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Abstract
Purpose Body composition measurements from routine abdominal CT can yield personalized risk assessments for asymp-
tomatic and diseased patients. In particular, attenuation and volume measures of muscle and fat are associated with important
clinical outcomes, such as cardiovascular events, fractures, and death. This study evaluates the reliability of an Internal tool for
the segmentation of muscle and fat (subcutaneous and visceral) as compared to the well-established public TotalSegmentator
tool.
Methods We assessed the tools across 900 CT series from the publicly available SAROS dataset, focusing on muscle, subcu-
taneous fat, and visceral fat. The Dice score was employed to assess accuracy in subcutaneous fat and muscle segmentation.
Due to the lack of ground truth segmentations for visceral fat, Cohen’s Kappa was utilized to assess segmentation agreement
between the tools.
Results Our Internal tool achieved a 3% higher Dice (83.8 vs. 80.8) for subcutaneous fat and a 5% improvement (87.6 vs.
83.2) for muscle segmentation, respectively. A Wilcoxon signed-rank test revealed that our results were statistically different
with p < 0.01. For visceral fat, the Cohen’s Kappa score of 0.856 indicated near-perfect agreement between the two tools.
Our internal tool also showed very strong correlations for muscle volume (R2=0.99), muscle attenuation (R2=0.93), and
subcutaneous fat volume (R2=0.99) with a moderate correlation for subcutaneous fat attenuation (R2=0.45).
Conclusion Our findings indicated that our Internal tool outperformed TotalSegmentator in measuring subcutaneous fat and
muscle. The high Cohen’s Kappa score for visceral fat suggests a reliable level of agreement between the two tools. These
results demonstrate the potential of our tool in advancing the accuracy of body composition analysis.
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Introduction

The assessment of body composition, particularly the accu-
rate segmentation of soft tissues such as subcutaneous fat,
visceral fat, and muscle, has become a critical component
in diagnostic imaging [1, 2]. Advances in computed tomog-
raphy (CT) imaging have not only facilitated detailed body
composition analysis, but also play a pivotal role in a range of
medical applications, from disease characterization to surgi-
cal planning and radiation therapies [3, 4]. This advancement
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in imaging technology demonstrates potential for enhanced
‘incidental’ screening and tailored risk evaluation, benefit-
ing both asymptomatic individuals and patients with existing
medical conditions. For instance, the distribution and vol-
ume of visceral fat are closely linked to metabolic disorders
and cardiovascular diseases, making their assessment crucial
for early intervention strategies [5]. Similarly, understand-
ing the balance between muscle and fat tissues is essential in
evaluating nutritional status, which is particularly relevant in
conditions like obesity, sarcopenia, and cachexia [1, 6, 7]. In
sports medicine and rehabilitation, analyzing muscle and fat
distribution is crucial for creating personalized training and
recovery programs [8].

Similarly, in clinical research, such data significantly
enhance our understanding of various health conditions
and aid in the development of innovative treatments. This
knowledge is particularly invaluable in oncology, where it
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Fig. 1 Example axial, coronal and sagittal slice of case-042 from
SAROS dataset. In the axial slice, the muscle (yellow), subcutaneous
fat (red) and abdominal cavity (green) are shown. The gray regions in

the coronal/sagittal views indicate no segmentation masks available in
that area, while the streaks in between them contain segmentations

plays a key role in tailoring treatment plans and monitor-
ing the impact of therapies that can significantly alter body
composition. Moreover, in surgical planning, especially in
reconstructive or plastic surgery, the precise imaging of these
tissues is essential for ensuring better outcomes and guiding
post-operative care [9–11]. Recent developments in auto-
mated segmentation tools, such as TotalSegmentator [12],
have shown promising results in enhancing the efficiency
and accuracy of these analyses. However, generalized tools
in medical imaging, while versatile and broadly applicable,
often do not perform with the same level of precision and
efficacy as tools that are specifically targeted or tailored to
particular tasks or conditions. The effectiveness of such tools
compared to specialized solutions remains a subject of ongo-
ing research.

In this study, we compare the effectiveness of the pub-
lic TotalSegmentator tool against an internally developed
tool for the task of muscle and fat (subcutaneous and vis-
ceral) segmentation in CT. We hypothesized that the internal
tool developed specifically for muscle and fat segmentation
would fare better than TotalSegmentator. Through experi-
ments on the public SAROSdataset, we show that the internal
tool fares better at the segmentation tasks, with statistical
results to corroborate our findings. Our tool has substantial
potential to be used for a broad range of clinical applications
and offers opportunities for personalized risk assessment for
patients.

Materials andmethods

Patient population

This study utilized deidentified data that are publicly avail-
able, thereby obviating the need for IRB approval. The
dataset employed, known as the Sparsely Annotated Region
and Organ Segmentation (SAROS) [13, 14], comprised of

900 CT series from 882 patients, evenly divided between 450
women and 450 men. These series were randomly selected
from various TCIA [14] collections.

The dataset contains CT volumes of 5mm slice thickness,
with annotations provided in NIfTI format. These annota-
tions covers 13 semantic body regions across 6 distinct body
parts. The initial generation of annotations was carried out
usingbody composition analysis tools developedbyKoitka et
al. [15], and subsequently reviewed and corrected bymedical
residents and students on every fifth axial slice, as illustrated
in Fig. 1. Slices that were not reviewed were marked with
an ‘ignore’ label of value 255. In this retrospective study,
we focused our analysis on three types of soft tissues: sub-
cutaneous fat, visceral fat, and muscle. The SAROS dataset
includes annotations for 13 semantic body regions and 6 body
parts. However, ground truth segmentation labels within this
dataset are only available for subcutaneous fat and muscle.
Consequently, our analysis was limited to utilizing only the
subcutaneous fat and muscle labels, with all other labels dis-
regarded.

TotalSegmentator

TotalSegmentator [12] is a publicly accessible tool designed
for segmenting over 117 distinct classes in CT images. It is
apt for various applications, including organ volumetry, dis-
ease characterization, and planning for surgical or radiation
therapy. This tool was developed using a training set of 1204
CT examinations, encompassing a diverse array of scanners,
institutions, and protocols to ensure its versatility and robust-
ness in different clinical settings. Subcutaneous fat, skeletal
muscle, and visceral fat structures fall under a separate task
called ‘tissue_types’, which, while publicly accessible, is
subject to a non-commercial license agreement.
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Internal tool

Our internal tool leverages the 3D nnU-Net model [16],
which is widely recognized and acclaimed as the de facto
standard in supervised segmentation. The training data were
acquired using a 2D dual-branch network, as described in
Liu et al. [17]. This 2D dual-branch network was initially
developed to alleviate the extensive and time-consuming
annotation burden associated with full CT volumes, enabling
the generation of precise segmentations of muscle and fat
across all slices of a CT scan.

The dual-branch network features a shared encoder and
two duplicate decoders. It was trained using a combination of
a few strongly labeled and a large number of weakly labeled
datasets; the strongly labeled data included manual annota-
tions ofmuscle, visceral fat, and subcutaneous fat on eachCT
slice. Theweak labels, generated automatically via a level-set
method [18], were prone to segmentation errors. The dual-
branch network was trained through a mixed supervision
approach utilizing both strong and weak labels. Throughout
the training process, the weakly labeled data were period-
ically refined by the strong decoder in a self-supervised
manner.Upon completion of the dual-branch network’s train-
ing, it was applied to all CT volumes to generate dense
annotations across all CT series. These annotationswere then
utilized as training data for the 3D full-resolution nnU-Net.

Statistical analysis

As previously mentioned, this retrospective study focuses on
three types of soft tissues: subcutaneous fat, visceral fat, and
muscle. While both TotalSegmentator (TS) and our Inter-
nal tool are capable of segmenting all three tissue types,
the SAROS dataset only includes ground truth labels for
subcutaneous fat and muscle. After the Internal tool and
TotalSegmentator were executed on the CT series in the
dataset, the Dice coefficient was utilized to compute the sim-
ilarity between the predicted segmentations and the ground
truth annotations. Since not all slices in the dataset were
labeled, Dice score calculation was confined to the “valid”
regions of interest, which were delineated by the body mask
provided. For all analyses, slices lacking labels, as well as
background pixels, were excluded. This approach ensures
that our evaluation focused solely on the relevant anatomical
areas.

After assessing the normality of the Dice score distribu-
tion, aWilcoxon signed-rank test was employed to determine
any statistical differences. Due to the absence of ground truth
labels for visceral fat in the dataset, Cohen’s Kappa [19]
was used to evaluate the agreement between TotalSegmenta-
tor and our internal tool in segmenting visceral fat. Cohen’s
Kappa is a statistical measure that captures the agreement
between two raters, taking into account the possibility of

agreement occurring by chance. In addition, graphs corre-
lating the ground truth segmentations contrasted against the
predictions were also plotted with overlaid R2 values. Bland-
Altman analysis was also conducted through the calculation
of volumedifferences (biases) and averages for each structure
to determine agreement. The Dice and Kappa scores were
calculated using the Scikit-learn library (Version 1.3.1) in
Python (Version 3.9.10). All statistical tests were performed
using RStudio (Version 2023.06.1+524).

Results

Our study’s focus is on comparing the performance of differ-
ent tools, rather than comparing different scans or patients.
Each tool is applied to measure the same scan, with the
expectation that the reported volume of tissue types by each
tool should be consistent. Should our comparison have been
between scans or patients, standardizing the area of measure-
ment would indeed be necessary, such as constraining to the
abdomen section (featuring structures L1–L5 and T9–T12)
only.

Table 1 presents a direct comparison of the segmen-
tation capabilities of TotalSegmentator and our Internal
tool, specifically focusing on subcutaneous fat and muscle
segmentation. Figure2 shows violin plots to visualize the
distributions of Dice scores for both TotalSegmentator and
Internal tool. Dice scores in Table 1 are presented asmeans±
standard deviation, along with the 25th and 75th percentiles
(IQR), for both subcutaneous fat and muscle. For subcuta-
neous fat, TotalSegmentator achieved an average score of
80.8 (± 10.4) with an IQR range of [76.7, 87.7]. In contrast,
our Internal tool demonstrated a slightly higher mean Dice
score of 83.8 (± 10.9)with an IQR range of [80.7, 90.5].With
respect to muscle, TotalSegmentator attained a mean score
of 83.2 (± 4.6) and [80.5, 86.4] IQR. In contrast, our Inter-
nal tool outperformed it by 5% as a mean score of 87.6 (±
3.3) and [85.6, 90] IQR was obtained. Notably, as depicted
in Fig. 2, the internal tool exhibits fewer outliers compared to
TotalSegmentator, particularly in muscle segmentation, indi-
cating a more consistent and reliable performance. These
results suggest that while both tools are effective for soft
tissue segmentation, the Internal tool was superior in seg-
menting both subcutaneous fat and muscle with p < 0.01.

SAROS provides ground truth labels on every fifth axial
slice, but these labels are limited to muscle and subcuta-
neous fat only. Given the absence of labels for visceral fat,
the entire CT volume was utilized for comparisons between
TotalSegmentator and our Internal tool. It is important to
note that subcutaneous fat and visceral fat are considered
separate structures and do not overlap. The Kappa scores in
Table 2 indicated a high level of concordance between the
two tools across all three tissue types. Figure3 shows R2 cor-
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Table 1 Table of Dice scores:
TotalSegmentator vs. Internal
Tool for subcutaneous fat and
muscle Segmentation. Scores
are shown with mean, standard
deviation, and Inter-Quartile
Ranges (IQR)

Subcutaneous Fat Muscle

TotalSegmentator 80.8 ± 10.4 [76.7, 87.7] 83.2 ± 4.6 [80.5, 86.4]

Internal 83.8 ± 10.9 [80.7, 90.5] 87.6 ± 3.3 [85.6, 90.0]

Fig. 2 Violin plot of
TotalSegmentator (green) vs.
our internal tool (blue) for the
segmentation of a subcutaneous
fat and b muscle

Table 2 Cohen’s Kappa scores: Agreement of TotalSegmentator and
Internal tool for segmentation of subcutaneous fat, visceral fat, and
muscle. Scores are shown with mean, standard deviation, and Inter-
Quartile Ranges (IQR)

Cohen’s Kappa

Subcutaneous Fat 0.874 ± 0.066 [0.854, 0.913]

Visceral Fat 0.856 ± 0.074 [0.830, 0.906]

Muscle 0.837 ± 0.033 [0.819, 0.861]

relation plots for the volume and attenuation of the different
structures, respectively. The averageHounsfieldUnit (HU) of
muscle attenuation for both TotalSegmentator and our Inter-
nal tool exhibit a strong correlation with R2 values of 0.87
and 0.93, respectively, with our Internal tool outperforming
it by a notable margin. This is supported by the similarly
strong correlation observed with muscle volume, yielding
R2 values of 0.97 and 0.99, respectively. For subcutaneous
fat, despite a significant uncertainty in the average HU values
for both tools, with R2 values of 0.43 for TotalSegmentator
and 0.45 for our Internal tool. Nevertheless, the region was
accurately segmented, with fat volume estimation showing a
high correlation, evidenced by an R2 value of 0.99 for both
tools.

Figure4 displays Bland-Altman plots for muscle and sub-
cutaneous fat volume estimation of the tools compared to
the manual annotations. For both tools measuring muscle
volume, there’s a noticeable positive skew in the data. The

Internal tool demonstrated a significantly lower bias, approx-
imately 250cm3, in comparison to the TotalSegmentator,
which exhibited a bias around 500cm3. For the subcutaneous
fat volume estimation, there is a distinct concentration of data
points on the left-hand side. The Internal tool has a slight
positive skew also with a higher bias at around +200cm3

compared to TotalSegmentator that is around 0cm3.
Figure5 shows and example segmentation of body com-

position by TotalSegmentator and our Internal tool. In a
comparison of segmentation accuracy, our internal tool out-
performed TotalSegmentator, achieving Dice scores of 0.947
for Subcutaneous Fat and 0.884 for Muscle, compared to
TotalSegmentator’s scores of 0.919 and 0.809, respectively.
Additionally, our internal tool exhibited a robust Cohen’s
Kappa score of 0.876, further demonstrating its strong
agreement compared to a popular and widely used tool.
TotalSegmentator has showna tendency to over-segment sub-
cutaneous fat, as indicated by the blue arrows in Fig. 5. This
is particularly evident in areas such as the muscle between
the ribs and within the pelvic cavities.

TotalSegmentator and the Internal Tool demonstrate a
high level of segmentation agreement, as evidenced by the
Cohen’s Kappa scores presented in Table 2. Figure2 reveals
that both tools perform effectively in segmenting muscle tis-
sue, achieving Dice coefficients greater than 0.6, however,
this level of performance does not extend to the segmen-
tation of subcutaneous fat. Most instances of segmentation
failure (Dice scores< 0.5) occur in patients with a low body
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Fig. 3 R2 correlation plots of the automatic segmentation results compared against ground truth annotations. Top Row: TotalSegmentator (TS).
Bottom Row: Internal (Int) tool. L-to-R: Muscle Volume, Muscle Attenuation, Fat Volume, Fat Attenuation

Fig. 4 Bland-Altman plots of the volume measurements between the automatic segmentations compared against manual annotations. L-to-R:
TotalSegmentator Muscle Volume, Internal Muscle Volume, TotalSegmentator Subcutaneous Fat, Internal Subcutaneous Fat

fat percentage. This issue is compounded by the imaging
resolution; even at 1mm, it hinders the clear delineation of
subcutaneous fat, which is situated between the skin (dermal
layers) and muscle, often covering only a few pixels. The
observed low Dice coefficients are attributed to the coarse
annotations provided by the annotators, rather than to the
segmentation tools themselves as shown in Fig. 6.

Discussion and conclusion

Through our experiments, the Internal tool achieved a 3%
higher Dice (83.8 vs. 80.8) for subcutaneous fat and a
5% improvement (87.6 vs. 83.2) for muscle segmentation
respectively. The results yielded by the internal tool were sta-
tistically differentp<0.01.However, from the R2 correlation
plots in Fig. 3 for subcutaneous fat, a significant uncertainty
was seen in the average HU values for both tools: 0.43 for
TotalSegmentator and 0.45 for our Internal tool.
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Fig. 5 Example segmentation of case-042. Top-to-Bottom: axial,
coronal, sagittal views. L-to-R: CT image, manual annotation (ground
truth), TotalSegmentator segmentation, Internal tool segmentation.Red:
Subcutaneous Fat, Yellow: Muscle, Green: Internal Abdominal Cavity

(ground truth only) / Visceral Fat, Gray: No ground truth labels. Blue
arrows shows over segmentation of subcutaneous fat by TotalSegmen-
tator where it was correctly segmented as muscle by our Internal tool

Fig. 6 Comparison of subcutaneous fat segmentation failure cases by TotalSegmentator and Internal tool. Top-to-bottom: case-531,case-547,
case-886 from SAROS dataset. L-to-R: CT image, manual annotation (ground truth), TotalSegmentator segmentation, Internal tool segmentation
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The considerable standard deviation in HU values within
the subcutaneous fat layer can be attributed to its diverse com-
position. This layer, primarily composed of adipocytes, also
contains fibroblasts, blood vessels, nerve cells, lymphatic
vessels, immune cells, hair follicles, and sweat glands, each
with differing densities. These varying densities result in a
broad spectrum of HU values, as captured in CT scans. The
contrast between the low-density adipocytes and the higher-
density components within the layer leads to the observed
variability in HU readings.

The variability can also be attributed to several other
factors: the quality and noise in CT images affecting segmen-
tation precision, limitations in the segmentation algorithm
especially if not tailored for subcutaneous fat, variability in
fat composition and density, and the choice of thresholding in
segmentation. This complexity not only highlights the multi-
faceted nature of the subcutaneous layer, but also underscores
the challenge in accurately segmenting and analyzing it using
CT imaging. Despite the variations in HU, the subcutaneous
fat volume demonstrated a high correlation for both tools
with an R2 value of 0.99, indicating accurate segmentation
of the subcutaneous fat region.

The skewness in the Bland-Altman plots in Fig. 4 suggests
a tendency for the differences between the twomethods under
comparison to increase as the magnitude of the measurement
decreases. Such a distribution pattern indicates a potential
systematic bias in the measurements, particularly at lower
values. For the concentration of data points on the left-hand
side in the subcutaneous fat volume estimation, the pattern
indicates that the agreement between the two methods being
compared is more consistent at lower measurement values.
Such a concentration suggests that for smaller magnitudes of
the variable being measured, the two methods yield closer
results, implying better concordance in this range. However,
this also raises questions about the performance of the meth-
ods at higher values, as the relative sparsity of data points
on the right-hand side of the plot may indicate a divergence
in the methods’ readings or a limitation in the range of data
sampled.

Furthermore, segmenting muscle tissue is a relatively
easier task due to its clearly defined visual boundaries. In
contrast, the delineation of fat can be challenging, as its
boundaries are not always distinct. This challenge stems from
the fact that fat and water-rich tissues (such as specific soft
tissues) can exhibit similar Hounsfield Units (HUs), com-
plicating their differentiation. Fat typically has a slightly
negative HU value, often in the range of -50 to -100 HU,
whereas water has an HU of 0. However, the HU values of
soft tissues can range from -10 to +60 HU, depending on the
specific tissue type and its water content.

The overlapping HU values between fat and certain soft
tissues create a significant challenge for differentiation based
solely on attenuation properties. This is particularly true for

visceral fat, where the close proximity and interleaving of
blood vessels, bowel, and organs give it a complex shape.
Although fat and muscle have distinct HU values, the HU
values of the bowel, vessels, and organsmay closely resemble
those ofmuscle, especially in non-contrast CT scans, orwhen
the CT scan’s resolution is too low to clearly differentiate
between these tissue types. Furthermore, fat deposits can be
located within muscle tissue, indicating that HU values are
not the primary reason for the segmentation difficulty for
visceral fat.

In summary, this study has demonstrated that our inter-
nal tool significantly outperforms the more generalized
TotalSegmentator in accurately segmenting subcutaneous
fat, visceral fat, and muscle in CT series. Our findings are
supported by high Dice scores and strong correlations (R2)
with manual annotations, and is further corroborated by
Bland-Altman plots demonstrating consistent agreement and
minimal bias. The enhanced accuracy and consistency of our
internal tool hold significant promise for a range of clin-
ical applications, such as providing improved personalized
risk assessments for patients at risk of adverse cardiovascular
events and fractures.
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