red ones are within the set of

fixed particles Xf according to

the definition in Sect. 3.2. Blue

ones are within the set of

intersection X̂f ; from which the

normalised mean weight is used

for defining the convergence

rate

Fig. 7 Histogram descriptor:

the gradients and hue values of

the subregions (a) are sampled (

b) and accumulated into

orientation histograms (c), both
for the model and the image.

The intersection of the

histograms (d) represents the
match of this specific subregion

J Real-Time Image Proc (2015) 10:683–697 689

123

occluded and which parts. Note that subregions which do

not overlap the object sufficiently are not taken into

account (e.g. top-left and lower-left subregion of Fig. 8).

4.1 Texture mapping

Tracking is based on a CAD model which (initially) does

not include surface texture. This is sufficient for non-tex-

tured objects, where all we can observe are edges resulting

from occlusion and surface discontinuity. For textured

objects, additional edges provided by the texture signifi-

cantly improve robustness. The camera image provides the

desired colour information of the object. The geometry of

the object, i.e. the vertices, is projected into image space to

determine their alignment with respect to the texture. TSD

is employed to select good views. Further only faces of the

model are taken into account, which are approximately

pointing in the opposite direction of the camera view vector

(i.e. faces that are parallel to the image plane). For those

faces, the respective region of the camera image is cut out.

The u, v-coordinates in pixel space are calculated by pro-

jecting the vertices using transformation T provided by the

tracker and the camera intrinsics.

4.2 SIFT mapping and object re-detection

While edges are well suited for fast tracking we use highly

discriminating SIFT features for object detection (where

again we use a GPU implementation [29]). Hence, we

follow a standard approach similar to [3, 9] but our training

phase differs in that we do not build a sparse 3D SIFT point

model via bundle adjustment but use the 3D pose and

object geometry already provided by the tracker. To this

end, the view rays according to the u, v pixel coordinates of

the SIFT points are calculated using the camera intrinsics.

Then, the view rays are intersected with the faces of the

object model at the current pose xt to get the 3D positions

with respect to the object pose. SIFT features falling out-

side the object boundary are discarded.

To speed up object detection, SIFT features are repre-

sented using a codebook (one per object). According to the

codebook entry, each matched feature has several corre-

sponding 3D model locations. To robustly estimate the 6D

object pose, we use the OpenCV pose estimation procedure

in a RANSAC scheme by [7], with a probabilistic termi-

nation criterion, where the number of iterations necessary

to achieve a desired detection probability is derived from

Fig. 8 Histogram descriptor for

the occluded object in Fig. 7.

The intersection values of the

gradients- and hue histograms

approximate the amount and

location of the occlusion

690 J Real-Time Image Proc (2015) 10:683–697

123

an estimate of the inlier ratio, which is taken to be the inlier

ratio of the best hypothesis so far. So the number of

RANSAC iterations is adapted to the difficulty of the

current situation and accordingly easy cases quickly

converge.

4.3 Model completeness

Now that it is possible to learn texture and SIFT-based

features of the model, the question arises when to stop

learning. In other words, how much information is

needed to represent the model sufficiently for tracking,

initialisation and recovery of the pose. For tracking,

completeness is achieved if the textures of all faces of

the model are captured according to Sect. 4.1. Unfortu-

nately, this cannot be applied to the SIFT-based model

since detection suffers much more from angular devia-

tion and scale. Therefore, Zillich et al. [37] propose a

view-based probabilistic formulation indicating how

likely it is to detect the object from a certain point of

view. In more detail, the probability of detecting trained

object view o (o = true), given object pose x; is for-

mulated using Bayes rule.

pðojxÞ ¼ pðxjoÞpðoÞ
pðxÞ ¼ pðxjoÞpðoÞP

k2O pðxjo ¼ kÞ
o 2 O ¼ ftrue; falseg

ð18Þ

The probability pðxjoÞ; i.e. of observing a particular

pose x for a detected or missed object view o is

estimated from labelled training data. These data are

obtained by transforming a virtual object model with

1,000 random rotations, 252 scales and varying levels of

artificial noise and blur. The prior p(o) is the probability

of detecting the object at all, which might come from

contextual information, e.g. the probability of an object

being in a certain room. For our experiments, p(o) is

set to 1. To come to a measure of model completeness

the probability of detection over all learned views is

taken.

p̂ðoÞ ¼
X
x

max
j

pðojjxÞpðxÞ ð19Þ

where pðxÞ takes into account that certain views are less

likely than others (such as the underside of an object). This

representation allows a robotic system to identify lack of

information and to take action to learn more views (e.g.

repositioning, moving the object or the camera, etc.). E.g.

in the work of [37], a gain-cost-scheme is applied to drive

exploration.

In our approach, the object poses relative to the camera

are represented by the unit sphere, disregarding the dis-

tance. Figure 9 shows such a sphere, where bright regions

indicate viewing angles of high probabilities, whereas dark

ones have not been learned so far.

5 Results

We evaluated the approach using virtual rendered image

sequences with known ground truth as well as live

sequences where we obtain ground truth from a calibration

pattern rigidly attached to the object. All experiments were

performed on a PC with an Intel Core 2 Quad (Q6600,

2.4 GHz) CPU, a NVIDIA GeForce GTX 285 GPU and a

Logitech Webcam Pro 9000 run at a resolution of

640 9 480 pixels.

5.1 Evaluation of the tracking error

For a measure of the error, we used the scheme proposed in

Sect. IV-B in [15], where a large number, k ¼ ½1. . .K�; of
randomly chosen points qk 2 R

3 are rigidly attached to the

object surface at the ground-truth pose and compared to the

corresponding points q̂k 2 R
3 of the tracked pose. The

error at a specific frame t is then approximated by

et ¼
1

K

XK
k¼1

jq̂kt � qkt j ð20Þ

i.e. the error is given in terms of surface displacement

which is a more meaningful measure than the pose dif-

ference. Before evaluating our method in terms of the

above error metric, let us briefly consider the possible

sources of errors in our system, such as errors from

Fig. 9 Model completeness. The object in the scene (left) and bundles of features with their view vectors (middle) after acquiring some views of

the object. View sphere (right) with brighter shades of grey indicating that the object has been learned from the respective direction

J Real-Time Image Proc (2015) 10:683–697 691

123

calibration, geometric modelling, image quantisation and

finally the tracking algorithm itself. Concretely, we identify

the following sources of errors:

– Mechanical error Positioning the calibration pattern

rigidly on the object introduces a small unknown error

which can safely be considered to be in sub-millimetre

range.

– Camera error The pose of the calibration pattern is

detected with a standard DLT algorithm, followed by a

non-linear optimisation of the pose using the sparse

bundle adjustment implementation by [18]. Further, the

rolling shutter of the camera used introduces additional

errors, which is negligible for our speeds.

– Quantisation error Depending on image resolution, a

digital camera introduces a pixel quantisation error. In

our evaluation, we use a resolution of 640 9 480 with a

focal length of *500 in pixel-related units. This leads

to an error of about 0.5–1.5 mm when tracking at a

distance of 0.5–1.5 m parallel to the image plane. This

error is even higher for the orthogonal direction, which

shown in Table 1.

– Modelling error For modelling boxes and cylinders we

measured the main dimensions of the respective

objects. Arbitrary-shaped objects are modelled using

an RGB-D sensing device, namely the Asus Xtion Pro

Live and subsequent Poisson triangulation by [13]. To

achieve real-time performance, we simplified the

models leaving out small details, chamfers or slightly

bulging cardboard surfaces. Unfortunately we do not

have a measure for the Modelling error but for the

basic shapes (i.e. boxes and cylinders), where correct

modelling is simple, we assume this error to be

negligible.

– Texturing error We found that textures added during

the modelling phase do not always align properly.

Manually capturing textures triggered by pressing a

button incorporates less error than automatic capturing

based on tracking-state-detection.

– Tracking error The failure of the tracker to accurately

locate the local maximum, depending on the challenges

posed by current viewing conditions.

Table 1 Accuracy in mm

Target Static Dynamic

Object x, y z x, y z

Boxes (virt.) 0.4 2.3 1.5 5.6

Boxes (real) 2.0 5.5 2.6 7.7

Cylinders (virt.) 0.9 4.4 2.4 10.0

Cylinders (real) 3.0 16.5 3.9 21.9

Skull (virt.) 2.5 4.2 3.5 14.5

Skull (real) 3.7 6.2 4.6 15.4

Truck (virt.) 0.6 8.3 3.3 13.4

Truck (real) 1.5 10.5 4.5 16.1

Spray (virt.) 1.0 8.3 3.3 18.2

Spray (real) 1.2 10.2 4.4 23.9

Detergent (virt.) 0.9 6.5 1.7 11.4

Detergent (real) 1.0 7.5 2.1 15.9

Train (virt.) 0.5 2.8 1.4 5.6

Train (real) 2.0 7.0 2.5 8.8

Fig. 10 Objects used for evaluating accuracy, precision and performance. From left to right: box, cylinder, skull, truck, spray, detergent, train.

The bottom rows show the untextured triangle meshes used for tracking

692 J Real-Time Image Proc (2015) 10:683–697

123

5.2 Accuracy and precision

We evaluated accuracy and precision using 5 box shaped, 5

cylindrical and 5 arbitrary shaped objects depicted in

Fig. 10 using sequences of 20–30 s length. An example

trajectory is shown in Fig. 11.

Accuracy is defined to be the closeness of a quantity to

its actual value, which in our case is measured using

Eq. (20), where the pose of tracking is compared to the

pose of the virtual object or the pose detected from the

calibration pattern, respectively. We evaluated the mean

accuracy with respect to the poses of several trajectories

using

e ¼ 1

Jte

XJ
j¼1

Xte
t¼1

et; ð21Þ

where j ¼ ½1. . . J� are the trajectories of poses t ¼ ½1. . . te�
under unchanged conditions, i.e. tracking J times on a

sequence of te images.

Precision, also called repeatability, is the degree of

deviation of a quantity under unchanged conditions, which

is also measured using Eq. (20). For each frame t, the pose

of tracking q̂k is compared to its own mean with respect to

the number of repetitions J. i.e. the points of ground-truth

qk in Eq. (20) are substituted by

qkt ¼
1

J

XJ
j¼1

q̂kt ð22Þ

and precision is again given by Eq. (21).

Tables 1, 2 show the results of the accuracy and preci-

sion evaluation, where we evaluated two different cases: a

Fig. 11 Trajectory of a tracked virtual object with 45 cm x-translation followed by a 70 cm z-translation and a rotation about the objects y-axis.

The lower right figure shows the pose deviations, respectively

J Real-Time Image Proc (2015) 10:683–697 693

123

static scene where we looked at the mean error of the pose

after it converged within a few frames. And a dynamic

scene where we observed the mean error of the trajectories.

For evaluation, we used box shaped and cylindrical objects.

The virtual objects show the Tracking error and Quanti-

sation error (all other errors being ruled out), whereas the

difference between virtual and real objects is due to

Mechanical, Camera, Modelling and Texture error, where

we assume the Modelling and Texture error to play the

main roles. We evaluated the dynamic errors using tra-

jectories including linear movement, rotation and their

combination. Further, we considered real-world conditions

like occlusion and changing illumination.

We can derive from Table 1 that curved objects are

typically harder to track than box-shaped objects. A typical

trajectory for arbitrary movement is shown in Fig. 11

where the tracked pose is compared to the virtual pose with

respect to translations, rotations and the error measured by

Eq. (20).

5.3 Robustness

We tested our approach against various situations includ-

ing fast movement introducing motion blur, occlusion,

changes in lighting and large distances. Since robustness is

hard to put in numbers the reader is referred to a video1, to

get an impression of how these various challenges are

handled.

5.4 Tracking-state-detection

Figure 12 illustrates the different measures introduced in

Sect. 4 compared to hand labelled ground truth. First, we

partially occluded approximately half of the object by

hand, resulting in an increase of the occlusion measure

(3rd–9th second). At the 10th second, we started to move

the object around leading to a decrease of convergence.

Between the 23rd and 24th second, the object left the field

of view, resulting in an immediate response of our loss

detection.

5.5 Performance

Processing time during tracking depends on the complexity

of the model as well as on the number of particles used for

tracking.

Table 3 shows the frame rates for different numbers of

faces and particles. 2 9 50, 3 9 100 and 4 9 300 indi-

cates 2, 3 and 4 iterations using 50, 100 and 300 particles

for each iteration, respectively. Figure 13 shows the frames

per second on different GPUs with respect to the total

number of particles used for tracking.

6 Discussion

In this paper, we presented a robust method for model-

based 6 DOF pose tracking. We have modified and

improved state-of-the-art particle filtering approaches by

various contributions. Defining the variance of the particles

depending on their confidence from the previous observa-

tion yields faster convergence and less jitter. Fixing the

pose of some of the best particles further reduces jitter as

no good poses are lost due to re-sampling. Further, these

fixed poses indicate the tracking state. Another improve-

ment is the iterative structure of the particle filter leading to

a faster convergence by sampling fewer particles more

often.

Further, we have developed a method to determine the

state of tracking. This allows us to reason about the quality

of a certain trajectory and to identify good views. The first

is useful, for example, when physical behaviour is learned

by visual tracking, only taking into account trajectories of a

certain quality as done by [15, 26]. The latter is used for

learning texture and SIFT key points of certain views of the

object.

A not so obvious but necessary requirement for TSD is

detection of occluded objects as a special case of a tracking

state. Its importance becomes clear when we want to

update the existing information by the one given from a

better view. Therefore, we need to know whether the object

is occluded or not. This means that we have to detect views

Table 2 Precision in mm

Target Static Dynamic

Object x, y z x, y z

Boxes (virt.) 0.2 1.1 0.7 3.2

Boxes (real) 1.1 2.9 1.6 4.9

Cylinders (virt.) 0.4 1.9 1.3 5.7

Cylinders (real) 0.5 2.5 1.6 8.8

Skull (virt.) 1.3 2.9 1.2 4.8

Skull (real) 1.5 4.3 1.8 6.8

Truck (virt.) 0.3 2.1 2.2 5.6

Truck (real) 0.8 2.8 2.9 6.8

Spray (virt.) 0.4 2.0 1.0 4.5

Spray (real) 0.6 3.4 1.8 6.5

Detergent (virt.) 0.2 3.0 0.3 3.6

Detergent (real) 0.3 3.6 0.8 5.4

Train (virt.) 0.2 1.2 0.8 2.9

Train (real) 0.7 2.4 1.2 3.4

1 http://users.acin.tuwien.ac.at/tmoerwald/?site=5.

694 J Real-Time Image Proc (2015) 10:683–697

123

http://users.acin.tuwien.ac.at/tmoerwald/?site=5

where such a situation occurs and mark them as being not

good to learn from.

The methods presented in this paper provide a tool for

use in robotic applications. Therein lies the main con-

tribution to the community. Although a lot of tracking

algorithms exists, there are hardly any that allow for

robust tracking in harsh real world conditions and pro-

vide qualitative statements about the observations. Fur-

thermore, our tracking framework is available for

download.2

Acknowledgments The research leading to these results has

received funding from the Austrian Research Promotion Agency

(FFG) under Grant Agreement No. 836490 (InModo) and from the

Austrian Science Fund (FWF): project TRP 139-N23 (InSitu). We

gratefully thank Jonathan Balzer (University of California, Los

Angeles) and Aitor Aldoma Buchaca (Vienna University of Tech-

nology) for providing the tools for object surface reconstruction with

RGB-D sensors.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Fig. 12 Output of the measures

convergence (blue), occlusion

(green) and loss (green) during

tracking. Below the graph, the

ground truth of the respective

situation is highlighted in the

corresponding colour

Table 3 Frame rates with respect to model complexity and number

of particles

Number of faces Frames per second

2 9 50 3 9 100 4 9 300

6 120 50 16

24 110 48 15

96 100 45 14

384 80 40 12

500 35 15 4

700 20 7 1

number of particles

fr
am

es
 p

er
 s

ec
on

d

100

50

0

0 100 200 300 400 500 600

GeForce GTX 285 (PC)
Quadro FX 770M (Notebook)
GeForce 9300M GS (Notebook)

Fig. 13 Frame rates with respect to the number of particles on

different platforms for the Box model

2 http://users.acin.tuwien.ac.at/tmoerwald/?site=4.

J Real-Time Image Proc (2015) 10:683–697 695

123

http://users.acin.tuwien.ac.at/tmoerwald/?site=4

References

1. Chestnutt J, Kagami S, Nishiwaki K, Kuffner J, Kanade T (2007)

GPU-accelerated real-time 3D tracking for humanoid locomo-

tion. In: IEEE/RSJ international conference on intelligent robots

and systems

2. Choi, C., Christensen, H.I.: Robust 3D visual tracking using

particle filtering on the special Euclidean group: a combined

approach of keypoint and edge features. Int. J. Robot. Res. 31(4),

498–519 (2012)

3 Collet, A. Berenson, D. Srinivasa, S.S., Ferguson, D.: Object

recognition and full pose registration from a single image for

robotic manipulation. In: IEEE international conference on

robotics and automation 27, 48–55 (2009). doi:10.1109/ROBOT.

2009.5152739

4. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo

sampling methods for Bayesian filtering. Stat. Comput. 10,

197–208 (2000)

5. Doucet, A., De Freitas, N., Gordon, N. (eds.): Sequential Monte

Carlo methods in practice. Springer, New York (2001)

6. Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match

locally: efficient and robust 3D object recognition. In: Computer

vision and pattern recognition CVPR 2010 IEEE conference on,

IEEE, pp. 998–1005 (2010). doi: 10.1109/CVPR.2010.5540108

7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a par-

adigm for model fitting with applications to image analysis and

automated cortography. Commun. ACM. 24(6), 381–395 (1981)

8. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.:

Binocular visual tracking and grasping of a moving object with a

3D trajectory. J. Appl. Res. Technol. 7(03), 259–274 (2009)

9. Gordon, I., Lowe, D.G.: What and where: 3D object recognition

with accurate pose. In: Ponce, J., Hebert, M., Schmid, C., Ziss-

erman, A. (eds.) Toward category-level object recognition,

pp. 67–82. Springer, Heidelberg (2006)

10. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to

nonlinear/non-Gaussian Bayesian state estimation. Radar Signal

Process, IEE Proc F 140(2), 107–113 (1993)

11. Hinterstoisser, S., Holzer, S., Cagniart, C., Ilic, S., Konolige, K.,

Navab, N., Lepetit, V.: Multimodal templates for real-time

detection of texture-less objects in heavily cluttered scenes. In:

IEEE International Conference on Computer Vision (ICCV),

Barcelona, pp. 858–865 (2011)

12. Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G.,

Konolige, K., Navab, N.: Model based training, detection and

pose estimation of texture-less 3D objects in heavily cluttered

scenes. In: Computer Vision – ACCV 2012, pp. 548–562.

Springer, Berlin, Heidelberg (2012)

13. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface recon-

struction. In: Polthier, K., Sheffer, A. (eds.) In: Proceedings of the

fourth Eurographics symposium on Geometry processing, Euro-

graphics Association, Eurographics Association, SGP ’06,

pp. 61–70 (2006)

14. Klein, G., Murray, D.: Full-3D edge tracking with a particle filter.

In: Proceedings of the British Machine Vision Conference,

Edinburgh, pp. 1119–1128 (2006)

15. Kopicki, M., Stolkin, R., Zurek, S., Mörwald, T., Wyatt, J.L.:

Predicting workpiece motions under pushing manipulations using

the principle of minimum energy. In: Proceedings of the RSS

Workshop on Representations for Object Grasping and Manipu-

lation in Single and Dual Arm Tasks, Zaragoza, Spain (2010)

16. Kragic, D., Miller, A.T., Allen, P.K.: Real-time tracking meets

online grasp planning. In: IEEE international conference on

robotics and automation, pp. 2460–2465 (2001)

17. Liebelt, J., Schmid, C.: Multi-view object class detection with a

3D geometric model. In: Conference on computer vision and

pattern recognition, IEEE, Ieee, pp. 1688–1695 (2010). doi:10.

1109/CVPR.2010.5539836

18. Lourakis, M.I.A., Argyros, A.A.: SBA: a software package for

generic sparse bundle adjustment. ACM transactions on Mathe-

matical Software 36(1), 1–30 (2009). doi:10.1145/1486525.

1486527

19. Lowe, D.G.: Distinctive image features from scale-invariant

keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004). doi:10.

1023/B:VISI.0000029664.99615.94

20. Marchand, E., Bouthemy, P.: A 2D-3D model-based approach to

real-time visual tracking. Image. Vis. Comput. 19, 941–955

(2001)

21. Masson, L., Dhome, M., Jurie, F.: Robust real time tracking of 3D

objects. In: International conference on pattern recognition,

(2004)

22. Michel, P., Chestnutt, J., Kagami, S., Nishiwaki, K., Kuffner, J.,

Kanade, T.: GPU-accelerated real-time 3D tracking for humanoid

autonomy. In: JSME robotics and mechatronics conference, (2008)

23. Mittrapiyanuruk, P., Desouza, G.N., Kak, A.C.: Accurate 3D

tracking of rigid objects with occlusion using active appearance

models. In: 7th IEEE workshop on applications of computer

vision/IEEE work shop on motion and video computing,

pp. 90–95 (2005)

24. Mörwald, T., Zillich, M., Vincze, M.: Edge tracking of textured

objects with a recursive particle filter. In: Proceedings of the

GraphiCon, Moscow, Russia, (2009)

25. Mörwald, T., Prankl, J., Richtsfeld, A., Zillich, M., Vincze, M.:

BLORT: The blocks world robotic vision toolbox. In: IEEE

international conference on robotics and automation, workshop,

(2010)

26. Mörwald, T., Kopicki, M., Stolkin, R., Wyatt, J., Zurek, S., Zil-

lich, M., Vincze, M.: Predicting the unobservable, visual 3D

tracking with a probabilistic motion model. In: IEEE international

conference on robotics and automation, pp. 1849–1855 (2011a)

27. Mörwald, T., Zillich, M., Prankl, J., Vincze, M.: Self-monitoring

to improve robustness of 3D object tracking for robotics. In:

IEEE international conference on robotics and biomimetics,

(2011b)

28. Özuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint

recognition using random ferns. In: IEEE transactions on pattern

analysis and machine intelligence, (2009)

29. Payet, N., Todorovic, S.: From contours to 3D object detection
and pose estimation. In: International conference on computer

vision, Oregon State University, Corvallis, 97331, USA, IEEE

86, 983–990 (2011). doi:10.1109/ICCV.2011.6126342

30. Richtsfeld, A., Mörwald, T., Zillich, M., Vincze, M.: Taking in

shape: detection and tracking of basic 3d shapes in a robotics

context. In: Computer vision winter workshop, pp. 91–98 (2010)

31. de Ruiter, H., Benhabib, B.: Visual-model-based, real-time 3D

pose tracking for autonomous navigation: methodology and

experiments. Auton. Robots. 25(3), 267–286 (2008)

32. Sánchez, J.R., Álvarez, H., Borro, D.: Towards real time 3D

tracking and reconstruction on a GPU using Monte Carlo simu-

lations. In: IEEE international symposium on mixed and aug-

mented reality, pp. 185–192 (2010)

33. Stark, M., Goesele, M., Schiele, B.: Back to the future: learning

shape models from 3D CAD data. In: Proceedings of the British

Machine vision conference, (2010)

34. Vacchetti, L., Lepetit, V., Fua, P.: Combining edge and texture

information for real-time accurate 3D camera tracking. In: IEEE/

ACM international symposium on mixed and augmented reality,

(2004a)

35. Vacchetti, L., Lepetit, V., Fua, P.: Stable real-time 3D tracking

using online and offline information. IEEE transactions on pattern

analysis and machine intelligence, (2004b)

696 J Real-Time Image Proc (2015) 10:683–697

123

http://dx.doi.org/10.1109/ROBOT.2009.5152739
http://dx.doi.org/10.1109/ROBOT.2009.5152739
http://dx.doi.org/10.1109/CVPR.2010.5540108
http://dx.doi.org/10.1109/CVPR.2010.5539836
http://dx.doi.org/10.1109/CVPR.2010.5539836
http://dx.doi.org/10.1145/1486525.1486527
http://dx.doi.org/10.1145/1486525.1486527
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/ICCV.2011.6126342

36. Vincze, M., Ayromlou, M., Ponweiser, W., Zillich, M.: Edge-

projected integration of image and model cues for robust model-

based object tracking. Int. J. Robotics. Res. 20(7), 533–552

(2001)

37. Zillich, M., Prankl, J., Mörwald, T., Vincze, M.: Knowing your

limits: self-evaluation and prediction in object recognition. In:

IEEE/RSJ international conference on intelligent robots and

systems, Automation and Control Institute, Vienna University of

Technology, Austria, pp. 813–820 (2011). doi:10.1109/IROS.

2011.6094856

Thomas Mörwald received a Ph.D. in Electrical Engineering at the

Vision for Robotics group at the Vienna University of Technology

(TUW) in 2013 and a M.Sc. in Mechatronics at the Johannes Kepler

University in Linz, 2008. Thomas Mörwald was part of the CogX

project [FP7/2007-2013] and is now with the InModo project [FFG/

836490]. He accomplished an internship in the USA (University of

California, Los Angeles, 2013), Saudi Arabia (King Abdullah

University of Technology, 2011), England (University of Birming-

ham, 2010), USA (Purdue University, 2006) and Brazil (Pontificia

Universidade de Minas Gerais, 2005). His research interests are in the

field of 3D object tracking, surface reconstruction using B-splines,

GPU computing, computer graphics and visualization.

Johann Prankl studied Electrical Engineering at the Vienna

University of Technology (TUW) and received his M.Sc. degree in

2005. He joined the ‘‘Vision for Robotics’’ laboratory at TUW as

research assistant and received his Ph.D. from the Vienna University

of Technology in 2011. During his Ph.D. study he developed methods

for modeling and recognition of objects with the purpose to enable

autonomous robots to interact in daily life environments. His

expertise is in computer vision for robotics, especially in segmenta-

tion and modeling of objects under real-world conditions in order to

recognise these objects and to provide shape features for interaction.

Michael Zillich received the Ph.D. degree from the Vienna Univer-

sity of Technology, Vienna, Austria, in 2007. He spent a year as a

Research Fellow at the University of Birmingham, Birmingham,

U.K., before returning as a Research Fellow to Vienna. His research

interests include vision for robotics and cognitive vision.

Markus Vincze received his diploma in mechanical engineering from

Technical University Wien (TUW) in 1988 and a M.Sc. from

Rensselaer Polytechnic Institute, USA, 1990. He finished his Ph.D. at

TUW in 1993. With a grant from the Austrian Academy of Sciences

he worked at HelpMate Robotics Inc. and at the Vision Laboratory of

Gregory Hager at Yale University. In 2004, he obtained his

habilitation in robotics. Presently he leads a group of researchers in

the ‘‘Vision for Robotics’’ laboratory at TUW. With Gregory Hager

he edited a book on Robust Vision for IEEE and is (co-)author of over

300 papers. Markus’ special interests are computer vision techniques

for robotics solutions situated in real-world environments and

especially homes.

J Real-Time Image Proc (2015) 10:683–697 697

123

http://dx.doi.org/10.1109/IROS.2011.6094856
http://dx.doi.org/10.1109/IROS.2011.6094856

	Advances in real-time object tracking
	Extensions for robust object tracking with a Monte Carlo particle filter
	Abstract
	Introduction
	Related work
	Pose estimation
	Transformations on the SO(3)
	Monte Carlo particle filtering (MCPF)
	Image processing and confidence evaluation

	Tracking-state-detection (TSD)
	Texture mapping
	SIFT mapping and object re-detection
	Model completeness

	Results
	Evaluation of the tracking error
	Accuracy and precision
	Robustness
	Tracking-state-detection
	Performance

	Discussion
	Acknowledgments
	References

