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Abstract
Purpose Lymph nodes (LNs) in the chest have a tendency to enlarge due to various pathologies, such as lung cancer or
pneumonia. Clinicians routinely measure nodal size to monitor disease progression, confirm metastatic cancer, and assess
treatment response. However, variations in their shapes and appearances make it cumbersome to identify LNs, which reside
outside of most organs.
Methods We propose to segment LNs in the mediastinum by leveraging the anatomical priors of 28 different structures (e.g.,
lung, trachea etc.) generated by the public TotalSegmentator tool. The CT volumes from 89 patients available in the public
NIH CT Lymph Node dataset were used to train three 3D off-the-shelf nnUNet models to segment LNs. The public St. Olavs
dataset containing 15 patients (out-of-training-distribution) was used to evaluate the segmentation performance.
Results For LNs with short axis diameter ≥ 8mm, the 3D cascade nnUNet model obtained the highest Dice score of 67.9
± 23.4 and lowest Hausdorff distance error of 22.8 ± 20.2. For LNs of all sizes, the Dice score was 58.7 ± 21.3 and this
represented a ≥10% improvement over a recently published approach evaluated on the same test dataset.
Conclusion To our knowledge, we are the first to harness 28 distinct anatomical priors to segment mediastinal LNs, and our
work can be extended to other nodal zones in the body. The proposed method has the potential for improved patient outcomes
through the identification of enlarged nodes in initial staging CT scans.
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Introduction

Lymph nodes and the lymphatic system comprise an inte-
gral part of the body’s natural defense mechanisms and play
a vital role in maintaining a person’s health. Abnormali-
ties to the lymphatic system can result in enlarged lymph
nodes (lymphadenopathy) [1, 2] with etiologies ranging from
infection, autoimmune disease or malignancy. Distinguish-
ing between the causes for enlarged and metastatic nodes
fromnon-metastatic LNs is critical for clinicians in determin-
ing the correct treatment [1–4]. Frequently, radiologists use
a systematic approach to identify suspicious nodes through
nodal size measurement with the help of established guide-
lines, such as the tumor, node, and metastasis (TNM) criteria
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[4]. In particular, the presence of enlarged LNs in the setting
of cancer not only dictates the staging and extent, but is vital
to treatment and management.

In clinical practice, radiologists routinely identify, manu-
ally measure, and describe the features of lymph nodes on
CT and MRI to identify areas of pathology. Among the var-
ious imaging features for lymphadenopathy, nodal size is
the most widely used criteria [1–4] to determine benign ver-
sus malignant status when paired with clinical data. A node
is considered enlarged if its short-axis diameter (SAD) is
greater than 10mm on an axial CT slice [1–5]. However, this
assessment can be cumbersome and time-consuming, espe-
cially at initial staging and while comparing multiple sites
of metastasis during the evaluation of treatment response in
follow-up imaging. To help relieve this laborious process,
automated LN measurement can augment radiology work-
flows by aiding in the identification of LNs in specific regions
of the body, such as the mediastinum.

Several approaches have been proposed to detect and seg-
ment mediastinal lymph nodes in both CT [6–13] and MRI
[14–20]. Only a handful [6, 8, 9, 11–13] exploit the anatomi-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11548-024-03165-4&domain=pdf
http://orcid.org/0009-0005-8440-1702


International Journal of Computer Assisted Radiology and Surgery

Fig. 1 Flowchart of the proposed approach to segment mediastinal
lymph nodes in CT using anatomical priors. First, the public TotalSeg-
mentator tool was used to segment 28 structures in 89 mediastinal CT
volumes from the public NIH CT Lymph Node dataset. Next, these
labels were combinedwith themanual annotations for mediastinal LNs,

and used to train a 3D nnUNet segmentation model. At test time, the
3D nnUNet was executed on CT volumes of 15 patients in the public St
Olavs dataset. Green labels in the prediction correspond to the predicted
LNs. The figure is best viewed in color in the PDF

cal prior information that plays a significant role in reducing
the number of false positives through disambiguation of col-
located lymph nodes and other structures of similar intensity
(e.g., esophagus, azygos vein). Presently, only 4 anatomical
regions have been used in prior works [8, 12] to distinguish
mediastinal LNs from other adjacent structures. We are the
first to segment mediastinal nodes by leveraging the anatom-
ical priors of 28 different structures in the body, and thereby
account for the aforementioned challenges in the radiology
workflow.

In this paper, we present an approach to segment medi-
astinal LNs in CT studies of the body. Figure1 shows an
overview of the pipeline. We used the LN labels for 89
CT volumes from the public NIH CT Lymph Node dataset,
and combined them with the labels for 28 distinct structures
in the body obtained through the public TotalSegmentator
tool. Three off-the-shelf nnUNet segmentation models were
trained end-to-end with this data, and evaluated on a test
dataset comprising of 15 patients from an external institution.
Our results indicated a performance improvement (measured
throughDice scores andHausdorff distances) over the current
state-of-the-art method evaluated on the same test dataset.

Methods

Patient sample

We used datasets from two distinct institutions for the pur-
poses of training and testing the 3D nnUNet models. The

public NIH CT Lymph Node dataset [7, 21] was used for
training, and it comprised of a total of 176 contrast-enhanced
CT series from 176 patients. 90 CT volumes were obtained
at the level of the chest (mediastinum). Segmentation masks
were provided for 388 nodes with a short axis diameter
(SAD) ≥ 1cm, which are considered clinically enlarged and
abnormal. We accounted for the variability in the SAD mea-
surements by radiologists in this work, and LNs with a SAD
≥ 8mm were considered clinically significant and suspi-
cious for metastasis [3, 19, 20, 22]. The remaining 86 CT
volumes were acquired at the abdomen with 595 abdomi-
nal LNs annotated. To our knowledge, no underlying disease
causes or demographics were provided for the patients in the
NIH dataset, and LNs that were smaller than 1cm were left
unannotated.

However upon visual inspection, only 89 of the 90 medi-
astinal CT volumes had a field-of-view centered around the
thorax. Additionally, Bouget et al. [12] provided the ground
truth annotations for all the mediastinal LNs in these 89 vol-
umes. In particular, the authors adopted a “conservative”
annotation approach and segmented all suspicious regions
as lymph nodes. Nodes with any short-axis measurement
including those nodes smaller than the suggested RECIST
criterion for malignancy of 1cm were also annotated. All the
annotations for the 89 volumes were used to train the models
in this work.

The external test dataset (publicly available) from St.
Olavs Hospital in Trondheim, Norway [9, 23] comprised of
15 patients with confirmed lung cancer diagnosis. A total of
384 lymph nodes were annotated in this dataset with 143
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nodes having a SAD ≥ 8mm and 241 nodes with SAD <

8mm. As previously mentioned, LNs with a SAD ≥ 8mm
were considered clinically significant to account for any vari-
ability in radiologistmeasurements. To our knowledge, this is
the largest publicly available dataset in which all mediastinal
LNs have been segmented. The dimensions of the contrast-
enhanced CT volumes in the test set ranged from (487 ∼
512) × (441 ∼ 512) × (241 ∼ 829) voxels. The volumes
in this dataset also contained ”burned-in” metadata (arrows,
measurements, descriptions), which can adversarially affect
models not trained on such data.

Anatomical priors

Inspired by prior literature [6, 8, 9, 11–13] on LN seg-
mentation with anatomical priors, we utilized the public
TotalSegmentator [24] thatwas designed to segment over 117
distinct classes in CT volumes. The tool is of tremendous use
for various applications, such as personalized risk assessment
through body composition analysis [25, 26]. TotalSegmen-
tator was developed using a training set of 1,204 CT exams
and encompasses a diverse array of scanners, institutions,
and protocols to ensure its versatility and robustness in dif-
ferent clinical settings. The segmentation labels generated by
this tool for 28 different structures (e.g., trachea, pulmonary
artery etc.) in the body were utilized. After combining them
with the lymph node labels, a total of 29 distinct classes were
used for training the segmentation models. Incorporation of
anatomical priors helped to disambiguate anatomical regions
of the body that are of similar intensity as the LNs, such as
the heart and esophagus. Furthermore, the primary goal was
to segment LNs and not map their stations. Therefore, at test
time, the predicted LN labels were retained and the remain-
ing 28 classes were discarded. A complete list of the labels
provided by TotalSegmentator is detailed in Supplementary
Material Table 3.

3D nnUNet

The self-configuring nnUNet segmentation framework [27]
was employed to train different configurations for the task
of LN segmentation in CT. The nnUNet model is currently
the de-facto standard for segmentation, and it can be adapted
for various datasets and modalities, including CT and MRI.
The framework automatically determined the optimal hyper-
parameters for training a segmentation model and learned
to segment target structures of interest. In this work, 3D
low-resolution, 3D full-resolution, and 3D cascade nnUNet
configurations were trained and their performances com-
pared.

During training, each configuration of the 3D nnUNet
took as input the CT (unwindowed) volume and the cor-
responding ground-truth masks for 29 different structures.

Five-fold cross-validation with different initializations of
trainable model parameters for each fold was done. The
default nnUNet training scheme was used for all folds and
each fold was trained for 1000 epochs. Distinct subsets of
training and validation data from the 89 CT volumes were
automatically created for each fold. The model learned to
segment the target structures of interest in the volume, and
iteratively refined it via a loss function. The loss function
used by the model was an equally weighted combination of
binary cross-entropy and soft Dice losses. This loss function
computed a segmentation error that measured the overlap
between the prediction and ground-truth. It was optimized
using the Stochastic Gradient Descent (SGD) optimizer with
an initial learning rate of 10−2 and a batch size of 1. At test
time, the 3D nnUNet predicted the segmentation masks for
the structures in the held-out test CT volumes. The remaining
classes were discarded at test time. The best model with the
lowest loss from each of the 5 folds was used for inference
on the test CT volume, and predictions from these five folds
were ensembled together.

Experiments

The 3D nnUNet models in our work were trained with the
data acquired at the NIH and tested on an external dataset
obtained at St. Olavs Hospital (out-of-training distribution).
First, the primary experiment was the comparison against
the slab-wise UNet designed by Bouget et al. [12], which
was evaluated on the same test dataset. Next, the proposed
approach with anatomical priors (“fullRes”) was com-
pared against a segmentation model trained without any
anatomy priors (“fullRes_noPrior”). Finally, we also
determined the capabilities of the following nnUNet config-
urations with anatomical priors: 3D low-resolution nnUNet
(“lowRes”), 3D cascade nnUNet with first-stage predic-
tions from the low-resolution nnUNet (“cascLR”) and from
the full-resolution nnUNet (“cascFR”). All experiments
were run on a desktop running Ubuntu 20.04 LTS with a
NVIDIA V100 GPU with 32GB RAM.
Metrics Precision, sensitivity, and F1-score was used to mea-
sure the detection performance. The Dice score coefficient
(DSC) and symmetric Hausdorff Distance (HD)were used to
quantify the segmentation performance. The implementation
of these assessment criteria was obtained from the official
Medical Segmentation Decathlon challenge [28]. Unlike [9,
12, 13] where post-processing steps were applied to the pre-
dicted segmentations, such as removal of nodes through con-
nected component analysis, no post-processing was applied
to the predictions from our segmentation models. LNs were
only partitioned based on their SAD, and results were com-
puted for all LNs and clinically relevant nodes (SAD ≥
8mm). The LabelShapeStatisticsImageFilter
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Table 1 3D Detection results of clinically relevant lymph nodes (SAD ≥ 8mm)

# Experiment Anatomy prior GT TP FP FN Precision Sensitivity F1-score

1 Bouget et al. [12] Yes – – – – – 46.4 –

2 3D nnUNet (Full Res) No 143 85 5 58 94.4 59.4 72.9

3 3D nnUNet (Full Res) Yes 143 84 6 59 93.3 58.7 72.1

4 3D nnUNet (Low Res) Yes 143 84 5 59 94.4 58.7 72.4

5 3D nnUNet (Cascade + Low Res) Yes 143 90 9 53 90.9 62.9 74.4

6 3D nnUNet (Cascade + Full Res) Yes 143 91 8 52 91.9 63.6 75.2

Bold font indicates best results. “–” stands for unreported results

Table 2 3D Segmentation results for clinically relevant and all lymph nodes

# Experiment Anatomy prior LN ≥ 8mm All LN
Dice ↑ HD ↓ Dice ↑ HD ↓

1 Bouget et al. [12] Yes – – 44.8 ± 13.5 –

2 3D nnUNet (Full Res) No 62.1 ± 26.6 33.5 ± 21.2 56.2 ± 23.5 44.5 ± 32.2

3 3D nnUNet (Full Res) Yes 62.5 ± 26.2 25.7 ± 25.2 55.9 ± 23.4 44.3 ± 31.8

4 3D nnUNet (Low Res) Yes 57.3 ± 27.6 39.2 ± 24.5 48.8 ± 23.2 56.1 ± 32.9

5 3D nnUNet (Cascade + Low Res) Yes 65.9 ± 23.8 26.9 ± 23.9 57.2 ± 20.7 49.9 ± 30.2

6 3D nnUNet (Cascade + Full Res) Yes 67.9 ± 23.4 22.8 ± 20.2 58.7 ± 21.3 41.9 ± 32.9

Bold font indicates best results. “–” stands for unreported results

function [29] in the SimpleITK python package was uti-
lized to compute the Feret diameter and stratify nodes by
their SAD (length perpendicular to Feret diameter).

Results

Tables 1 and 2 summarize the detection and segmentation
performances of the differentmethods respectively.Boxplots
in Fig. 2 show the distribution of the Dice scores and Haus-
dorff distances respectively across the different approaches.
Figure3 provides example outputs from the best performing
model.

First, the detection and segmentation results indicated that
all the nnUNet configurations (with and without anatomical
priors) outperformed the approach proposed by Bouget et al.
[12] by ≥10%. Next, we compared the 3D full-resolution
nnUNet “fullRes” trained with anatomical priors against
the same3Dfull-resolutionnnUNet “fullRes_noPrior”
trainedwithout anatomical priors. The “fullRes_noPrior”
model had amarginally higher (>1%) detection performance
(rows 2 and 3 in Table 1), while the “fullRes” model
showed a marginally higher (>1%) segmentation perfor-
mance (rows 2 and 3 in Table 2). However, the Hausdorff
distance error for the 3D “fullRes” model trained with
priors decreased by ≥4%, which indicated a closer agree-
ment with the ground truth. One potential reason for this was
that the model penalized the LN predictions if it encroached
on adjacent anatomy that was not the target lymph nodes. In

the absence of anatomical priors, this penalty was removed,
which consequently increased the Hausdorff distance error.
Thus, the presence of anatomical priors was important for
LN segmentation.

Then, we compared the performance of the different
nnUNet configurations. The 3D “lowRes” nnUNet with
anatomypriors achieved similar detection performance as the
3D “fullRes_noPrior” nnUNet. But, the “lowRes”
nnUNet fared the worst amongst all configurations in terms
of segmentation with the lowest Dice scores and Hausdorff
distance errors. In contrast, the 3D cascade nnUNet models
attained the best detection and segmentation scores. In partic-
ular, the 3D “cascFR” nnUNet with first-stage predictions
from the full-resolution nnUNet demonstrated the best LN
detection performance for 2/3 metrics (sensitivity and F1-
score) with an acceptable level of precision. It also exhibited
the highest Dice score and lowest Hausdorff distance error
for all LNs and clinically relevant LNs with SAD ≥8mm.

Figure2 shows the median values of the Dice scores
steadily increase and the Hausdorff distances decrease for
LNs≥ 8mmwhen transitioning from the “lowRes” nnUNet
to the cascade “cascFR” nnUNet model. Of note, the 3D
“fullRes_noPrior” model without anatomical priors
displayed the widest spread of Dice scores and Hausdorff
distance errors. This stands in contrast to the distributions
of the “fullRes” and “cascFR” nnUNet models, which
showed a smaller spread for Dice scores and lower Haus-
dorff distance errors. The findings signaled the benefit of
providing anatomical priors to these models. Again, the 3D
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Fig. 2 Box plots of the different 3D nnUNet model configurations for the segmentation of mediastinal lymph nodes in the St Olavs dataset. Dice
scores and Hausdorff distances are shown for clinically relevant lymph nodes with short axis diameters ≥ 8mm

Fig. 3 Visual example results of mediastinal LN detection and seg-
mentation in CT. Left column: A slice of the original CT volume for a
patient, Middle column: ground truth labels annotated by a radiologist,
Right column: Prediction from the 3D cascade nnUNet model. The dif-
ferent colors in the GT correspond to the different stations of the LNs,
but for evaluation purposes, they were all considered to belong to one
class based on their short axis diameter. For Patient 1 in (c), all four

lymph nodes were correctly segmented by the model including the two
co-located nodes. For Patient 7 in (c), the model partially captured the
large metastatic node (cyan), while it also identified an unmarked node
(magenta arrow) in the volume. The unmarked node was considered a
false positive for metric computation when it should actually be a true
positive. Finally, for Patient 10 in (c), the model missed the lymph node
in blue (indicated by magenta arrow)
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“cascFR” nnUNet trained with anatomical priors attained
the best median Dice score and lowest median Hausdorff
distance.

With respect to the computation time, the 3D
“fullRes_noPrior” model took ∼1.5 days to complete
training with 89 volumes, whereas the “fullRes” model
trained with anatomical priors took ∼3 days. On the other
hand, the 3D “cascFR” nnUNet took ∼5 days to complete.
For inference, the 3D full-resolution nnUNet (with and with-
out anatomy priors) took an average of ∼1.5min per volume
to produce the segmentation labels, while the 3D cascade
nnUNet took a little longer, ∼3min per volume.

The publicly available dataset of 15 patients [9, 23] is
the only external test dataset currently available with all
suspicious LNs entirely annotated. Due to the low num-
ber of testing cases (n = 15), a non-parametric Wilcoxon
signed-rank statistical test did not yield statistically different
results. But, given the clear improvements in the segmenta-
tion capabilities, we believe that the addition of more data
would provide clearer insights into any performance differ-
ences.Nevertheless, these findings again point to the utility of
anatomical priors for improved segmentation performance.

Discussion and conclusion

In this work, we trained various configurations of a 3D
nnUNet to segment lymph nodes in mediastinal CT volumes
with anatomical priors. As evidenced by prior works [6, 8,
11–13], the utilization of 28 anatomical priors improved the
3D nnUNet’s segmentation of lymph nodes as they provided
guidance to the model during training. Despite the provi-
sion of a dataset containing fully annotated lymph nodes,
the model was penalized if it over-segmented any nodes that
encroached into adjacent anatomical regions. The decreased
Hausdorff distance errors provide evidence of this effect. Par-
ticularly, the 3D full-resolution nnUNet trained without the
anatomy priors exhibited higher Hausdorff distance errors.
The 3D cascade nnUNet obtained the highest Dice scores
and lowest distance errors for all LNs and those with SAD
≥ 8mm, which were considered clinically significant.

A comparison of the proposed nnUNet configurations
against recent transformer-based segmentation methods,
such as nnFormer [30] or foundation models [31] was not
conducted. As noted in prior work [30], the average differ-
ence in Dice scores between nnUNet and transformer-based
approaches for multi-structure segmentation was<1%. Due
to the comparable performance differences, we used only
nnUNet models in this work. Foundation models currently
support only 2D inputs, whereas the nnUNet models take
3D volumes as inputs. Moreover, the network architecture of
foundation models cannot be automatically self-configured
for identification of the best training hyper-parameters for a

specific dataset. But, the nnUNet framework can be automat-
ically self-configured to provide the best hyper-parameters
for training segmentation models, and thus this framework
is still the de-facto standard for medical segmentation tasks.

Presently, it is impossible for an automated approach to
obtain voxel-perfect segmentations of LNs due to technical
challenges in the CT acquisition process. The timing and
uptake of contrastmaterial can fluctuate, resulting in adjacent
regions (e.g., azygos vein) to be similar intensity as the LNs
that straddle the mediastinum as seen in Figs. 3(a) and 3(b),
which can obscure their shape and size. Despite complete
annotations of LNs, it is possible that certain nodes can be
missed by a model as shown in Fig. 3(c). Additionally, the
manual annotations done by trained radiologists for LNs in
CT may not always be complete. For example, in Fig. 3(b),
a lymph node was not annotated in the ground truth, but the
nnUNet model correctly segmented this missed lymph node.
Incomplete ground truth could also reduce the segmentation
Dice scores as the correctly detected LNwould be incorrectly
considered as a false positive instead of a true positive.

Furthermore, the true metastatic nature of a node can only
be determined through an invasive biopsy procedure for diag-
nosis. But, this may not be clinically feasible due to small
sizes or anatomic locations. Thus, reliance on CT, PET/CT,
or ultrasound imaging markers are few of the non-invasive
ways to assess malignancy [12]. Utilizing PET/CT can pro-
vide complementary information on metastatic nodes based
on their metabolic activity; higher SUV values (regardless of
the nodal size) are suspicious for metastatic disease. How-
ever, PET/CT is not the initial diagnostic test and is generally
performed after CTs first identify a malignancy and areas of
metastatic disease; to that end, the initial CT exam must be
exhaustively used to derive biomarkers.

One of the main limitations of our work is the inability
to disambiguate collocated LNs in the CT volumes due to
the diversity of LN shapes and appearances. As pointed out
by Bouget et al. [12], this task is often difficult even for an
experienced radiologist, and it is expected that the taskwould
be equally, if not more, challenging for an automated method
as well. Additionally, we do not tackle the problem of station
mapping in this work. Furthermore, the test dataset that we
used in thiswork is relatively smallwith only 15 patients.Due
to clear imbalances in the station-level distributions [12], an
extensive data collection and annotation process would be
required to address both these issues. This would also enable
any statistical differences to be extracted across the different
nnUNet model configurations.

As localization of lymph nodes and measurement of sus-
picious nodes are routine tasks that clinicians perform on
a day-to-day basis, our end-to-end anatomical prior-guided
approach to segmenting lymph nodes would potentially alle-
viate the cumbersome nature of the measurement task. Since
the models were trained with data that was presumably
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acquired with a variety of imaging scanners and exam proto-
cols, it is fair to note that our 3D cascade model was sensitive
to identifying LNs with SAD ≥ 8mm while maintaining a
high detection precision. It holds promise as a tool to report
automated measurements, differentiate metastatic from non-
metastatic nodes, and flag any concerning LNs that were
missed by the reading radiologist.

In summary, the segmentation ofmediastinal lymph nodes
in CT was explored in our work through the use of anatom-
ical priors. In addition to the LN labels for 89 volumes
from the public NIH CT Lymph Node dataset, 28 different
structures were also used to train different configurations of
off-the-shelf 3D nnUNet models in an end-to-end manner.
As post-processing steps were unnecessary, the 3D cascade
model was able to achieve the highest segmentation Dice
score of 67.9 ± 23.4 and lowest Hausdorff distance errors of
22.8± 20.2 for clinically significant LNs with SAD≥ 8mm.
Our results show an improvement of 10% over the current
state-of-the-art method that was evaluated on the same test
dataset. Mining additional LNs in unannotated CT exams
would enable the segmentation performance to be improved
over time. Our approach has the potential for improved
patient outcomes through the identification of enlarged nodes
in initial staging CT exams, while also determining the best
options for next steps, whether that be diagnostic biopsy or
therapeutic treatment.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11548-024-03165-
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